acpi_cpu_md.c revision 1.48 1 1.48 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.48 2011/02/27 18:32:54 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.48 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.48 2011/02/27 18:32:54 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.48 jruoho #include <sys/device.h>
35 1.1 jruoho #include <sys/kcore.h>
36 1.5 jruoho #include <sys/sysctl.h>
37 1.4 jruoho #include <sys/xcall.h>
38 1.1 jruoho
39 1.1 jruoho #include <x86/cpu.h>
40 1.5 jruoho #include <x86/cpufunc.h>
41 1.5 jruoho #include <x86/cputypes.h>
42 1.1 jruoho #include <x86/cpuvar.h>
43 1.5 jruoho #include <x86/cpu_msr.h>
44 1.1 jruoho #include <x86/machdep.h>
45 1.1 jruoho
46 1.1 jruoho #include <dev/acpi/acpica.h>
47 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
48 1.1 jruoho
49 1.12 jruoho #include <dev/pci/pcivar.h>
50 1.12 jruoho #include <dev/pci/pcidevs.h>
51 1.12 jruoho
52 1.38 jruoho #include <machine/acpi_machdep.h>
53 1.38 jruoho
54 1.35 jruoho /*
55 1.35 jruoho * AMD C1E.
56 1.35 jruoho */
57 1.35 jruoho #define MSR_CMPHALT 0xc0010055
58 1.35 jruoho
59 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
60 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
61 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
62 1.33 jruoho
63 1.32 jruoho /*
64 1.40 jmcneill * AMD families 10h, 11h, and 14h
65 1.32 jruoho */
66 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
67 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
68 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
69 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
70 1.22 jruoho
71 1.32 jruoho /*
72 1.32 jruoho * AMD family 0Fh.
73 1.32 jruoho */
74 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
75 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
76 1.17 jruoho
77 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
78 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
79 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
80 1.32 jruoho
81 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
82 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
83 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
84 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
85 1.32 jruoho
86 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
87 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
88 1.32 jruoho
89 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
90 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
91 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
92 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
93 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
94 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
95 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
96 1.32 jruoho
97 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
98 1.17 jruoho
99 1.5 jruoho static char native_idle_text[16];
100 1.5 jruoho void (*native_idle)(void) = NULL;
101 1.1 jruoho
102 1.43 jruoho static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
103 1.41 jruoho static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
104 1.41 jruoho static void acpicpu_md_pstate_percent_status(void *, void *);
105 1.19 jruoho static void acpicpu_md_pstate_status(void *, void *);
106 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
107 1.32 jruoho uint32_t *);
108 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
109 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
110 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
111 1.32 jruoho uint32_t, uint32_t);
112 1.19 jruoho static void acpicpu_md_tstate_status(void *, void *);
113 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
114 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
115 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
116 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
117 1.5 jruoho
118 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
119 1.35 jruoho static bool acpicpu_pstate_status = false;
120 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
121 1.1 jruoho
122 1.48 jruoho struct cpu_info *
123 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
124 1.48 jruoho {
125 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
126 1.48 jruoho
127 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
128 1.48 jruoho return NULL;
129 1.48 jruoho
130 1.48 jruoho return cfaa->ci;
131 1.48 jruoho }
132 1.48 jruoho
133 1.48 jruoho struct cpu_info *
134 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
135 1.48 jruoho {
136 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
137 1.48 jruoho
138 1.48 jruoho return cfaa->ci;
139 1.48 jruoho }
140 1.48 jruoho
141 1.1 jruoho uint32_t
142 1.1 jruoho acpicpu_md_cap(void)
143 1.1 jruoho {
144 1.1 jruoho struct cpu_info *ci = curcpu();
145 1.44 jruoho uint32_t regs[4];
146 1.1 jruoho uint32_t val = 0;
147 1.1 jruoho
148 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
149 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
150 1.1 jruoho return val;
151 1.1 jruoho
152 1.1 jruoho /*
153 1.47 jruoho * Basic SMP C-states (required for e.g. _CST).
154 1.1 jruoho */
155 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
156 1.1 jruoho
157 1.47 jruoho /*
158 1.47 jruoho * Claim to support dependency coordination.
159 1.47 jruoho */
160 1.47 jruoho val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
161 1.47 jruoho
162 1.1 jruoho /*
163 1.1 jruoho * If MONITOR/MWAIT is available, announce
164 1.1 jruoho * support for native instructions in all C-states.
165 1.1 jruoho */
166 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
167 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
168 1.1 jruoho
169 1.5 jruoho /*
170 1.10 jruoho * Set native P- and T-states, if available.
171 1.5 jruoho */
172 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
173 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
174 1.5 jruoho
175 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
176 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
177 1.10 jruoho
178 1.44 jruoho /*
179 1.44 jruoho * Declare support for APERF and MPERF.
180 1.44 jruoho */
181 1.44 jruoho if (cpuid_level >= 0x06) {
182 1.44 jruoho
183 1.44 jruoho x86_cpuid(0x00000006, regs);
184 1.44 jruoho
185 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
186 1.44 jruoho val |= ACPICPU_PDC_P_HW;
187 1.44 jruoho }
188 1.44 jruoho
189 1.1 jruoho return val;
190 1.1 jruoho }
191 1.1 jruoho
192 1.1 jruoho uint32_t
193 1.43 jruoho acpicpu_md_flags(void)
194 1.1 jruoho {
195 1.1 jruoho struct cpu_info *ci = curcpu();
196 1.12 jruoho struct pci_attach_args pa;
197 1.18 jruoho uint32_t family, val = 0;
198 1.21 jruoho uint32_t regs[4];
199 1.1 jruoho
200 1.38 jruoho if (acpi_md_ncpus() == 1)
201 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
202 1.1 jruoho
203 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
204 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
205 1.1 jruoho
206 1.39 jruoho /*
207 1.39 jruoho * By default, assume that the local APIC timer
208 1.39 jruoho * as well as TSC are stalled during C3 sleep.
209 1.39 jruoho */
210 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
211 1.22 jruoho
212 1.1 jruoho switch (cpu_vendor) {
213 1.1 jruoho
214 1.17 jruoho case CPUVENDOR_IDT:
215 1.22 jruoho
216 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
217 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
218 1.22 jruoho
219 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
220 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
221 1.22 jruoho
222 1.22 jruoho break;
223 1.22 jruoho
224 1.1 jruoho case CPUVENDOR_INTEL:
225 1.17 jruoho
226 1.39 jruoho /*
227 1.39 jruoho * Bus master control and arbitration should be
228 1.39 jruoho * available on all supported Intel CPUs (to be
229 1.39 jruoho * sure, this is double-checked later from the
230 1.39 jruoho * firmware data). These flags imply that it is
231 1.39 jruoho * not necessary to flush caches before C3 state.
232 1.39 jruoho */
233 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
234 1.22 jruoho
235 1.39 jruoho /*
236 1.39 jruoho * Check if we can use "native", MSR-based,
237 1.39 jruoho * access. If not, we have to resort to I/O.
238 1.39 jruoho */
239 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
240 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
241 1.5 jruoho
242 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
243 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
244 1.10 jruoho
245 1.22 jruoho /*
246 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
247 1.25 jruoho * Boost are available. Also see if we might have
248 1.25 jruoho * an invariant local APIC timer ("ARAT").
249 1.23 jruoho */
250 1.23 jruoho if (cpuid_level >= 0x06) {
251 1.23 jruoho
252 1.44 jruoho x86_cpuid(0x00000006, regs);
253 1.23 jruoho
254 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
255 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
256 1.23 jruoho
257 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
258 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
259 1.25 jruoho
260 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
261 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
262 1.23 jruoho }
263 1.23 jruoho
264 1.23 jruoho /*
265 1.22 jruoho * Detect whether TSC is invariant. If it is not,
266 1.22 jruoho * we keep the flag to note that TSC will not run
267 1.22 jruoho * at constant rate. Depending on the CPU, this may
268 1.22 jruoho * affect P- and T-state changes, but especially
269 1.22 jruoho * relevant are C-states; with variant TSC, states
270 1.24 jruoho * larger than C1 may completely stop the counter.
271 1.22 jruoho */
272 1.22 jruoho x86_cpuid(0x80000000, regs);
273 1.22 jruoho
274 1.22 jruoho if (regs[0] >= 0x80000007) {
275 1.22 jruoho
276 1.22 jruoho x86_cpuid(0x80000007, regs);
277 1.22 jruoho
278 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
279 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
280 1.22 jruoho }
281 1.22 jruoho
282 1.17 jruoho break;
283 1.12 jruoho
284 1.17 jruoho case CPUVENDOR_AMD:
285 1.17 jruoho
286 1.32 jruoho x86_cpuid(0x80000000, regs);
287 1.32 jruoho
288 1.32 jruoho if (regs[0] < 0x80000007)
289 1.32 jruoho break;
290 1.32 jruoho
291 1.32 jruoho x86_cpuid(0x80000007, regs);
292 1.32 jruoho
293 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
294 1.18 jruoho
295 1.18 jruoho if (family == 0xf)
296 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
297 1.18 jruoho
298 1.32 jruoho switch (family) {
299 1.1 jruoho
300 1.22 jruoho case 0x0f:
301 1.32 jruoho
302 1.45 jruoho /*
303 1.45 jruoho * Evaluate support for the "FID/VID
304 1.45 jruoho * algorithm" also used by powernow(4).
305 1.45 jruoho */
306 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
307 1.32 jruoho break;
308 1.32 jruoho
309 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
310 1.32 jruoho break;
311 1.32 jruoho
312 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
313 1.32 jruoho break;
314 1.32 jruoho
315 1.17 jruoho case 0x10:
316 1.17 jruoho case 0x11:
317 1.40 jmcneill val |= ACPICPU_FLAG_C_C1E;
318 1.40 jmcneill /* FALLTHROUGH */
319 1.40 jmcneill
320 1.40 jmcneill case 0x14: /* AMD Fusion */
321 1.1 jruoho
322 1.42 jruoho /*
323 1.42 jruoho * Like with Intel, detect invariant TSC,
324 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
325 1.42 jruoho * (Core Performance Boost), respectively.
326 1.42 jruoho */
327 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
328 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
329 1.22 jruoho
330 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
331 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
332 1.21 jruoho
333 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
334 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
335 1.35 jruoho
336 1.42 jruoho /*
337 1.42 jruoho * Also check for APERF and MPERF,
338 1.42 jruoho * first available in the family 10h.
339 1.42 jruoho */
340 1.42 jruoho if (cpuid_level >= 0x06) {
341 1.42 jruoho
342 1.42 jruoho x86_cpuid(0x00000006, regs);
343 1.42 jruoho
344 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
345 1.42 jruoho val |= ACPICPU_FLAG_P_HW;
346 1.42 jruoho }
347 1.42 jruoho
348 1.35 jruoho break;
349 1.17 jruoho }
350 1.1 jruoho
351 1.1 jruoho break;
352 1.1 jruoho }
353 1.1 jruoho
354 1.12 jruoho /*
355 1.12 jruoho * There are several erratums for PIIX4.
356 1.12 jruoho */
357 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
358 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
359 1.12 jruoho
360 1.1 jruoho return val;
361 1.1 jruoho }
362 1.1 jruoho
363 1.12 jruoho static int
364 1.43 jruoho acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
365 1.12 jruoho {
366 1.12 jruoho
367 1.12 jruoho /*
368 1.12 jruoho * XXX: The pci_find_device(9) function only
369 1.12 jruoho * deals with attached devices. Change this
370 1.12 jruoho * to use something like pci_device_foreach().
371 1.12 jruoho */
372 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
373 1.12 jruoho return 0;
374 1.12 jruoho
375 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
376 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
377 1.12 jruoho return 1;
378 1.12 jruoho
379 1.12 jruoho return 0;
380 1.12 jruoho }
381 1.12 jruoho
382 1.35 jruoho void
383 1.43 jruoho acpicpu_md_quirk_c1e(void)
384 1.35 jruoho {
385 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
386 1.35 jruoho uint64_t val;
387 1.35 jruoho
388 1.35 jruoho val = rdmsr(MSR_CMPHALT);
389 1.35 jruoho
390 1.35 jruoho if ((val & c1e) != 0)
391 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
392 1.35 jruoho }
393 1.35 jruoho
394 1.1 jruoho int
395 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
396 1.1 jruoho {
397 1.1 jruoho const size_t size = sizeof(native_idle_text);
398 1.31 jruoho struct acpicpu_cstate *cs;
399 1.31 jruoho bool ipi = false;
400 1.31 jruoho int i;
401 1.1 jruoho
402 1.45 jruoho /*
403 1.45 jruoho * Save the cpu_idle(9) loop used by default.
404 1.45 jruoho */
405 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
406 1.31 jruoho
407 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
408 1.31 jruoho
409 1.31 jruoho cs = &sc->sc_cstate[i];
410 1.31 jruoho
411 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
412 1.31 jruoho ipi = true;
413 1.31 jruoho break;
414 1.31 jruoho }
415 1.31 jruoho }
416 1.31 jruoho
417 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
418 1.1 jruoho
419 1.1 jruoho return 0;
420 1.1 jruoho }
421 1.1 jruoho
422 1.1 jruoho int
423 1.43 jruoho acpicpu_md_cstate_stop(void)
424 1.1 jruoho {
425 1.4 jruoho uint64_t xc;
426 1.31 jruoho bool ipi;
427 1.1 jruoho
428 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
429 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
430 1.1 jruoho
431 1.4 jruoho /*
432 1.4 jruoho * Run a cross-call to ensure that all CPUs are
433 1.4 jruoho * out from the ACPI idle-loop before detachment.
434 1.4 jruoho */
435 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
436 1.4 jruoho xc_wait(xc);
437 1.1 jruoho
438 1.1 jruoho return 0;
439 1.1 jruoho }
440 1.1 jruoho
441 1.3 jruoho /*
442 1.31 jruoho * Called with interrupts disabled.
443 1.31 jruoho * Caller should enable interrupts after return.
444 1.3 jruoho */
445 1.1 jruoho void
446 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
447 1.1 jruoho {
448 1.3 jruoho struct cpu_info *ci = curcpu();
449 1.1 jruoho
450 1.1 jruoho switch (method) {
451 1.1 jruoho
452 1.1 jruoho case ACPICPU_C_STATE_FFH:
453 1.3 jruoho
454 1.3 jruoho x86_enable_intr();
455 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
456 1.3 jruoho
457 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
458 1.3 jruoho return;
459 1.3 jruoho
460 1.1 jruoho x86_mwait((state - 1) << 4, 0);
461 1.1 jruoho break;
462 1.1 jruoho
463 1.1 jruoho case ACPICPU_C_STATE_HALT:
464 1.3 jruoho
465 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
466 1.3 jruoho return;
467 1.3 jruoho
468 1.1 jruoho x86_stihlt();
469 1.1 jruoho break;
470 1.1 jruoho }
471 1.1 jruoho }
472 1.5 jruoho
473 1.5 jruoho int
474 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
475 1.5 jruoho {
476 1.20 jruoho const uint64_t est = __BIT(16);
477 1.20 jruoho uint64_t val;
478 1.20 jruoho
479 1.41 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
480 1.41 jruoho return ENODEV;
481 1.41 jruoho
482 1.20 jruoho switch (cpu_vendor) {
483 1.20 jruoho
484 1.20 jruoho case CPUVENDOR_IDT:
485 1.20 jruoho case CPUVENDOR_INTEL:
486 1.20 jruoho
487 1.41 jruoho /*
488 1.41 jruoho * Make sure EST is enabled.
489 1.41 jruoho */
490 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
491 1.20 jruoho
492 1.20 jruoho if ((val & est) == 0) {
493 1.20 jruoho
494 1.20 jruoho val |= est;
495 1.20 jruoho
496 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
497 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
498 1.20 jruoho
499 1.20 jruoho if ((val & est) == 0)
500 1.20 jruoho return ENOTTY;
501 1.20 jruoho }
502 1.42 jruoho }
503 1.41 jruoho
504 1.42 jruoho /*
505 1.42 jruoho * Reset the APERF and MPERF counters.
506 1.42 jruoho */
507 1.42 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
508 1.42 jruoho acpicpu_md_pstate_percent_reset(sc);
509 1.9 jruoho
510 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
511 1.5 jruoho }
512 1.5 jruoho
513 1.5 jruoho int
514 1.5 jruoho acpicpu_md_pstate_stop(void)
515 1.5 jruoho {
516 1.5 jruoho
517 1.19 jruoho if (acpicpu_log != NULL)
518 1.19 jruoho sysctl_teardown(&acpicpu_log);
519 1.5 jruoho
520 1.5 jruoho return 0;
521 1.5 jruoho }
522 1.5 jruoho
523 1.5 jruoho int
524 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
525 1.5 jruoho {
526 1.15 jruoho struct acpicpu_pstate *ps, msr;
527 1.17 jruoho struct cpu_info *ci = curcpu();
528 1.18 jruoho uint32_t family, i = 0;
529 1.13 jruoho
530 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
531 1.13 jruoho
532 1.5 jruoho switch (cpu_vendor) {
533 1.5 jruoho
534 1.17 jruoho case CPUVENDOR_IDT:
535 1.5 jruoho case CPUVENDOR_INTEL:
536 1.33 jruoho
537 1.33 jruoho /*
538 1.33 jruoho * If the so-called Turbo Boost is present,
539 1.33 jruoho * the P0-state is always the "turbo state".
540 1.33 jruoho *
541 1.33 jruoho * For discussion, see:
542 1.33 jruoho *
543 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
544 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
545 1.33 jruoho * Based Processors. White Paper, November 2008.
546 1.33 jruoho */
547 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
548 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
549 1.33 jruoho
550 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
551 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
552 1.15 jruoho
553 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
554 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
555 1.13 jruoho break;
556 1.13 jruoho
557 1.13 jruoho case CPUVENDOR_AMD:
558 1.13 jruoho
559 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
560 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
561 1.33 jruoho
562 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
563 1.18 jruoho
564 1.18 jruoho if (family == 0xf)
565 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
566 1.18 jruoho
567 1.18 jruoho switch (family) {
568 1.17 jruoho
569 1.32 jruoho case 0x0f:
570 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
571 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
572 1.32 jruoho break;
573 1.32 jruoho
574 1.17 jruoho case 0x10:
575 1.17 jruoho case 0x11:
576 1.40 jmcneill case 0x14: /* AMD Fusion */
577 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
578 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
579 1.17 jruoho
580 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
581 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
582 1.17 jruoho break;
583 1.17 jruoho
584 1.17 jruoho default:
585 1.17 jruoho
586 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
587 1.17 jruoho return EOPNOTSUPP;
588 1.17 jruoho }
589 1.13 jruoho
590 1.13 jruoho break;
591 1.13 jruoho
592 1.13 jruoho default:
593 1.13 jruoho return ENODEV;
594 1.13 jruoho }
595 1.5 jruoho
596 1.26 jruoho /*
597 1.26 jruoho * Fill the P-state structures with MSR addresses that are
598 1.27 jruoho * known to be correct. If we do not know the addresses,
599 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
600 1.39 jruoho * not necessarily need to do anything to support new CPUs.
601 1.26 jruoho */
602 1.15 jruoho while (i < sc->sc_pstate_count) {
603 1.15 jruoho
604 1.15 jruoho ps = &sc->sc_pstate[i];
605 1.15 jruoho
606 1.32 jruoho if (msr.ps_flags != 0)
607 1.32 jruoho ps->ps_flags |= msr.ps_flags;
608 1.32 jruoho
609 1.27 jruoho if (msr.ps_status_addr != 0)
610 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
611 1.15 jruoho
612 1.27 jruoho if (msr.ps_status_mask != 0)
613 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
614 1.15 jruoho
615 1.27 jruoho if (msr.ps_control_addr != 0)
616 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
617 1.15 jruoho
618 1.27 jruoho if (msr.ps_control_mask != 0)
619 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
620 1.15 jruoho
621 1.15 jruoho i++;
622 1.15 jruoho }
623 1.15 jruoho
624 1.15 jruoho return 0;
625 1.15 jruoho }
626 1.15 jruoho
627 1.41 jruoho /*
628 1.41 jruoho * Returns the percentage of the actual frequency in
629 1.41 jruoho * terms of the maximum frequency of the calling CPU
630 1.41 jruoho * since the last call. A value zero implies an error.
631 1.41 jruoho */
632 1.41 jruoho uint8_t
633 1.41 jruoho acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
634 1.41 jruoho {
635 1.41 jruoho struct cpu_info *ci = sc->sc_ci;
636 1.41 jruoho uint64_t aperf, mperf;
637 1.41 jruoho uint64_t xc, rv = 0;
638 1.41 jruoho
639 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
640 1.41 jruoho return 0;
641 1.41 jruoho
642 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
643 1.41 jruoho return 0;
644 1.41 jruoho
645 1.41 jruoho /*
646 1.41 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
647 1.41 jruoho * increments at the rate of the fixed maximum frequency
648 1.41 jruoho * configured during the boot, whereas APERF counts at the
649 1.41 jruoho * rate of the actual frequency. Note that the MSRs must be
650 1.41 jruoho * read without delay, and that only the ratio between
651 1.41 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
652 1.41 jruoho *
653 1.41 jruoho * For further details, refer to:
654 1.41 jruoho *
655 1.41 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
656 1.41 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
657 1.41 jruoho * System Programming Guide, Part 1. July, 2008.
658 1.42 jruoho *
659 1.42 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
660 1.42 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
661 1.42 jruoho * 2.4.5, Revision 3.48, April 2010.
662 1.41 jruoho */
663 1.41 jruoho x86_disable_intr();
664 1.41 jruoho
665 1.41 jruoho aperf = sc->sc_pstate_aperf;
666 1.41 jruoho mperf = sc->sc_pstate_mperf;
667 1.41 jruoho
668 1.41 jruoho xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
669 1.41 jruoho xc_wait(xc);
670 1.41 jruoho
671 1.41 jruoho x86_enable_intr();
672 1.41 jruoho
673 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
674 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
675 1.41 jruoho
676 1.41 jruoho if (__predict_true(mperf != 0))
677 1.41 jruoho rv = (aperf * 100) / mperf;
678 1.41 jruoho
679 1.41 jruoho return rv;
680 1.41 jruoho }
681 1.41 jruoho
682 1.41 jruoho static void
683 1.41 jruoho acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
684 1.41 jruoho {
685 1.41 jruoho struct acpicpu_softc *sc = arg1;
686 1.41 jruoho
687 1.41 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
688 1.41 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
689 1.41 jruoho }
690 1.41 jruoho
691 1.41 jruoho static void
692 1.41 jruoho acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
693 1.41 jruoho {
694 1.46 jruoho struct msr_rw_info msr;
695 1.46 jruoho uint64_t xc;
696 1.41 jruoho
697 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
698 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
699 1.41 jruoho
700 1.46 jruoho msr.msr_value = 0;
701 1.46 jruoho msr.msr_read = false;
702 1.46 jruoho msr.msr_type = MSR_APERF;
703 1.46 jruoho
704 1.46 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
705 1.46 jruoho xc_wait(xc);
706 1.46 jruoho
707 1.46 jruoho msr.msr_value = 0;
708 1.46 jruoho msr.msr_read = false;
709 1.46 jruoho msr.msr_type = MSR_MPERF;
710 1.46 jruoho
711 1.46 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
712 1.46 jruoho xc_wait(xc);
713 1.41 jruoho
714 1.41 jruoho sc->sc_pstate_aperf = 0;
715 1.41 jruoho sc->sc_pstate_mperf = 0;
716 1.41 jruoho }
717 1.41 jruoho
718 1.15 jruoho int
719 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
720 1.15 jruoho {
721 1.15 jruoho struct acpicpu_pstate *ps = NULL;
722 1.15 jruoho uint64_t val;
723 1.15 jruoho uint32_t i;
724 1.15 jruoho
725 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
726 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
727 1.32 jruoho
728 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
729 1.15 jruoho
730 1.15 jruoho ps = &sc->sc_pstate[i];
731 1.15 jruoho
732 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
733 1.15 jruoho break;
734 1.15 jruoho }
735 1.15 jruoho
736 1.15 jruoho if (__predict_false(ps == NULL))
737 1.17 jruoho return ENODEV;
738 1.15 jruoho
739 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
740 1.13 jruoho return EINVAL;
741 1.5 jruoho
742 1.13 jruoho val = rdmsr(ps->ps_status_addr);
743 1.5 jruoho
744 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
745 1.13 jruoho val = val & ps->ps_status_mask;
746 1.5 jruoho
747 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
748 1.5 jruoho
749 1.13 jruoho ps = &sc->sc_pstate[i];
750 1.5 jruoho
751 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
752 1.13 jruoho continue;
753 1.5 jruoho
754 1.29 jruoho if (val == ps->ps_status) {
755 1.13 jruoho *freq = ps->ps_freq;
756 1.13 jruoho return 0;
757 1.13 jruoho }
758 1.5 jruoho }
759 1.5 jruoho
760 1.13 jruoho return EIO;
761 1.5 jruoho }
762 1.5 jruoho
763 1.5 jruoho int
764 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
765 1.5 jruoho {
766 1.5 jruoho struct msr_rw_info msr;
767 1.14 jruoho uint64_t xc;
768 1.14 jruoho int rv = 0;
769 1.5 jruoho
770 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
771 1.37 jruoho return EINVAL;
772 1.37 jruoho
773 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
774 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
775 1.32 jruoho
776 1.13 jruoho msr.msr_read = false;
777 1.13 jruoho msr.msr_type = ps->ps_control_addr;
778 1.13 jruoho msr.msr_value = ps->ps_control;
779 1.13 jruoho
780 1.24 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
781 1.13 jruoho msr.msr_mask = ps->ps_control_mask;
782 1.13 jruoho msr.msr_read = true;
783 1.13 jruoho }
784 1.13 jruoho
785 1.5 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
786 1.5 jruoho xc_wait(xc);
787 1.5 jruoho
788 1.36 jruoho /*
789 1.36 jruoho * Due several problems, we bypass the
790 1.36 jruoho * relatively expensive status check.
791 1.36 jruoho */
792 1.36 jruoho if (acpicpu_pstate_status != true) {
793 1.33 jruoho DELAY(ps->ps_latency);
794 1.33 jruoho return 0;
795 1.33 jruoho }
796 1.13 jruoho
797 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
798 1.14 jruoho xc_wait(xc);
799 1.14 jruoho
800 1.14 jruoho return rv;
801 1.14 jruoho }
802 1.14 jruoho
803 1.14 jruoho static void
804 1.14 jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
805 1.14 jruoho {
806 1.14 jruoho struct acpicpu_pstate *ps = arg1;
807 1.14 jruoho uint64_t val;
808 1.14 jruoho int i;
809 1.14 jruoho
810 1.5 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
811 1.5 jruoho
812 1.13 jruoho val = rdmsr(ps->ps_status_addr);
813 1.13 jruoho
814 1.24 jruoho if (__predict_true(ps->ps_status_mask != 0))
815 1.13 jruoho val = val & ps->ps_status_mask;
816 1.5 jruoho
817 1.29 jruoho if (val == ps->ps_status)
818 1.14 jruoho return;
819 1.5 jruoho
820 1.5 jruoho DELAY(ps->ps_latency);
821 1.5 jruoho }
822 1.5 jruoho
823 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
824 1.5 jruoho }
825 1.10 jruoho
826 1.32 jruoho static int
827 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
828 1.32 jruoho {
829 1.32 jruoho struct acpicpu_pstate *ps;
830 1.32 jruoho uint32_t fid, i, vid;
831 1.32 jruoho uint32_t cfid, cvid;
832 1.32 jruoho int rv;
833 1.32 jruoho
834 1.32 jruoho /*
835 1.32 jruoho * AMD family 0Fh needs special treatment.
836 1.32 jruoho * While it wants to use ACPI, it does not
837 1.32 jruoho * comply with the ACPI specifications.
838 1.32 jruoho */
839 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
840 1.32 jruoho
841 1.32 jruoho if (rv != 0)
842 1.32 jruoho return rv;
843 1.32 jruoho
844 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
845 1.32 jruoho
846 1.32 jruoho ps = &sc->sc_pstate[i];
847 1.32 jruoho
848 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
849 1.32 jruoho continue;
850 1.32 jruoho
851 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
852 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
853 1.32 jruoho
854 1.32 jruoho if (cfid == fid && cvid == vid) {
855 1.32 jruoho *freq = ps->ps_freq;
856 1.32 jruoho return 0;
857 1.32 jruoho }
858 1.32 jruoho }
859 1.32 jruoho
860 1.32 jruoho return EIO;
861 1.32 jruoho }
862 1.32 jruoho
863 1.32 jruoho static int
864 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
865 1.32 jruoho {
866 1.32 jruoho const uint64_t ctrl = ps->ps_control;
867 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
868 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
869 1.32 jruoho uint32_t val, vid, vst;
870 1.32 jruoho int rv;
871 1.32 jruoho
872 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
873 1.32 jruoho
874 1.32 jruoho if (rv != 0)
875 1.32 jruoho return rv;
876 1.32 jruoho
877 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
878 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
879 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
880 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
881 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
882 1.32 jruoho
883 1.32 jruoho vst = vst * 20;
884 1.32 jruoho pll = pll * 1000 / 5;
885 1.32 jruoho irt = 10 * __BIT(irt);
886 1.32 jruoho
887 1.32 jruoho /*
888 1.32 jruoho * Phase 1.
889 1.32 jruoho */
890 1.32 jruoho while (cvid > vid) {
891 1.32 jruoho
892 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
893 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
894 1.32 jruoho
895 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
896 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
897 1.32 jruoho
898 1.32 jruoho if (rv != 0)
899 1.32 jruoho return rv;
900 1.32 jruoho }
901 1.32 jruoho
902 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
903 1.32 jruoho
904 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
905 1.32 jruoho
906 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
907 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
908 1.32 jruoho
909 1.32 jruoho if (rv != 0)
910 1.32 jruoho return rv;
911 1.32 jruoho }
912 1.32 jruoho
913 1.32 jruoho /*
914 1.32 jruoho * Phase 2.
915 1.32 jruoho */
916 1.32 jruoho if (cfid != fid) {
917 1.32 jruoho
918 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
919 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
920 1.32 jruoho
921 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
922 1.32 jruoho
923 1.32 jruoho if (fid <= cfid)
924 1.32 jruoho val = cfid - 2;
925 1.32 jruoho else {
926 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
927 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
928 1.32 jruoho }
929 1.32 jruoho
930 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
931 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
932 1.32 jruoho
933 1.32 jruoho if (rv != 0)
934 1.32 jruoho return rv;
935 1.32 jruoho
936 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
937 1.32 jruoho }
938 1.32 jruoho
939 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
940 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
941 1.32 jruoho
942 1.32 jruoho if (rv != 0)
943 1.32 jruoho return rv;
944 1.32 jruoho }
945 1.32 jruoho
946 1.32 jruoho /*
947 1.32 jruoho * Phase 3.
948 1.32 jruoho */
949 1.32 jruoho if (cvid != vid) {
950 1.32 jruoho
951 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
952 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
953 1.32 jruoho
954 1.32 jruoho if (rv != 0)
955 1.32 jruoho return rv;
956 1.32 jruoho }
957 1.32 jruoho
958 1.32 jruoho if (cfid != fid || cvid != vid)
959 1.32 jruoho return EIO;
960 1.32 jruoho
961 1.32 jruoho return 0;
962 1.32 jruoho }
963 1.32 jruoho
964 1.32 jruoho static int
965 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
966 1.32 jruoho {
967 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
968 1.32 jruoho uint64_t val;
969 1.32 jruoho
970 1.32 jruoho do {
971 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
972 1.32 jruoho
973 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
974 1.32 jruoho
975 1.32 jruoho if (i == 0)
976 1.32 jruoho return EAGAIN;
977 1.32 jruoho
978 1.32 jruoho if (cfid != NULL)
979 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
980 1.32 jruoho
981 1.32 jruoho if (cvid != NULL)
982 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
983 1.32 jruoho
984 1.32 jruoho return 0;
985 1.32 jruoho }
986 1.32 jruoho
987 1.32 jruoho static void
988 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
989 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
990 1.32 jruoho {
991 1.32 jruoho struct msr_rw_info msr;
992 1.32 jruoho uint64_t xc;
993 1.32 jruoho
994 1.32 jruoho msr.msr_read = false;
995 1.32 jruoho msr.msr_type = MSR_0FH_CONTROL;
996 1.32 jruoho msr.msr_value = 0;
997 1.32 jruoho
998 1.32 jruoho msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
999 1.32 jruoho msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
1000 1.32 jruoho msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
1001 1.32 jruoho msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
1002 1.32 jruoho
1003 1.32 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1004 1.32 jruoho xc_wait(xc);
1005 1.32 jruoho
1006 1.32 jruoho DELAY(tmo);
1007 1.32 jruoho }
1008 1.32 jruoho
1009 1.10 jruoho int
1010 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
1011 1.10 jruoho {
1012 1.10 jruoho struct acpicpu_tstate *ts;
1013 1.14 jruoho uint64_t val;
1014 1.10 jruoho uint32_t i;
1015 1.10 jruoho
1016 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1017 1.10 jruoho
1018 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
1019 1.10 jruoho
1020 1.10 jruoho ts = &sc->sc_tstate[i];
1021 1.10 jruoho
1022 1.10 jruoho if (ts->ts_percent == 0)
1023 1.10 jruoho continue;
1024 1.10 jruoho
1025 1.29 jruoho if (val == ts->ts_status) {
1026 1.10 jruoho *percent = ts->ts_percent;
1027 1.10 jruoho return 0;
1028 1.10 jruoho }
1029 1.10 jruoho }
1030 1.10 jruoho
1031 1.10 jruoho return EIO;
1032 1.10 jruoho }
1033 1.10 jruoho
1034 1.10 jruoho int
1035 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1036 1.10 jruoho {
1037 1.10 jruoho struct msr_rw_info msr;
1038 1.14 jruoho uint64_t xc;
1039 1.14 jruoho int rv = 0;
1040 1.10 jruoho
1041 1.14 jruoho msr.msr_read = true;
1042 1.14 jruoho msr.msr_type = MSR_THERM_CONTROL;
1043 1.14 jruoho msr.msr_value = ts->ts_control;
1044 1.14 jruoho msr.msr_mask = __BITS(1, 4);
1045 1.10 jruoho
1046 1.10 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1047 1.10 jruoho xc_wait(xc);
1048 1.10 jruoho
1049 1.30 jruoho if (ts->ts_status == 0) {
1050 1.30 jruoho DELAY(ts->ts_latency);
1051 1.10 jruoho return 0;
1052 1.30 jruoho }
1053 1.10 jruoho
1054 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
1055 1.14 jruoho xc_wait(xc);
1056 1.14 jruoho
1057 1.14 jruoho return rv;
1058 1.14 jruoho }
1059 1.14 jruoho
1060 1.14 jruoho static void
1061 1.14 jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
1062 1.14 jruoho {
1063 1.14 jruoho struct acpicpu_tstate *ts = arg1;
1064 1.14 jruoho uint64_t val;
1065 1.14 jruoho int i;
1066 1.14 jruoho
1067 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1068 1.10 jruoho
1069 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1070 1.10 jruoho
1071 1.29 jruoho if (val == ts->ts_status)
1072 1.14 jruoho return;
1073 1.10 jruoho
1074 1.10 jruoho DELAY(ts->ts_latency);
1075 1.10 jruoho }
1076 1.10 jruoho
1077 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
1078 1.10 jruoho }
1079 1.19 jruoho
1080 1.19 jruoho /*
1081 1.19 jruoho * A kludge for backwards compatibility.
1082 1.19 jruoho */
1083 1.19 jruoho static int
1084 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1085 1.19 jruoho {
1086 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1087 1.19 jruoho const char *str;
1088 1.19 jruoho int rv;
1089 1.19 jruoho
1090 1.19 jruoho switch (cpu_vendor) {
1091 1.19 jruoho
1092 1.19 jruoho case CPUVENDOR_IDT:
1093 1.19 jruoho case CPUVENDOR_INTEL:
1094 1.19 jruoho str = "est";
1095 1.19 jruoho break;
1096 1.19 jruoho
1097 1.19 jruoho case CPUVENDOR_AMD:
1098 1.19 jruoho str = "powernow";
1099 1.19 jruoho break;
1100 1.19 jruoho
1101 1.19 jruoho default:
1102 1.19 jruoho return ENODEV;
1103 1.19 jruoho }
1104 1.19 jruoho
1105 1.19 jruoho
1106 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1107 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1108 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1109 1.19 jruoho
1110 1.19 jruoho if (rv != 0)
1111 1.19 jruoho goto fail;
1112 1.19 jruoho
1113 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1114 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1115 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1116 1.19 jruoho
1117 1.19 jruoho if (rv != 0)
1118 1.19 jruoho goto fail;
1119 1.19 jruoho
1120 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1121 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1122 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1123 1.19 jruoho
1124 1.19 jruoho if (rv != 0)
1125 1.19 jruoho goto fail;
1126 1.19 jruoho
1127 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1128 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1129 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1130 1.19 jruoho
1131 1.19 jruoho if (rv != 0)
1132 1.19 jruoho goto fail;
1133 1.19 jruoho
1134 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1135 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1136 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1137 1.19 jruoho
1138 1.19 jruoho if (rv != 0)
1139 1.19 jruoho goto fail;
1140 1.19 jruoho
1141 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1142 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1143 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1144 1.19 jruoho
1145 1.19 jruoho if (rv != 0)
1146 1.19 jruoho goto fail;
1147 1.19 jruoho
1148 1.19 jruoho return 0;
1149 1.19 jruoho
1150 1.19 jruoho fail:
1151 1.19 jruoho if (acpicpu_log != NULL) {
1152 1.19 jruoho sysctl_teardown(&acpicpu_log);
1153 1.19 jruoho acpicpu_log = NULL;
1154 1.19 jruoho }
1155 1.19 jruoho
1156 1.19 jruoho return rv;
1157 1.19 jruoho }
1158 1.19 jruoho
1159 1.19 jruoho static int
1160 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1161 1.19 jruoho {
1162 1.19 jruoho struct cpu_info *ci = curcpu();
1163 1.19 jruoho struct acpicpu_softc *sc;
1164 1.19 jruoho struct sysctlnode node;
1165 1.19 jruoho uint32_t freq;
1166 1.19 jruoho int err;
1167 1.19 jruoho
1168 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1169 1.19 jruoho
1170 1.19 jruoho if (sc == NULL)
1171 1.19 jruoho return ENXIO;
1172 1.19 jruoho
1173 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1174 1.19 jruoho
1175 1.19 jruoho if (err != 0)
1176 1.19 jruoho return err;
1177 1.19 jruoho
1178 1.19 jruoho node = *rnode;
1179 1.19 jruoho node.sysctl_data = &freq;
1180 1.19 jruoho
1181 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1182 1.19 jruoho
1183 1.19 jruoho if (err != 0 || newp == NULL)
1184 1.19 jruoho return err;
1185 1.19 jruoho
1186 1.19 jruoho return 0;
1187 1.19 jruoho }
1188 1.19 jruoho
1189 1.19 jruoho static int
1190 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1191 1.19 jruoho {
1192 1.19 jruoho struct cpu_info *ci = curcpu();
1193 1.19 jruoho struct acpicpu_softc *sc;
1194 1.19 jruoho struct sysctlnode node;
1195 1.19 jruoho uint32_t freq;
1196 1.19 jruoho int err;
1197 1.19 jruoho
1198 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1199 1.19 jruoho
1200 1.19 jruoho if (sc == NULL)
1201 1.19 jruoho return ENXIO;
1202 1.19 jruoho
1203 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1204 1.19 jruoho
1205 1.19 jruoho if (err != 0)
1206 1.19 jruoho return err;
1207 1.19 jruoho
1208 1.19 jruoho node = *rnode;
1209 1.19 jruoho node.sysctl_data = &freq;
1210 1.19 jruoho
1211 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1212 1.19 jruoho
1213 1.19 jruoho if (err != 0 || newp == NULL)
1214 1.19 jruoho return err;
1215 1.19 jruoho
1216 1.19 jruoho err = acpicpu_pstate_set(sc, freq);
1217 1.19 jruoho
1218 1.19 jruoho if (err != 0)
1219 1.19 jruoho return err;
1220 1.19 jruoho
1221 1.19 jruoho return 0;
1222 1.19 jruoho }
1223 1.19 jruoho
1224 1.19 jruoho static int
1225 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1226 1.19 jruoho {
1227 1.19 jruoho struct cpu_info *ci = curcpu();
1228 1.19 jruoho struct acpicpu_softc *sc;
1229 1.19 jruoho struct sysctlnode node;
1230 1.19 jruoho char buf[1024];
1231 1.19 jruoho size_t len;
1232 1.19 jruoho uint32_t i;
1233 1.19 jruoho int err;
1234 1.19 jruoho
1235 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1236 1.19 jruoho
1237 1.19 jruoho if (sc == NULL)
1238 1.19 jruoho return ENXIO;
1239 1.19 jruoho
1240 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1241 1.19 jruoho
1242 1.19 jruoho mutex_enter(&sc->sc_mtx);
1243 1.19 jruoho
1244 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1245 1.19 jruoho
1246 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1247 1.19 jruoho continue;
1248 1.19 jruoho
1249 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1250 1.19 jruoho sc->sc_pstate[i].ps_freq,
1251 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1252 1.19 jruoho }
1253 1.19 jruoho
1254 1.19 jruoho mutex_exit(&sc->sc_mtx);
1255 1.19 jruoho
1256 1.19 jruoho node = *rnode;
1257 1.19 jruoho node.sysctl_data = buf;
1258 1.19 jruoho
1259 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1260 1.19 jruoho
1261 1.19 jruoho if (err != 0 || newp == NULL)
1262 1.19 jruoho return err;
1263 1.19 jruoho
1264 1.19 jruoho return 0;
1265 1.19 jruoho }
1266 1.19 jruoho
1267