acpi_cpu_md.c revision 1.49 1 1.49 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.49 2011/03/01 04:35:48 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.49 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.49 2011/03/01 04:35:48 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.48 jruoho #include <sys/device.h>
35 1.1 jruoho #include <sys/kcore.h>
36 1.5 jruoho #include <sys/sysctl.h>
37 1.4 jruoho #include <sys/xcall.h>
38 1.1 jruoho
39 1.1 jruoho #include <x86/cpu.h>
40 1.5 jruoho #include <x86/cpufunc.h>
41 1.5 jruoho #include <x86/cputypes.h>
42 1.1 jruoho #include <x86/cpuvar.h>
43 1.5 jruoho #include <x86/cpu_msr.h>
44 1.1 jruoho #include <x86/machdep.h>
45 1.1 jruoho
46 1.1 jruoho #include <dev/acpi/acpica.h>
47 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
48 1.1 jruoho
49 1.12 jruoho #include <dev/pci/pcivar.h>
50 1.12 jruoho #include <dev/pci/pcidevs.h>
51 1.12 jruoho
52 1.38 jruoho #include <machine/acpi_machdep.h>
53 1.38 jruoho
54 1.35 jruoho /*
55 1.35 jruoho * AMD C1E.
56 1.35 jruoho */
57 1.35 jruoho #define MSR_CMPHALT 0xc0010055
58 1.35 jruoho
59 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
60 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
61 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
62 1.33 jruoho
63 1.32 jruoho /*
64 1.40 jmcneill * AMD families 10h, 11h, and 14h
65 1.32 jruoho */
66 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
67 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
68 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
69 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
70 1.22 jruoho
71 1.32 jruoho /*
72 1.32 jruoho * AMD family 0Fh.
73 1.32 jruoho */
74 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
75 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
76 1.17 jruoho
77 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
78 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
79 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
80 1.32 jruoho
81 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
82 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
83 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
84 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
85 1.32 jruoho
86 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
87 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
88 1.32 jruoho
89 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
90 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
91 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
92 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
93 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
94 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
95 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
96 1.32 jruoho
97 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
98 1.17 jruoho
99 1.5 jruoho static char native_idle_text[16];
100 1.5 jruoho void (*native_idle)(void) = NULL;
101 1.1 jruoho
102 1.43 jruoho static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
103 1.41 jruoho static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
104 1.41 jruoho static void acpicpu_md_pstate_percent_status(void *, void *);
105 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
106 1.32 jruoho uint32_t *);
107 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
108 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
109 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
110 1.32 jruoho uint32_t, uint32_t);
111 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
112 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
113 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
114 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
115 1.5 jruoho
116 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
117 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
118 1.1 jruoho
119 1.48 jruoho struct cpu_info *
120 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
121 1.48 jruoho {
122 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
123 1.48 jruoho
124 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
125 1.48 jruoho return NULL;
126 1.48 jruoho
127 1.48 jruoho return cfaa->ci;
128 1.48 jruoho }
129 1.48 jruoho
130 1.48 jruoho struct cpu_info *
131 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
132 1.48 jruoho {
133 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
134 1.48 jruoho
135 1.48 jruoho return cfaa->ci;
136 1.48 jruoho }
137 1.48 jruoho
138 1.1 jruoho uint32_t
139 1.1 jruoho acpicpu_md_cap(void)
140 1.1 jruoho {
141 1.1 jruoho struct cpu_info *ci = curcpu();
142 1.44 jruoho uint32_t regs[4];
143 1.1 jruoho uint32_t val = 0;
144 1.1 jruoho
145 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
146 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
147 1.1 jruoho return val;
148 1.1 jruoho
149 1.1 jruoho /*
150 1.47 jruoho * Basic SMP C-states (required for e.g. _CST).
151 1.1 jruoho */
152 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
153 1.1 jruoho
154 1.47 jruoho /*
155 1.47 jruoho * Claim to support dependency coordination.
156 1.47 jruoho */
157 1.47 jruoho val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
158 1.47 jruoho
159 1.1 jruoho /*
160 1.1 jruoho * If MONITOR/MWAIT is available, announce
161 1.1 jruoho * support for native instructions in all C-states.
162 1.1 jruoho */
163 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
164 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
165 1.1 jruoho
166 1.5 jruoho /*
167 1.10 jruoho * Set native P- and T-states, if available.
168 1.5 jruoho */
169 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
171 1.5 jruoho
172 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
174 1.10 jruoho
175 1.44 jruoho /*
176 1.44 jruoho * Declare support for APERF and MPERF.
177 1.44 jruoho */
178 1.44 jruoho if (cpuid_level >= 0x06) {
179 1.44 jruoho
180 1.44 jruoho x86_cpuid(0x00000006, regs);
181 1.44 jruoho
182 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
183 1.44 jruoho val |= ACPICPU_PDC_P_HW;
184 1.44 jruoho }
185 1.44 jruoho
186 1.1 jruoho return val;
187 1.1 jruoho }
188 1.1 jruoho
189 1.1 jruoho uint32_t
190 1.43 jruoho acpicpu_md_flags(void)
191 1.1 jruoho {
192 1.1 jruoho struct cpu_info *ci = curcpu();
193 1.12 jruoho struct pci_attach_args pa;
194 1.18 jruoho uint32_t family, val = 0;
195 1.21 jruoho uint32_t regs[4];
196 1.1 jruoho
197 1.38 jruoho if (acpi_md_ncpus() == 1)
198 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
199 1.1 jruoho
200 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
201 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
202 1.1 jruoho
203 1.39 jruoho /*
204 1.39 jruoho * By default, assume that the local APIC timer
205 1.39 jruoho * as well as TSC are stalled during C3 sleep.
206 1.39 jruoho */
207 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
208 1.22 jruoho
209 1.1 jruoho switch (cpu_vendor) {
210 1.1 jruoho
211 1.17 jruoho case CPUVENDOR_IDT:
212 1.22 jruoho
213 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
214 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
215 1.22 jruoho
216 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
217 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
218 1.22 jruoho
219 1.22 jruoho break;
220 1.22 jruoho
221 1.1 jruoho case CPUVENDOR_INTEL:
222 1.17 jruoho
223 1.39 jruoho /*
224 1.39 jruoho * Bus master control and arbitration should be
225 1.39 jruoho * available on all supported Intel CPUs (to be
226 1.39 jruoho * sure, this is double-checked later from the
227 1.39 jruoho * firmware data). These flags imply that it is
228 1.39 jruoho * not necessary to flush caches before C3 state.
229 1.39 jruoho */
230 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
231 1.22 jruoho
232 1.39 jruoho /*
233 1.39 jruoho * Check if we can use "native", MSR-based,
234 1.39 jruoho * access. If not, we have to resort to I/O.
235 1.39 jruoho */
236 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
237 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
238 1.5 jruoho
239 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
240 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
241 1.10 jruoho
242 1.22 jruoho /*
243 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
244 1.25 jruoho * Boost are available. Also see if we might have
245 1.25 jruoho * an invariant local APIC timer ("ARAT").
246 1.23 jruoho */
247 1.23 jruoho if (cpuid_level >= 0x06) {
248 1.23 jruoho
249 1.44 jruoho x86_cpuid(0x00000006, regs);
250 1.23 jruoho
251 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
252 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
253 1.23 jruoho
254 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
255 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
256 1.25 jruoho
257 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
258 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
259 1.23 jruoho }
260 1.23 jruoho
261 1.23 jruoho /*
262 1.22 jruoho * Detect whether TSC is invariant. If it is not,
263 1.22 jruoho * we keep the flag to note that TSC will not run
264 1.22 jruoho * at constant rate. Depending on the CPU, this may
265 1.22 jruoho * affect P- and T-state changes, but especially
266 1.22 jruoho * relevant are C-states; with variant TSC, states
267 1.24 jruoho * larger than C1 may completely stop the counter.
268 1.22 jruoho */
269 1.22 jruoho x86_cpuid(0x80000000, regs);
270 1.22 jruoho
271 1.22 jruoho if (regs[0] >= 0x80000007) {
272 1.22 jruoho
273 1.22 jruoho x86_cpuid(0x80000007, regs);
274 1.22 jruoho
275 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
276 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
277 1.22 jruoho }
278 1.22 jruoho
279 1.17 jruoho break;
280 1.12 jruoho
281 1.17 jruoho case CPUVENDOR_AMD:
282 1.17 jruoho
283 1.32 jruoho x86_cpuid(0x80000000, regs);
284 1.32 jruoho
285 1.32 jruoho if (regs[0] < 0x80000007)
286 1.32 jruoho break;
287 1.32 jruoho
288 1.32 jruoho x86_cpuid(0x80000007, regs);
289 1.32 jruoho
290 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
291 1.18 jruoho
292 1.18 jruoho if (family == 0xf)
293 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
294 1.18 jruoho
295 1.32 jruoho switch (family) {
296 1.1 jruoho
297 1.22 jruoho case 0x0f:
298 1.32 jruoho
299 1.45 jruoho /*
300 1.45 jruoho * Evaluate support for the "FID/VID
301 1.45 jruoho * algorithm" also used by powernow(4).
302 1.45 jruoho */
303 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
304 1.32 jruoho break;
305 1.32 jruoho
306 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
307 1.32 jruoho break;
308 1.32 jruoho
309 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
310 1.32 jruoho break;
311 1.32 jruoho
312 1.17 jruoho case 0x10:
313 1.17 jruoho case 0x11:
314 1.40 jmcneill val |= ACPICPU_FLAG_C_C1E;
315 1.40 jmcneill /* FALLTHROUGH */
316 1.40 jmcneill
317 1.40 jmcneill case 0x14: /* AMD Fusion */
318 1.1 jruoho
319 1.42 jruoho /*
320 1.42 jruoho * Like with Intel, detect invariant TSC,
321 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
322 1.42 jruoho * (Core Performance Boost), respectively.
323 1.42 jruoho */
324 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
325 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
326 1.22 jruoho
327 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
328 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
329 1.21 jruoho
330 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
331 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
332 1.35 jruoho
333 1.42 jruoho /*
334 1.42 jruoho * Also check for APERF and MPERF,
335 1.42 jruoho * first available in the family 10h.
336 1.42 jruoho */
337 1.42 jruoho if (cpuid_level >= 0x06) {
338 1.42 jruoho
339 1.42 jruoho x86_cpuid(0x00000006, regs);
340 1.42 jruoho
341 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
342 1.42 jruoho val |= ACPICPU_FLAG_P_HW;
343 1.42 jruoho }
344 1.42 jruoho
345 1.35 jruoho break;
346 1.17 jruoho }
347 1.1 jruoho
348 1.1 jruoho break;
349 1.1 jruoho }
350 1.1 jruoho
351 1.12 jruoho /*
352 1.12 jruoho * There are several erratums for PIIX4.
353 1.12 jruoho */
354 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
355 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
356 1.12 jruoho
357 1.1 jruoho return val;
358 1.1 jruoho }
359 1.1 jruoho
360 1.12 jruoho static int
361 1.43 jruoho acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
362 1.12 jruoho {
363 1.12 jruoho
364 1.12 jruoho /*
365 1.12 jruoho * XXX: The pci_find_device(9) function only
366 1.12 jruoho * deals with attached devices. Change this
367 1.12 jruoho * to use something like pci_device_foreach().
368 1.12 jruoho */
369 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
370 1.12 jruoho return 0;
371 1.12 jruoho
372 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
373 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
374 1.12 jruoho return 1;
375 1.12 jruoho
376 1.12 jruoho return 0;
377 1.12 jruoho }
378 1.12 jruoho
379 1.35 jruoho void
380 1.43 jruoho acpicpu_md_quirk_c1e(void)
381 1.35 jruoho {
382 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
383 1.35 jruoho uint64_t val;
384 1.35 jruoho
385 1.35 jruoho val = rdmsr(MSR_CMPHALT);
386 1.35 jruoho
387 1.35 jruoho if ((val & c1e) != 0)
388 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
389 1.35 jruoho }
390 1.35 jruoho
391 1.1 jruoho int
392 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
393 1.1 jruoho {
394 1.1 jruoho const size_t size = sizeof(native_idle_text);
395 1.31 jruoho struct acpicpu_cstate *cs;
396 1.31 jruoho bool ipi = false;
397 1.31 jruoho int i;
398 1.1 jruoho
399 1.45 jruoho /*
400 1.45 jruoho * Save the cpu_idle(9) loop used by default.
401 1.45 jruoho */
402 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
403 1.31 jruoho
404 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
405 1.31 jruoho
406 1.31 jruoho cs = &sc->sc_cstate[i];
407 1.31 jruoho
408 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
409 1.31 jruoho ipi = true;
410 1.31 jruoho break;
411 1.31 jruoho }
412 1.31 jruoho }
413 1.31 jruoho
414 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
415 1.1 jruoho
416 1.1 jruoho return 0;
417 1.1 jruoho }
418 1.1 jruoho
419 1.1 jruoho int
420 1.43 jruoho acpicpu_md_cstate_stop(void)
421 1.1 jruoho {
422 1.4 jruoho uint64_t xc;
423 1.31 jruoho bool ipi;
424 1.1 jruoho
425 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
426 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
427 1.1 jruoho
428 1.4 jruoho /*
429 1.4 jruoho * Run a cross-call to ensure that all CPUs are
430 1.4 jruoho * out from the ACPI idle-loop before detachment.
431 1.4 jruoho */
432 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
433 1.4 jruoho xc_wait(xc);
434 1.1 jruoho
435 1.1 jruoho return 0;
436 1.1 jruoho }
437 1.1 jruoho
438 1.3 jruoho /*
439 1.31 jruoho * Called with interrupts disabled.
440 1.31 jruoho * Caller should enable interrupts after return.
441 1.3 jruoho */
442 1.1 jruoho void
443 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
444 1.1 jruoho {
445 1.3 jruoho struct cpu_info *ci = curcpu();
446 1.1 jruoho
447 1.1 jruoho switch (method) {
448 1.1 jruoho
449 1.1 jruoho case ACPICPU_C_STATE_FFH:
450 1.3 jruoho
451 1.3 jruoho x86_enable_intr();
452 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
453 1.3 jruoho
454 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
455 1.3 jruoho return;
456 1.3 jruoho
457 1.1 jruoho x86_mwait((state - 1) << 4, 0);
458 1.1 jruoho break;
459 1.1 jruoho
460 1.1 jruoho case ACPICPU_C_STATE_HALT:
461 1.3 jruoho
462 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
463 1.3 jruoho return;
464 1.3 jruoho
465 1.1 jruoho x86_stihlt();
466 1.1 jruoho break;
467 1.1 jruoho }
468 1.1 jruoho }
469 1.5 jruoho
470 1.5 jruoho int
471 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
472 1.5 jruoho {
473 1.20 jruoho const uint64_t est = __BIT(16);
474 1.20 jruoho uint64_t val;
475 1.20 jruoho
476 1.41 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
477 1.41 jruoho return ENODEV;
478 1.41 jruoho
479 1.20 jruoho switch (cpu_vendor) {
480 1.20 jruoho
481 1.20 jruoho case CPUVENDOR_IDT:
482 1.20 jruoho case CPUVENDOR_INTEL:
483 1.20 jruoho
484 1.41 jruoho /*
485 1.41 jruoho * Make sure EST is enabled.
486 1.41 jruoho */
487 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
488 1.20 jruoho
489 1.20 jruoho if ((val & est) == 0) {
490 1.20 jruoho
491 1.20 jruoho val |= est;
492 1.20 jruoho
493 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
494 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
495 1.20 jruoho
496 1.20 jruoho if ((val & est) == 0)
497 1.20 jruoho return ENOTTY;
498 1.20 jruoho }
499 1.42 jruoho }
500 1.41 jruoho
501 1.42 jruoho /*
502 1.42 jruoho * Reset the APERF and MPERF counters.
503 1.42 jruoho */
504 1.42 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
505 1.42 jruoho acpicpu_md_pstate_percent_reset(sc);
506 1.9 jruoho
507 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
508 1.5 jruoho }
509 1.5 jruoho
510 1.5 jruoho int
511 1.5 jruoho acpicpu_md_pstate_stop(void)
512 1.5 jruoho {
513 1.5 jruoho
514 1.19 jruoho if (acpicpu_log != NULL)
515 1.19 jruoho sysctl_teardown(&acpicpu_log);
516 1.5 jruoho
517 1.5 jruoho return 0;
518 1.5 jruoho }
519 1.5 jruoho
520 1.5 jruoho int
521 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
522 1.5 jruoho {
523 1.15 jruoho struct acpicpu_pstate *ps, msr;
524 1.17 jruoho struct cpu_info *ci = curcpu();
525 1.18 jruoho uint32_t family, i = 0;
526 1.13 jruoho
527 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
528 1.13 jruoho
529 1.5 jruoho switch (cpu_vendor) {
530 1.5 jruoho
531 1.17 jruoho case CPUVENDOR_IDT:
532 1.5 jruoho case CPUVENDOR_INTEL:
533 1.33 jruoho
534 1.33 jruoho /*
535 1.33 jruoho * If the so-called Turbo Boost is present,
536 1.33 jruoho * the P0-state is always the "turbo state".
537 1.33 jruoho *
538 1.33 jruoho * For discussion, see:
539 1.33 jruoho *
540 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
541 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
542 1.33 jruoho * Based Processors. White Paper, November 2008.
543 1.33 jruoho */
544 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
545 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
546 1.33 jruoho
547 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
548 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
549 1.15 jruoho
550 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
551 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
552 1.13 jruoho break;
553 1.13 jruoho
554 1.13 jruoho case CPUVENDOR_AMD:
555 1.13 jruoho
556 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
557 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
558 1.33 jruoho
559 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
560 1.18 jruoho
561 1.18 jruoho if (family == 0xf)
562 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
563 1.18 jruoho
564 1.18 jruoho switch (family) {
565 1.17 jruoho
566 1.32 jruoho case 0x0f:
567 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
568 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
569 1.32 jruoho break;
570 1.32 jruoho
571 1.17 jruoho case 0x10:
572 1.17 jruoho case 0x11:
573 1.40 jmcneill case 0x14: /* AMD Fusion */
574 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
575 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
576 1.17 jruoho
577 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
578 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
579 1.17 jruoho break;
580 1.17 jruoho
581 1.17 jruoho default:
582 1.17 jruoho
583 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
584 1.17 jruoho return EOPNOTSUPP;
585 1.17 jruoho }
586 1.13 jruoho
587 1.13 jruoho break;
588 1.13 jruoho
589 1.13 jruoho default:
590 1.13 jruoho return ENODEV;
591 1.13 jruoho }
592 1.5 jruoho
593 1.26 jruoho /*
594 1.26 jruoho * Fill the P-state structures with MSR addresses that are
595 1.27 jruoho * known to be correct. If we do not know the addresses,
596 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
597 1.39 jruoho * not necessarily need to do anything to support new CPUs.
598 1.26 jruoho */
599 1.15 jruoho while (i < sc->sc_pstate_count) {
600 1.15 jruoho
601 1.15 jruoho ps = &sc->sc_pstate[i];
602 1.15 jruoho
603 1.32 jruoho if (msr.ps_flags != 0)
604 1.32 jruoho ps->ps_flags |= msr.ps_flags;
605 1.32 jruoho
606 1.27 jruoho if (msr.ps_status_addr != 0)
607 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
608 1.15 jruoho
609 1.27 jruoho if (msr.ps_status_mask != 0)
610 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
611 1.15 jruoho
612 1.27 jruoho if (msr.ps_control_addr != 0)
613 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
614 1.15 jruoho
615 1.27 jruoho if (msr.ps_control_mask != 0)
616 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
617 1.15 jruoho
618 1.15 jruoho i++;
619 1.15 jruoho }
620 1.15 jruoho
621 1.15 jruoho return 0;
622 1.15 jruoho }
623 1.15 jruoho
624 1.41 jruoho /*
625 1.41 jruoho * Returns the percentage of the actual frequency in
626 1.41 jruoho * terms of the maximum frequency of the calling CPU
627 1.41 jruoho * since the last call. A value zero implies an error.
628 1.41 jruoho */
629 1.41 jruoho uint8_t
630 1.41 jruoho acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
631 1.41 jruoho {
632 1.41 jruoho struct cpu_info *ci = sc->sc_ci;
633 1.41 jruoho uint64_t aperf, mperf;
634 1.41 jruoho uint64_t xc, rv = 0;
635 1.41 jruoho
636 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
637 1.41 jruoho return 0;
638 1.41 jruoho
639 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
640 1.41 jruoho return 0;
641 1.41 jruoho
642 1.41 jruoho /*
643 1.41 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
644 1.41 jruoho * increments at the rate of the fixed maximum frequency
645 1.41 jruoho * configured during the boot, whereas APERF counts at the
646 1.41 jruoho * rate of the actual frequency. Note that the MSRs must be
647 1.41 jruoho * read without delay, and that only the ratio between
648 1.41 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
649 1.41 jruoho *
650 1.41 jruoho * For further details, refer to:
651 1.41 jruoho *
652 1.41 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
653 1.41 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
654 1.41 jruoho * System Programming Guide, Part 1. July, 2008.
655 1.42 jruoho *
656 1.42 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
657 1.42 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
658 1.42 jruoho * 2.4.5, Revision 3.48, April 2010.
659 1.41 jruoho */
660 1.41 jruoho x86_disable_intr();
661 1.41 jruoho
662 1.41 jruoho aperf = sc->sc_pstate_aperf;
663 1.41 jruoho mperf = sc->sc_pstate_mperf;
664 1.41 jruoho
665 1.41 jruoho xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
666 1.41 jruoho xc_wait(xc);
667 1.41 jruoho
668 1.41 jruoho x86_enable_intr();
669 1.41 jruoho
670 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
671 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
672 1.41 jruoho
673 1.41 jruoho if (__predict_true(mperf != 0))
674 1.41 jruoho rv = (aperf * 100) / mperf;
675 1.41 jruoho
676 1.41 jruoho return rv;
677 1.41 jruoho }
678 1.41 jruoho
679 1.41 jruoho static void
680 1.41 jruoho acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
681 1.41 jruoho {
682 1.41 jruoho struct acpicpu_softc *sc = arg1;
683 1.41 jruoho
684 1.41 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
685 1.41 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
686 1.41 jruoho }
687 1.41 jruoho
688 1.41 jruoho static void
689 1.41 jruoho acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
690 1.41 jruoho {
691 1.46 jruoho struct msr_rw_info msr;
692 1.46 jruoho uint64_t xc;
693 1.41 jruoho
694 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
695 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
696 1.41 jruoho
697 1.46 jruoho msr.msr_value = 0;
698 1.46 jruoho msr.msr_read = false;
699 1.46 jruoho msr.msr_type = MSR_APERF;
700 1.46 jruoho
701 1.46 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
702 1.46 jruoho xc_wait(xc);
703 1.46 jruoho
704 1.46 jruoho msr.msr_value = 0;
705 1.46 jruoho msr.msr_read = false;
706 1.46 jruoho msr.msr_type = MSR_MPERF;
707 1.46 jruoho
708 1.46 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
709 1.46 jruoho xc_wait(xc);
710 1.41 jruoho
711 1.41 jruoho sc->sc_pstate_aperf = 0;
712 1.41 jruoho sc->sc_pstate_mperf = 0;
713 1.41 jruoho }
714 1.41 jruoho
715 1.15 jruoho int
716 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
717 1.15 jruoho {
718 1.15 jruoho struct acpicpu_pstate *ps = NULL;
719 1.15 jruoho uint64_t val;
720 1.15 jruoho uint32_t i;
721 1.15 jruoho
722 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
723 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
724 1.32 jruoho
725 1.49 jruoho /*
726 1.49 jruoho * Pick any P-state for the status address.
727 1.49 jruoho */
728 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
729 1.15 jruoho
730 1.15 jruoho ps = &sc->sc_pstate[i];
731 1.15 jruoho
732 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
733 1.15 jruoho break;
734 1.15 jruoho }
735 1.15 jruoho
736 1.15 jruoho if (__predict_false(ps == NULL))
737 1.17 jruoho return ENODEV;
738 1.15 jruoho
739 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
740 1.13 jruoho return EINVAL;
741 1.5 jruoho
742 1.13 jruoho val = rdmsr(ps->ps_status_addr);
743 1.5 jruoho
744 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
745 1.13 jruoho val = val & ps->ps_status_mask;
746 1.5 jruoho
747 1.49 jruoho /*
748 1.49 jruoho * Search for the value from known P-states.
749 1.49 jruoho */
750 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
751 1.5 jruoho
752 1.13 jruoho ps = &sc->sc_pstate[i];
753 1.5 jruoho
754 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
755 1.13 jruoho continue;
756 1.5 jruoho
757 1.29 jruoho if (val == ps->ps_status) {
758 1.13 jruoho *freq = ps->ps_freq;
759 1.13 jruoho return 0;
760 1.13 jruoho }
761 1.5 jruoho }
762 1.5 jruoho
763 1.13 jruoho return EIO;
764 1.5 jruoho }
765 1.5 jruoho
766 1.5 jruoho int
767 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
768 1.5 jruoho {
769 1.49 jruoho uint64_t val;
770 1.5 jruoho
771 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
772 1.37 jruoho return EINVAL;
773 1.37 jruoho
774 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
775 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
776 1.32 jruoho
777 1.49 jruoho val = ps->ps_control;
778 1.5 jruoho
779 1.49 jruoho if (__predict_true(ps->ps_control_mask != 0))
780 1.49 jruoho val = val & ps->ps_control_mask;
781 1.13 jruoho
782 1.49 jruoho wrmsr(ps->ps_control_addr, val);
783 1.49 jruoho DELAY(ps->ps_latency);
784 1.14 jruoho
785 1.49 jruoho return 0;
786 1.5 jruoho }
787 1.10 jruoho
788 1.32 jruoho static int
789 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
790 1.32 jruoho {
791 1.32 jruoho struct acpicpu_pstate *ps;
792 1.32 jruoho uint32_t fid, i, vid;
793 1.32 jruoho uint32_t cfid, cvid;
794 1.32 jruoho int rv;
795 1.32 jruoho
796 1.32 jruoho /*
797 1.32 jruoho * AMD family 0Fh needs special treatment.
798 1.32 jruoho * While it wants to use ACPI, it does not
799 1.32 jruoho * comply with the ACPI specifications.
800 1.32 jruoho */
801 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
802 1.32 jruoho
803 1.32 jruoho if (rv != 0)
804 1.32 jruoho return rv;
805 1.32 jruoho
806 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
807 1.32 jruoho
808 1.32 jruoho ps = &sc->sc_pstate[i];
809 1.32 jruoho
810 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
811 1.32 jruoho continue;
812 1.32 jruoho
813 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
814 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
815 1.32 jruoho
816 1.32 jruoho if (cfid == fid && cvid == vid) {
817 1.32 jruoho *freq = ps->ps_freq;
818 1.32 jruoho return 0;
819 1.32 jruoho }
820 1.32 jruoho }
821 1.32 jruoho
822 1.32 jruoho return EIO;
823 1.32 jruoho }
824 1.32 jruoho
825 1.32 jruoho static int
826 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
827 1.32 jruoho {
828 1.32 jruoho const uint64_t ctrl = ps->ps_control;
829 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
830 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
831 1.32 jruoho uint32_t val, vid, vst;
832 1.32 jruoho int rv;
833 1.32 jruoho
834 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
835 1.32 jruoho
836 1.32 jruoho if (rv != 0)
837 1.32 jruoho return rv;
838 1.32 jruoho
839 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
840 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
841 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
842 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
843 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
844 1.32 jruoho
845 1.32 jruoho vst = vst * 20;
846 1.32 jruoho pll = pll * 1000 / 5;
847 1.32 jruoho irt = 10 * __BIT(irt);
848 1.32 jruoho
849 1.32 jruoho /*
850 1.32 jruoho * Phase 1.
851 1.32 jruoho */
852 1.32 jruoho while (cvid > vid) {
853 1.32 jruoho
854 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
855 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
856 1.32 jruoho
857 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
858 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
859 1.32 jruoho
860 1.32 jruoho if (rv != 0)
861 1.32 jruoho return rv;
862 1.32 jruoho }
863 1.32 jruoho
864 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
865 1.32 jruoho
866 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
867 1.32 jruoho
868 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
869 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
870 1.32 jruoho
871 1.32 jruoho if (rv != 0)
872 1.32 jruoho return rv;
873 1.32 jruoho }
874 1.32 jruoho
875 1.32 jruoho /*
876 1.32 jruoho * Phase 2.
877 1.32 jruoho */
878 1.32 jruoho if (cfid != fid) {
879 1.32 jruoho
880 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
881 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
882 1.32 jruoho
883 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
884 1.32 jruoho
885 1.32 jruoho if (fid <= cfid)
886 1.32 jruoho val = cfid - 2;
887 1.32 jruoho else {
888 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
889 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
890 1.32 jruoho }
891 1.32 jruoho
892 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
893 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
894 1.32 jruoho
895 1.32 jruoho if (rv != 0)
896 1.32 jruoho return rv;
897 1.32 jruoho
898 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
899 1.32 jruoho }
900 1.32 jruoho
901 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
902 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
903 1.32 jruoho
904 1.32 jruoho if (rv != 0)
905 1.32 jruoho return rv;
906 1.32 jruoho }
907 1.32 jruoho
908 1.32 jruoho /*
909 1.32 jruoho * Phase 3.
910 1.32 jruoho */
911 1.32 jruoho if (cvid != vid) {
912 1.32 jruoho
913 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
914 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
915 1.32 jruoho
916 1.32 jruoho if (rv != 0)
917 1.32 jruoho return rv;
918 1.32 jruoho }
919 1.32 jruoho
920 1.32 jruoho if (cfid != fid || cvid != vid)
921 1.32 jruoho return EIO;
922 1.32 jruoho
923 1.32 jruoho return 0;
924 1.32 jruoho }
925 1.32 jruoho
926 1.32 jruoho static int
927 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
928 1.32 jruoho {
929 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
930 1.32 jruoho uint64_t val;
931 1.32 jruoho
932 1.32 jruoho do {
933 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
934 1.32 jruoho
935 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
936 1.32 jruoho
937 1.32 jruoho if (i == 0)
938 1.32 jruoho return EAGAIN;
939 1.32 jruoho
940 1.32 jruoho if (cfid != NULL)
941 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
942 1.32 jruoho
943 1.32 jruoho if (cvid != NULL)
944 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
945 1.32 jruoho
946 1.32 jruoho return 0;
947 1.32 jruoho }
948 1.32 jruoho
949 1.32 jruoho static void
950 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
951 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
952 1.32 jruoho {
953 1.49 jruoho uint64_t val = 0;
954 1.32 jruoho
955 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
956 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
957 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
958 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
959 1.32 jruoho
960 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
961 1.32 jruoho DELAY(tmo);
962 1.32 jruoho }
963 1.32 jruoho
964 1.10 jruoho int
965 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
966 1.10 jruoho {
967 1.10 jruoho struct acpicpu_tstate *ts;
968 1.14 jruoho uint64_t val;
969 1.10 jruoho uint32_t i;
970 1.10 jruoho
971 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
972 1.10 jruoho
973 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
974 1.10 jruoho
975 1.10 jruoho ts = &sc->sc_tstate[i];
976 1.10 jruoho
977 1.10 jruoho if (ts->ts_percent == 0)
978 1.10 jruoho continue;
979 1.10 jruoho
980 1.29 jruoho if (val == ts->ts_status) {
981 1.10 jruoho *percent = ts->ts_percent;
982 1.10 jruoho return 0;
983 1.10 jruoho }
984 1.10 jruoho }
985 1.10 jruoho
986 1.10 jruoho return EIO;
987 1.10 jruoho }
988 1.10 jruoho
989 1.10 jruoho int
990 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
991 1.10 jruoho {
992 1.49 jruoho uint64_t val;
993 1.49 jruoho uint8_t i;
994 1.10 jruoho
995 1.49 jruoho val = ts->ts_control;
996 1.49 jruoho val = val & __BITS(1, 4);
997 1.10 jruoho
998 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
999 1.10 jruoho
1000 1.30 jruoho if (ts->ts_status == 0) {
1001 1.30 jruoho DELAY(ts->ts_latency);
1002 1.10 jruoho return 0;
1003 1.30 jruoho }
1004 1.10 jruoho
1005 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1006 1.10 jruoho
1007 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1008 1.10 jruoho
1009 1.29 jruoho if (val == ts->ts_status)
1010 1.49 jruoho return 0;
1011 1.10 jruoho
1012 1.10 jruoho DELAY(ts->ts_latency);
1013 1.10 jruoho }
1014 1.10 jruoho
1015 1.49 jruoho return EAGAIN;
1016 1.10 jruoho }
1017 1.19 jruoho
1018 1.19 jruoho /*
1019 1.19 jruoho * A kludge for backwards compatibility.
1020 1.19 jruoho */
1021 1.19 jruoho static int
1022 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1023 1.19 jruoho {
1024 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1025 1.19 jruoho const char *str;
1026 1.19 jruoho int rv;
1027 1.19 jruoho
1028 1.19 jruoho switch (cpu_vendor) {
1029 1.19 jruoho
1030 1.19 jruoho case CPUVENDOR_IDT:
1031 1.19 jruoho case CPUVENDOR_INTEL:
1032 1.19 jruoho str = "est";
1033 1.19 jruoho break;
1034 1.19 jruoho
1035 1.19 jruoho case CPUVENDOR_AMD:
1036 1.19 jruoho str = "powernow";
1037 1.19 jruoho break;
1038 1.19 jruoho
1039 1.19 jruoho default:
1040 1.19 jruoho return ENODEV;
1041 1.19 jruoho }
1042 1.19 jruoho
1043 1.19 jruoho
1044 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1045 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1046 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1047 1.19 jruoho
1048 1.19 jruoho if (rv != 0)
1049 1.19 jruoho goto fail;
1050 1.19 jruoho
1051 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1052 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1053 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1054 1.19 jruoho
1055 1.19 jruoho if (rv != 0)
1056 1.19 jruoho goto fail;
1057 1.19 jruoho
1058 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1059 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1060 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1061 1.19 jruoho
1062 1.19 jruoho if (rv != 0)
1063 1.19 jruoho goto fail;
1064 1.19 jruoho
1065 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1066 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1067 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1068 1.19 jruoho
1069 1.19 jruoho if (rv != 0)
1070 1.19 jruoho goto fail;
1071 1.19 jruoho
1072 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1073 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1074 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1075 1.19 jruoho
1076 1.19 jruoho if (rv != 0)
1077 1.19 jruoho goto fail;
1078 1.19 jruoho
1079 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1080 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1081 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1082 1.19 jruoho
1083 1.19 jruoho if (rv != 0)
1084 1.19 jruoho goto fail;
1085 1.19 jruoho
1086 1.19 jruoho return 0;
1087 1.19 jruoho
1088 1.19 jruoho fail:
1089 1.19 jruoho if (acpicpu_log != NULL) {
1090 1.19 jruoho sysctl_teardown(&acpicpu_log);
1091 1.19 jruoho acpicpu_log = NULL;
1092 1.19 jruoho }
1093 1.19 jruoho
1094 1.19 jruoho return rv;
1095 1.19 jruoho }
1096 1.19 jruoho
1097 1.19 jruoho static int
1098 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1099 1.19 jruoho {
1100 1.19 jruoho struct cpu_info *ci = curcpu();
1101 1.19 jruoho struct sysctlnode node;
1102 1.19 jruoho uint32_t freq;
1103 1.19 jruoho int err;
1104 1.19 jruoho
1105 1.49 jruoho err = acpicpu_pstate_get(ci, &freq);
1106 1.19 jruoho
1107 1.19 jruoho if (err != 0)
1108 1.19 jruoho return err;
1109 1.19 jruoho
1110 1.19 jruoho node = *rnode;
1111 1.19 jruoho node.sysctl_data = &freq;
1112 1.19 jruoho
1113 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1114 1.19 jruoho
1115 1.19 jruoho if (err != 0 || newp == NULL)
1116 1.19 jruoho return err;
1117 1.19 jruoho
1118 1.19 jruoho return 0;
1119 1.19 jruoho }
1120 1.19 jruoho
1121 1.19 jruoho static int
1122 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1123 1.19 jruoho {
1124 1.19 jruoho struct cpu_info *ci = curcpu();
1125 1.19 jruoho struct sysctlnode node;
1126 1.19 jruoho uint32_t freq;
1127 1.19 jruoho int err;
1128 1.19 jruoho
1129 1.49 jruoho err = acpicpu_pstate_get(ci, &freq);
1130 1.19 jruoho
1131 1.19 jruoho if (err != 0)
1132 1.19 jruoho return err;
1133 1.19 jruoho
1134 1.19 jruoho node = *rnode;
1135 1.19 jruoho node.sysctl_data = &freq;
1136 1.19 jruoho
1137 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1138 1.19 jruoho
1139 1.19 jruoho if (err != 0 || newp == NULL)
1140 1.19 jruoho return err;
1141 1.19 jruoho
1142 1.49 jruoho acpicpu_pstate_set(ci, freq);
1143 1.19 jruoho
1144 1.19 jruoho return 0;
1145 1.19 jruoho }
1146 1.19 jruoho
1147 1.19 jruoho static int
1148 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1149 1.19 jruoho {
1150 1.19 jruoho struct cpu_info *ci = curcpu();
1151 1.19 jruoho struct acpicpu_softc *sc;
1152 1.19 jruoho struct sysctlnode node;
1153 1.19 jruoho char buf[1024];
1154 1.19 jruoho size_t len;
1155 1.19 jruoho uint32_t i;
1156 1.19 jruoho int err;
1157 1.19 jruoho
1158 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1159 1.19 jruoho
1160 1.19 jruoho if (sc == NULL)
1161 1.19 jruoho return ENXIO;
1162 1.19 jruoho
1163 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1164 1.19 jruoho
1165 1.19 jruoho mutex_enter(&sc->sc_mtx);
1166 1.19 jruoho
1167 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1168 1.19 jruoho
1169 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1170 1.19 jruoho continue;
1171 1.19 jruoho
1172 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1173 1.19 jruoho sc->sc_pstate[i].ps_freq,
1174 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1175 1.19 jruoho }
1176 1.19 jruoho
1177 1.19 jruoho mutex_exit(&sc->sc_mtx);
1178 1.19 jruoho
1179 1.19 jruoho node = *rnode;
1180 1.19 jruoho node.sysctl_data = buf;
1181 1.19 jruoho
1182 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1183 1.19 jruoho
1184 1.19 jruoho if (err != 0 || newp == NULL)
1185 1.19 jruoho return err;
1186 1.19 jruoho
1187 1.19 jruoho return 0;
1188 1.19 jruoho }
1189 1.19 jruoho
1190