Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.55
      1  1.55    jruoho /* $NetBSD: acpi_cpu_md.c,v 1.55 2011/03/05 09:47:19 jruoho Exp $ */
      2   1.1    jruoho 
      3   1.1    jruoho /*-
      4  1.41    jruoho  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5   1.1    jruoho  * All rights reserved.
      6   1.1    jruoho  *
      7   1.1    jruoho  * Redistribution and use in source and binary forms, with or without
      8   1.1    jruoho  * modification, are permitted provided that the following conditions
      9   1.1    jruoho  * are met:
     10   1.1    jruoho  *
     11   1.1    jruoho  * 1. Redistributions of source code must retain the above copyright
     12   1.1    jruoho  *    notice, this list of conditions and the following disclaimer.
     13   1.1    jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1    jruoho  *    notice, this list of conditions and the following disclaimer in the
     15   1.1    jruoho  *    documentation and/or other materials provided with the distribution.
     16   1.1    jruoho  *
     17   1.1    jruoho  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18   1.1    jruoho  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19   1.1    jruoho  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20   1.1    jruoho  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21   1.1    jruoho  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22   1.1    jruoho  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23   1.1    jruoho  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24   1.1    jruoho  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25   1.1    jruoho  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26   1.1    jruoho  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27   1.1    jruoho  * SUCH DAMAGE.
     28   1.1    jruoho  */
     29   1.1    jruoho #include <sys/cdefs.h>
     30  1.55    jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.55 2011/03/05 09:47:19 jruoho Exp $");
     31   1.1    jruoho 
     32   1.1    jruoho #include <sys/param.h>
     33   1.1    jruoho #include <sys/bus.h>
     34  1.48    jruoho #include <sys/device.h>
     35   1.1    jruoho #include <sys/kcore.h>
     36   1.5    jruoho #include <sys/sysctl.h>
     37   1.4    jruoho #include <sys/xcall.h>
     38   1.1    jruoho 
     39   1.1    jruoho #include <x86/cpu.h>
     40   1.5    jruoho #include <x86/cpufunc.h>
     41   1.5    jruoho #include <x86/cputypes.h>
     42   1.1    jruoho #include <x86/cpuvar.h>
     43   1.5    jruoho #include <x86/cpu_msr.h>
     44   1.1    jruoho #include <x86/machdep.h>
     45   1.1    jruoho 
     46   1.1    jruoho #include <dev/acpi/acpica.h>
     47   1.1    jruoho #include <dev/acpi/acpi_cpu.h>
     48   1.1    jruoho 
     49  1.12    jruoho #include <dev/pci/pcivar.h>
     50  1.12    jruoho #include <dev/pci/pcidevs.h>
     51  1.12    jruoho 
     52  1.38    jruoho #include <machine/acpi_machdep.h>
     53  1.38    jruoho 
     54  1.35    jruoho /*
     55  1.55    jruoho  * Intel IA32_MISC_ENABLE.
     56  1.55    jruoho  */
     57  1.55    jruoho #define MSR_MISC_ENABLE_EST	__BIT(16)
     58  1.55    jruoho #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     59  1.55    jruoho 
     60  1.55    jruoho /*
     61  1.35    jruoho  * AMD C1E.
     62  1.35    jruoho  */
     63  1.35    jruoho #define MSR_CMPHALT		0xc0010055
     64  1.35    jruoho 
     65  1.35    jruoho #define MSR_CMPHALT_SMI		__BIT(27)
     66  1.35    jruoho #define MSR_CMPHALT_C1E		__BIT(28)
     67  1.35    jruoho #define MSR_CMPHALT_BMSTS	__BIT(29)
     68  1.33    jruoho 
     69  1.32    jruoho /*
     70  1.40  jmcneill  * AMD families 10h, 11h, and 14h
     71  1.32    jruoho  */
     72  1.32    jruoho #define MSR_10H_LIMIT		0xc0010061
     73  1.32    jruoho #define MSR_10H_CONTROL		0xc0010062
     74  1.32    jruoho #define MSR_10H_STATUS		0xc0010063
     75  1.32    jruoho #define MSR_10H_CONFIG		0xc0010064
     76  1.22    jruoho 
     77  1.32    jruoho /*
     78  1.32    jruoho  * AMD family 0Fh.
     79  1.32    jruoho  */
     80  1.32    jruoho #define MSR_0FH_CONTROL		0xc0010041
     81  1.17    jruoho #define MSR_0FH_STATUS		0xc0010042
     82  1.17    jruoho 
     83  1.32    jruoho #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     84  1.32    jruoho #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     85  1.32    jruoho #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     86  1.32    jruoho 
     87  1.32    jruoho #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     88  1.32    jruoho #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     89  1.32    jruoho #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     90  1.32    jruoho #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     91  1.32    jruoho 
     92  1.32    jruoho #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     93  1.32    jruoho #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     94  1.32    jruoho 
     95  1.32    jruoho #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     96  1.32    jruoho #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     97  1.32    jruoho #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     98  1.32    jruoho #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     99  1.32    jruoho #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    100  1.32    jruoho #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    101  1.32    jruoho #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    102  1.32    jruoho 
    103  1.32    jruoho #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    104  1.17    jruoho 
    105   1.5    jruoho static char	  native_idle_text[16];
    106   1.5    jruoho void		(*native_idle)(void) = NULL;
    107   1.1    jruoho 
    108  1.55    jruoho static u_long	 acpicpu_md_lock(struct acpicpu_softc *);
    109  1.55    jruoho static void	 acpicpu_md_unlock(struct acpicpu_softc *, u_long);
    110  1.43    jruoho static int	 acpicpu_md_quirk_piix4(struct pci_attach_args *);
    111  1.55    jruoho static void	 acpicpu_md_pstate_percent_reset(struct cpu_info *);
    112  1.32    jruoho static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    113  1.32    jruoho                                               uint32_t *);
    114  1.32    jruoho static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    115  1.32    jruoho static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    116  1.32    jruoho static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    117  1.32    jruoho 					        uint32_t, uint32_t);
    118  1.19    jruoho static int	 acpicpu_md_pstate_sysctl_init(void);
    119   1.5    jruoho static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    120   1.5    jruoho static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    121   1.5    jruoho static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    122   1.5    jruoho 
    123   1.5    jruoho extern struct acpicpu_softc **acpicpu_sc;
    124  1.19    jruoho static struct sysctllog *acpicpu_log = NULL;
    125   1.1    jruoho 
    126  1.48    jruoho struct cpu_info *
    127  1.48    jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    128  1.48    jruoho {
    129  1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    130  1.48    jruoho 
    131  1.48    jruoho 	if (strcmp(cfaa->name, "frequency") != 0)
    132  1.48    jruoho 		return NULL;
    133  1.48    jruoho 
    134  1.48    jruoho 	return cfaa->ci;
    135  1.48    jruoho }
    136  1.48    jruoho 
    137  1.48    jruoho struct cpu_info *
    138  1.48    jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
    139  1.48    jruoho {
    140  1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    141  1.48    jruoho 
    142  1.48    jruoho 	return cfaa->ci;
    143  1.48    jruoho }
    144  1.48    jruoho 
    145  1.55    jruoho static u_long
    146  1.55    jruoho acpicpu_md_lock(struct acpicpu_softc *sc)
    147  1.55    jruoho {
    148  1.55    jruoho 	const u_long flags = x86_read_psl();
    149  1.55    jruoho 
    150  1.55    jruoho 	x86_disable_intr();
    151  1.55    jruoho 	__cpu_simple_lock(&sc->sc_lock);
    152  1.55    jruoho 
    153  1.55    jruoho 	return flags;
    154  1.55    jruoho }
    155  1.55    jruoho 
    156  1.55    jruoho static void
    157  1.55    jruoho acpicpu_md_unlock(struct acpicpu_softc *sc, u_long flags)
    158  1.55    jruoho {
    159  1.55    jruoho 	__cpu_simple_unlock(&sc->sc_lock);
    160  1.55    jruoho 	x86_write_psl(flags);
    161  1.55    jruoho }
    162  1.55    jruoho 
    163   1.1    jruoho uint32_t
    164   1.1    jruoho acpicpu_md_cap(void)
    165   1.1    jruoho {
    166   1.1    jruoho 	struct cpu_info *ci = curcpu();
    167  1.44    jruoho 	uint32_t regs[4];
    168   1.1    jruoho 	uint32_t val = 0;
    169   1.1    jruoho 
    170  1.17    jruoho 	if (cpu_vendor != CPUVENDOR_IDT &&
    171  1.17    jruoho 	    cpu_vendor != CPUVENDOR_INTEL)
    172   1.1    jruoho 		return val;
    173   1.1    jruoho 
    174   1.1    jruoho 	/*
    175  1.47    jruoho 	 * Basic SMP C-states (required for e.g. _CST).
    176   1.1    jruoho 	 */
    177   1.1    jruoho 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    178   1.1    jruoho 
    179  1.47    jruoho 	/*
    180  1.47    jruoho 	 * Claim to support dependency coordination.
    181  1.47    jruoho 	 */
    182  1.47    jruoho 	val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
    183  1.47    jruoho 
    184   1.1    jruoho         /*
    185   1.1    jruoho 	 * If MONITOR/MWAIT is available, announce
    186   1.1    jruoho 	 * support for native instructions in all C-states.
    187   1.1    jruoho 	 */
    188   1.1    jruoho         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    189   1.1    jruoho 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    190   1.1    jruoho 
    191   1.5    jruoho 	/*
    192  1.10    jruoho 	 * Set native P- and T-states, if available.
    193   1.5    jruoho 	 */
    194   1.5    jruoho         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    195   1.5    jruoho 		val |= ACPICPU_PDC_P_FFH;
    196   1.5    jruoho 
    197  1.10    jruoho 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    198  1.10    jruoho 		val |= ACPICPU_PDC_T_FFH;
    199  1.10    jruoho 
    200  1.44    jruoho 	/*
    201  1.44    jruoho 	 * Declare support for APERF and MPERF.
    202  1.44    jruoho 	 */
    203  1.44    jruoho 	if (cpuid_level >= 0x06) {
    204  1.44    jruoho 
    205  1.44    jruoho 		x86_cpuid(0x00000006, regs);
    206  1.44    jruoho 
    207  1.44    jruoho 		if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208  1.53    jruoho 			val |= ACPICPU_PDC_P_HWF;
    209  1.44    jruoho 	}
    210  1.44    jruoho 
    211   1.1    jruoho 	return val;
    212   1.1    jruoho }
    213   1.1    jruoho 
    214   1.1    jruoho uint32_t
    215  1.43    jruoho acpicpu_md_flags(void)
    216   1.1    jruoho {
    217   1.1    jruoho 	struct cpu_info *ci = curcpu();
    218  1.12    jruoho 	struct pci_attach_args pa;
    219  1.18    jruoho 	uint32_t family, val = 0;
    220  1.21    jruoho 	uint32_t regs[4];
    221   1.1    jruoho 
    222  1.38    jruoho 	if (acpi_md_ncpus() == 1)
    223   1.1    jruoho 		val |= ACPICPU_FLAG_C_BM;
    224   1.1    jruoho 
    225   1.1    jruoho 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    226   1.5    jruoho 		val |= ACPICPU_FLAG_C_FFH;
    227   1.1    jruoho 
    228  1.39    jruoho 	/*
    229  1.39    jruoho 	 * By default, assume that the local APIC timer
    230  1.39    jruoho 	 * as well as TSC are stalled during C3 sleep.
    231  1.39    jruoho 	 */
    232  1.25    jruoho 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    233  1.22    jruoho 
    234   1.1    jruoho 	switch (cpu_vendor) {
    235   1.1    jruoho 
    236  1.17    jruoho 	case CPUVENDOR_IDT:
    237  1.22    jruoho 
    238  1.22    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    239  1.22    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    240  1.22    jruoho 
    241  1.22    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    242  1.22    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    243  1.22    jruoho 
    244  1.22    jruoho 		break;
    245  1.22    jruoho 
    246   1.1    jruoho 	case CPUVENDOR_INTEL:
    247  1.17    jruoho 
    248  1.39    jruoho 		/*
    249  1.39    jruoho 		 * Bus master control and arbitration should be
    250  1.39    jruoho 		 * available on all supported Intel CPUs (to be
    251  1.39    jruoho 		 * sure, this is double-checked later from the
    252  1.39    jruoho 		 * firmware data). These flags imply that it is
    253  1.39    jruoho 		 * not necessary to flush caches before C3 state.
    254  1.39    jruoho 		 */
    255  1.22    jruoho 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    256  1.22    jruoho 
    257  1.39    jruoho 		/*
    258  1.39    jruoho 		 * Check if we can use "native", MSR-based,
    259  1.39    jruoho 		 * access. If not, we have to resort to I/O.
    260  1.39    jruoho 		 */
    261   1.5    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    262   1.5    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    263   1.5    jruoho 
    264  1.10    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    265  1.10    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    266  1.10    jruoho 
    267  1.22    jruoho 		/*
    268  1.25    jruoho 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    269  1.25    jruoho 		 * Boost are available. Also see if we might have
    270  1.25    jruoho 		 * an invariant local APIC timer ("ARAT").
    271  1.23    jruoho 		 */
    272  1.23    jruoho 		if (cpuid_level >= 0x06) {
    273  1.23    jruoho 
    274  1.44    jruoho 			x86_cpuid(0x00000006, regs);
    275  1.23    jruoho 
    276  1.34    jruoho 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    277  1.53    jruoho 				val |= ACPICPU_FLAG_P_HWF;
    278  1.23    jruoho 
    279  1.34    jruoho 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    280  1.24    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    281  1.25    jruoho 
    282  1.34    jruoho 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    283  1.25    jruoho 				val &= ~ACPICPU_FLAG_C_APIC;
    284  1.23    jruoho 		}
    285  1.23    jruoho 
    286  1.23    jruoho 		/*
    287  1.22    jruoho 		 * Detect whether TSC is invariant. If it is not,
    288  1.22    jruoho 		 * we keep the flag to note that TSC will not run
    289  1.22    jruoho 		 * at constant rate. Depending on the CPU, this may
    290  1.22    jruoho 		 * affect P- and T-state changes, but especially
    291  1.22    jruoho 		 * relevant are C-states; with variant TSC, states
    292  1.24    jruoho 		 * larger than C1 may completely stop the counter.
    293  1.22    jruoho 		 */
    294  1.22    jruoho 		x86_cpuid(0x80000000, regs);
    295  1.22    jruoho 
    296  1.22    jruoho 		if (regs[0] >= 0x80000007) {
    297  1.22    jruoho 
    298  1.22    jruoho 			x86_cpuid(0x80000007, regs);
    299  1.22    jruoho 
    300  1.32    jruoho 			if ((regs[3] & __BIT(8)) != 0)
    301  1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    302  1.22    jruoho 		}
    303  1.22    jruoho 
    304  1.17    jruoho 		break;
    305  1.12    jruoho 
    306  1.17    jruoho 	case CPUVENDOR_AMD:
    307  1.17    jruoho 
    308  1.32    jruoho 		x86_cpuid(0x80000000, regs);
    309  1.32    jruoho 
    310  1.32    jruoho 		if (regs[0] < 0x80000007)
    311  1.32    jruoho 			break;
    312  1.32    jruoho 
    313  1.32    jruoho 		x86_cpuid(0x80000007, regs);
    314  1.32    jruoho 
    315  1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    316  1.18    jruoho 
    317  1.18    jruoho 		if (family == 0xf)
    318  1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    319  1.18    jruoho 
    320  1.32    jruoho     		switch (family) {
    321   1.1    jruoho 
    322  1.22    jruoho 		case 0x0f:
    323  1.32    jruoho 
    324  1.45    jruoho 			/*
    325  1.45    jruoho 			 * Evaluate support for the "FID/VID
    326  1.45    jruoho 			 * algorithm" also used by powernow(4).
    327  1.45    jruoho 			 */
    328  1.32    jruoho 			if ((regs[3] & CPUID_APM_FID) == 0)
    329  1.32    jruoho 				break;
    330  1.32    jruoho 
    331  1.32    jruoho 			if ((regs[3] & CPUID_APM_VID) == 0)
    332  1.32    jruoho 				break;
    333  1.32    jruoho 
    334  1.32    jruoho 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    335  1.32    jruoho 			break;
    336  1.32    jruoho 
    337  1.17    jruoho 		case 0x10:
    338  1.17    jruoho 		case 0x11:
    339  1.40  jmcneill 			val |= ACPICPU_FLAG_C_C1E;
    340  1.40  jmcneill 			/* FALLTHROUGH */
    341  1.40  jmcneill 
    342  1.40  jmcneill 		case 0x14: /* AMD Fusion */
    343   1.1    jruoho 
    344  1.42    jruoho 			/*
    345  1.42    jruoho 			 * Like with Intel, detect invariant TSC,
    346  1.42    jruoho 			 * MSR-based P-states, and AMD's "turbo"
    347  1.42    jruoho 			 * (Core Performance Boost), respectively.
    348  1.42    jruoho 			 */
    349  1.22    jruoho 			if ((regs[3] & CPUID_APM_TSC) != 0)
    350  1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    351  1.22    jruoho 
    352  1.21    jruoho 			if ((regs[3] & CPUID_APM_HWP) != 0)
    353  1.17    jruoho 				val |= ACPICPU_FLAG_P_FFH;
    354  1.21    jruoho 
    355  1.21    jruoho 			if ((regs[3] & CPUID_APM_CPB) != 0)
    356  1.21    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    357  1.35    jruoho 
    358  1.42    jruoho 			/*
    359  1.42    jruoho 			 * Also check for APERF and MPERF,
    360  1.42    jruoho 			 * first available in the family 10h.
    361  1.42    jruoho 			 */
    362  1.42    jruoho 			if (cpuid_level >= 0x06) {
    363  1.42    jruoho 
    364  1.42    jruoho 				x86_cpuid(0x00000006, regs);
    365  1.42    jruoho 
    366  1.44    jruoho 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    367  1.53    jruoho 					val |= ACPICPU_FLAG_P_HWF;
    368  1.42    jruoho 			}
    369  1.42    jruoho 
    370  1.35    jruoho 			break;
    371  1.17    jruoho 		}
    372   1.1    jruoho 
    373   1.1    jruoho 		break;
    374   1.1    jruoho 	}
    375   1.1    jruoho 
    376  1.12    jruoho 	/*
    377  1.12    jruoho 	 * There are several erratums for PIIX4.
    378  1.12    jruoho 	 */
    379  1.43    jruoho 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    380  1.12    jruoho 		val |= ACPICPU_FLAG_PIIX4;
    381  1.12    jruoho 
    382   1.1    jruoho 	return val;
    383   1.1    jruoho }
    384   1.1    jruoho 
    385  1.12    jruoho static int
    386  1.43    jruoho acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
    387  1.12    jruoho {
    388  1.12    jruoho 
    389  1.12    jruoho 	/*
    390  1.12    jruoho 	 * XXX: The pci_find_device(9) function only
    391  1.12    jruoho 	 *	deals with attached devices. Change this
    392  1.12    jruoho 	 *	to use something like pci_device_foreach().
    393  1.12    jruoho 	 */
    394  1.12    jruoho 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    395  1.12    jruoho 		return 0;
    396  1.12    jruoho 
    397  1.12    jruoho 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    398  1.12    jruoho 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    399  1.12    jruoho 		return 1;
    400  1.12    jruoho 
    401  1.12    jruoho 	return 0;
    402  1.12    jruoho }
    403  1.12    jruoho 
    404  1.35    jruoho void
    405  1.43    jruoho acpicpu_md_quirk_c1e(void)
    406  1.35    jruoho {
    407  1.35    jruoho 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    408  1.35    jruoho 	uint64_t val;
    409  1.35    jruoho 
    410  1.35    jruoho 	val = rdmsr(MSR_CMPHALT);
    411  1.35    jruoho 
    412  1.35    jruoho 	if ((val & c1e) != 0)
    413  1.35    jruoho 		wrmsr(MSR_CMPHALT, val & ~c1e);
    414  1.35    jruoho }
    415  1.35    jruoho 
    416   1.1    jruoho int
    417  1.43    jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    418   1.1    jruoho {
    419   1.1    jruoho 	const size_t size = sizeof(native_idle_text);
    420  1.31    jruoho 	struct acpicpu_cstate *cs;
    421  1.31    jruoho 	bool ipi = false;
    422  1.31    jruoho 	int i;
    423   1.1    jruoho 
    424  1.45    jruoho 	/*
    425  1.45    jruoho 	 * Save the cpu_idle(9) loop used by default.
    426  1.45    jruoho 	 */
    427   1.1    jruoho 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    428  1.31    jruoho 
    429  1.31    jruoho 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    430  1.31    jruoho 
    431  1.31    jruoho 		cs = &sc->sc_cstate[i];
    432  1.31    jruoho 
    433  1.31    jruoho 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    434  1.31    jruoho 			ipi = true;
    435  1.31    jruoho 			break;
    436  1.31    jruoho 		}
    437  1.31    jruoho 	}
    438  1.31    jruoho 
    439  1.31    jruoho 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    440   1.1    jruoho 
    441   1.1    jruoho 	return 0;
    442   1.1    jruoho }
    443   1.1    jruoho 
    444   1.1    jruoho int
    445  1.43    jruoho acpicpu_md_cstate_stop(void)
    446   1.1    jruoho {
    447   1.4    jruoho 	uint64_t xc;
    448  1.31    jruoho 	bool ipi;
    449   1.1    jruoho 
    450  1.31    jruoho 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    451  1.31    jruoho 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    452   1.1    jruoho 
    453   1.4    jruoho 	/*
    454   1.4    jruoho 	 * Run a cross-call to ensure that all CPUs are
    455   1.4    jruoho 	 * out from the ACPI idle-loop before detachment.
    456   1.4    jruoho 	 */
    457   1.4    jruoho 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    458   1.4    jruoho 	xc_wait(xc);
    459   1.1    jruoho 
    460   1.1    jruoho 	return 0;
    461   1.1    jruoho }
    462   1.1    jruoho 
    463   1.3    jruoho /*
    464  1.31    jruoho  * Called with interrupts disabled.
    465  1.31    jruoho  * Caller should enable interrupts after return.
    466   1.3    jruoho  */
    467   1.1    jruoho void
    468  1.43    jruoho acpicpu_md_cstate_enter(int method, int state)
    469   1.1    jruoho {
    470   1.3    jruoho 	struct cpu_info *ci = curcpu();
    471   1.1    jruoho 
    472   1.1    jruoho 	switch (method) {
    473   1.1    jruoho 
    474   1.1    jruoho 	case ACPICPU_C_STATE_FFH:
    475   1.3    jruoho 
    476   1.3    jruoho 		x86_enable_intr();
    477   1.3    jruoho 		x86_monitor(&ci->ci_want_resched, 0, 0);
    478   1.3    jruoho 
    479  1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    480   1.3    jruoho 			return;
    481   1.3    jruoho 
    482   1.1    jruoho 		x86_mwait((state - 1) << 4, 0);
    483   1.1    jruoho 		break;
    484   1.1    jruoho 
    485   1.1    jruoho 	case ACPICPU_C_STATE_HALT:
    486   1.3    jruoho 
    487  1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    488   1.3    jruoho 			return;
    489   1.3    jruoho 
    490   1.1    jruoho 		x86_stihlt();
    491   1.1    jruoho 		break;
    492   1.1    jruoho 	}
    493   1.1    jruoho }
    494   1.5    jruoho 
    495   1.5    jruoho int
    496  1.41    jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    497   1.5    jruoho {
    498  1.19    jruoho 	return acpicpu_md_pstate_sysctl_init();
    499   1.5    jruoho }
    500   1.5    jruoho 
    501   1.5    jruoho int
    502   1.5    jruoho acpicpu_md_pstate_stop(void)
    503   1.5    jruoho {
    504  1.19    jruoho 	if (acpicpu_log != NULL)
    505  1.19    jruoho 		sysctl_teardown(&acpicpu_log);
    506   1.5    jruoho 
    507   1.5    jruoho 	return 0;
    508   1.5    jruoho }
    509   1.5    jruoho 
    510   1.5    jruoho int
    511  1.55    jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    512   1.5    jruoho {
    513  1.15    jruoho 	struct acpicpu_pstate *ps, msr;
    514  1.17    jruoho 	struct cpu_info *ci = curcpu();
    515  1.18    jruoho 	uint32_t family, i = 0;
    516  1.55    jruoho 	uint64_t val;
    517  1.13    jruoho 
    518  1.15    jruoho 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    519  1.13    jruoho 
    520   1.5    jruoho 	switch (cpu_vendor) {
    521   1.5    jruoho 
    522  1.17    jruoho 	case CPUVENDOR_IDT:
    523   1.5    jruoho 	case CPUVENDOR_INTEL:
    524  1.33    jruoho 
    525  1.33    jruoho 		/*
    526  1.55    jruoho 		 * Make sure EST is enabled.
    527  1.55    jruoho 		 */
    528  1.55    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    529  1.55    jruoho 
    530  1.55    jruoho 			val = rdmsr(MSR_MISC_ENABLE);
    531  1.55    jruoho 
    532  1.55    jruoho 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    533  1.55    jruoho 
    534  1.55    jruoho 				val |= MSR_MISC_ENABLE_EST;
    535  1.55    jruoho 				wrmsr(MSR_MISC_ENABLE, val);
    536  1.55    jruoho 				val = rdmsr(MSR_MISC_ENABLE);
    537  1.55    jruoho 
    538  1.55    jruoho 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    539  1.55    jruoho 					return ENOTTY;
    540  1.55    jruoho 			}
    541  1.55    jruoho 		}
    542  1.55    jruoho 
    543  1.55    jruoho 		/*
    544  1.33    jruoho 		 * If the so-called Turbo Boost is present,
    545  1.33    jruoho 		 * the P0-state is always the "turbo state".
    546  1.51    jruoho 		 * It is shown as the P1 frequency + 1 MHz.
    547  1.33    jruoho 		 *
    548  1.33    jruoho 		 * For discussion, see:
    549  1.33    jruoho 		 *
    550  1.33    jruoho 		 *	Intel Corporation: Intel Turbo Boost Technology
    551  1.33    jruoho 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    552  1.33    jruoho 		 *	Based Processors. White Paper, November 2008.
    553  1.33    jruoho 		 */
    554  1.55    jruoho 		if (sc->sc_pstate_count >= 2 &&
    555  1.52    jruoho 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    556  1.51    jruoho 
    557  1.51    jruoho 			ps = &sc->sc_pstate[0];
    558  1.51    jruoho 
    559  1.51    jruoho 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    560  1.51    jruoho 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    561  1.51    jruoho 		}
    562  1.33    jruoho 
    563  1.15    jruoho 		msr.ps_control_addr = MSR_PERF_CTL;
    564  1.15    jruoho 		msr.ps_control_mask = __BITS(0, 15);
    565  1.15    jruoho 
    566  1.15    jruoho 		msr.ps_status_addr  = MSR_PERF_STATUS;
    567  1.15    jruoho 		msr.ps_status_mask  = __BITS(0, 15);
    568  1.13    jruoho 		break;
    569  1.13    jruoho 
    570  1.13    jruoho 	case CPUVENDOR_AMD:
    571  1.13    jruoho 
    572  1.33    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    573  1.33    jruoho 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    574  1.33    jruoho 
    575  1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    576  1.18    jruoho 
    577  1.18    jruoho 		if (family == 0xf)
    578  1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    579  1.18    jruoho 
    580  1.18    jruoho 		switch (family) {
    581  1.17    jruoho 
    582  1.32    jruoho 		case 0x0f:
    583  1.32    jruoho 			msr.ps_control_addr = MSR_0FH_CONTROL;
    584  1.32    jruoho 			msr.ps_status_addr  = MSR_0FH_STATUS;
    585  1.32    jruoho 			break;
    586  1.32    jruoho 
    587  1.17    jruoho 		case 0x10:
    588  1.17    jruoho 		case 0x11:
    589  1.40  jmcneill 		case 0x14: /* AMD Fusion */
    590  1.17    jruoho 			msr.ps_control_addr = MSR_10H_CONTROL;
    591  1.17    jruoho 			msr.ps_control_mask = __BITS(0, 2);
    592  1.17    jruoho 
    593  1.17    jruoho 			msr.ps_status_addr  = MSR_10H_STATUS;
    594  1.17    jruoho 			msr.ps_status_mask  = __BITS(0, 2);
    595  1.17    jruoho 			break;
    596  1.17    jruoho 
    597  1.17    jruoho 		default:
    598  1.17    jruoho 
    599  1.55    jruoho 			/*
    600  1.55    jruoho 			 * If we have an unknown AMD CPU, rely on XPSS.
    601  1.55    jruoho 			 */
    602  1.17    jruoho 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    603  1.17    jruoho 				return EOPNOTSUPP;
    604  1.17    jruoho 		}
    605  1.13    jruoho 
    606  1.13    jruoho 		break;
    607  1.13    jruoho 
    608  1.13    jruoho 	default:
    609  1.13    jruoho 		return ENODEV;
    610  1.13    jruoho 	}
    611   1.5    jruoho 
    612  1.26    jruoho 	/*
    613  1.26    jruoho 	 * Fill the P-state structures with MSR addresses that are
    614  1.27    jruoho 	 * known to be correct. If we do not know the addresses,
    615  1.27    jruoho 	 * leave the values intact. If a vendor uses XPSS, we do
    616  1.39    jruoho 	 * not necessarily need to do anything to support new CPUs.
    617  1.26    jruoho 	 */
    618  1.15    jruoho 	while (i < sc->sc_pstate_count) {
    619  1.15    jruoho 
    620  1.15    jruoho 		ps = &sc->sc_pstate[i];
    621  1.15    jruoho 
    622  1.32    jruoho 		if (msr.ps_flags != 0)
    623  1.32    jruoho 			ps->ps_flags |= msr.ps_flags;
    624  1.32    jruoho 
    625  1.27    jruoho 		if (msr.ps_status_addr != 0)
    626  1.15    jruoho 			ps->ps_status_addr = msr.ps_status_addr;
    627  1.15    jruoho 
    628  1.27    jruoho 		if (msr.ps_status_mask != 0)
    629  1.15    jruoho 			ps->ps_status_mask = msr.ps_status_mask;
    630  1.15    jruoho 
    631  1.27    jruoho 		if (msr.ps_control_addr != 0)
    632  1.15    jruoho 			ps->ps_control_addr = msr.ps_control_addr;
    633  1.15    jruoho 
    634  1.27    jruoho 		if (msr.ps_control_mask != 0)
    635  1.15    jruoho 			ps->ps_control_mask = msr.ps_control_mask;
    636  1.15    jruoho 
    637  1.15    jruoho 		i++;
    638  1.15    jruoho 	}
    639  1.15    jruoho 
    640  1.55    jruoho 	/*
    641  1.55    jruoho 	 * Reset the APERF and MPERF counters.
    642  1.55    jruoho 	 *
    643  1.55    jruoho 	 * XXX: Should be with xc_unicast(9).
    644  1.55    jruoho 	 */
    645  1.55    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0)
    646  1.55    jruoho 		acpicpu_md_pstate_percent_reset(sc->sc_ci);
    647  1.55    jruoho 
    648  1.15    jruoho 	return 0;
    649  1.15    jruoho }
    650  1.15    jruoho 
    651  1.55    jruoho /*
    652  1.55    jruoho  * Read the IA32_APERF and IA32_MPERF counters. The first
    653  1.55    jruoho  * increments at the rate of the fixed maximum frequency
    654  1.55    jruoho  * configured during the boot, whereas APERF counts at the
    655  1.55    jruoho  * rate of the actual frequency. Note that the MSRs must be
    656  1.55    jruoho  * read without delay, and that only the ratio between
    657  1.55    jruoho  * IA32_APERF and IA32_MPERF is architecturally defined.
    658  1.55    jruoho  *
    659  1.55    jruoho  * The function thus returns the percentage of the actual
    660  1.55    jruoho  * frequency in terms of the maximum frequency of the calling
    661  1.55    jruoho  * CPU since the last call. A value zero implies an error.
    662  1.55    jruoho  *
    663  1.55    jruoho  * For further details, refer to:
    664  1.55    jruoho  *
    665  1.55    jruoho  *	Intel Corporation: Intel 64 and IA-32 Architectures
    666  1.55    jruoho  *	Software Developer's Manual. Section 13.2, Volume 3A:
    667  1.55    jruoho  *	System Programming Guide, Part 1. July, 2008.
    668  1.55    jruoho  *
    669  1.55    jruoho  *	Advanced Micro Devices: BIOS and Kernel Developer's
    670  1.55    jruoho  *	Guide (BKDG) for AMD Family 10h Processors. Section
    671  1.55    jruoho  *	2.4.5, Revision 3.48, April 2010.
    672  1.55    jruoho  */
    673  1.41    jruoho uint8_t
    674  1.55    jruoho acpicpu_md_pstate_percent(struct cpu_info *ci)
    675  1.41    jruoho {
    676  1.55    jruoho 	struct acpicpu_softc *sc;
    677  1.41    jruoho 	uint64_t aperf, mperf;
    678  1.55    jruoho 	uint8_t rv = 0;
    679  1.55    jruoho 	u_long flags;
    680  1.55    jruoho 
    681  1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    682  1.41    jruoho 
    683  1.55    jruoho 	if (__predict_false(sc == NULL))
    684  1.50    jruoho 		return 0;
    685  1.50    jruoho 
    686  1.53    jruoho 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    687  1.50    jruoho 		return 0;
    688  1.41    jruoho 
    689  1.55    jruoho 	flags = acpicpu_md_lock(sc);
    690  1.55    jruoho 
    691  1.41    jruoho 	aperf = sc->sc_pstate_aperf;
    692  1.41    jruoho 	mperf = sc->sc_pstate_mperf;
    693  1.41    jruoho 
    694  1.50    jruoho 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    695  1.50    jruoho 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    696  1.41    jruoho 
    697  1.41    jruoho 	aperf = sc->sc_pstate_aperf - aperf;
    698  1.41    jruoho 	mperf = sc->sc_pstate_mperf - mperf;
    699  1.41    jruoho 
    700  1.41    jruoho 	if (__predict_true(mperf != 0))
    701  1.41    jruoho 		rv = (aperf * 100) / mperf;
    702  1.41    jruoho 
    703  1.55    jruoho 	acpicpu_md_unlock(sc, flags);
    704  1.55    jruoho 
    705  1.41    jruoho 	return rv;
    706  1.41    jruoho }
    707  1.41    jruoho 
    708  1.41    jruoho static void
    709  1.55    jruoho acpicpu_md_pstate_percent_reset(struct cpu_info *ci)
    710  1.41    jruoho {
    711  1.55    jruoho 	struct acpicpu_softc *sc;
    712  1.55    jruoho 	u_long flags;
    713  1.41    jruoho 
    714  1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    715  1.41    jruoho 
    716  1.55    jruoho 	if (__predict_false(sc == NULL))
    717  1.55    jruoho 		return;
    718  1.46    jruoho 
    719  1.55    jruoho 	flags = acpicpu_md_lock(sc);
    720  1.46    jruoho 
    721  1.55    jruoho 	wrmsr(MSR_APERF, 0);
    722  1.55    jruoho 	wrmsr(MSR_MPERF, 0);
    723  1.41    jruoho 
    724  1.41    jruoho 	sc->sc_pstate_aperf = 0;
    725  1.41    jruoho 	sc->sc_pstate_mperf = 0;
    726  1.55    jruoho 
    727  1.55    jruoho 	acpicpu_md_unlock(sc, flags);
    728  1.41    jruoho }
    729  1.41    jruoho 
    730  1.15    jruoho int
    731  1.15    jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    732  1.15    jruoho {
    733  1.15    jruoho 	struct acpicpu_pstate *ps = NULL;
    734  1.15    jruoho 	uint64_t val;
    735  1.15    jruoho 	uint32_t i;
    736  1.15    jruoho 
    737  1.32    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    738  1.32    jruoho 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    739  1.32    jruoho 
    740  1.49    jruoho 	/*
    741  1.49    jruoho 	 * Pick any P-state for the status address.
    742  1.49    jruoho 	*/
    743  1.15    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    744  1.15    jruoho 
    745  1.15    jruoho 		ps = &sc->sc_pstate[i];
    746  1.15    jruoho 
    747  1.32    jruoho 		if (__predict_true(ps->ps_freq != 0))
    748  1.15    jruoho 			break;
    749  1.15    jruoho 	}
    750  1.15    jruoho 
    751  1.15    jruoho 	if (__predict_false(ps == NULL))
    752  1.17    jruoho 		return ENODEV;
    753  1.15    jruoho 
    754  1.28    jruoho 	if (__predict_false(ps->ps_status_addr == 0))
    755  1.13    jruoho 		return EINVAL;
    756   1.5    jruoho 
    757  1.13    jruoho 	val = rdmsr(ps->ps_status_addr);
    758   1.5    jruoho 
    759  1.28    jruoho 	if (__predict_true(ps->ps_status_mask != 0))
    760  1.13    jruoho 		val = val & ps->ps_status_mask;
    761   1.5    jruoho 
    762  1.49    jruoho 	/*
    763  1.49    jruoho 	 * Search for the value from known P-states.
    764  1.49    jruoho 	 */
    765  1.13    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    766   1.5    jruoho 
    767  1.13    jruoho 		ps = &sc->sc_pstate[i];
    768   1.5    jruoho 
    769  1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    770  1.13    jruoho 			continue;
    771   1.5    jruoho 
    772  1.29    jruoho 		if (val == ps->ps_status) {
    773  1.13    jruoho 			*freq = ps->ps_freq;
    774  1.13    jruoho 			return 0;
    775  1.13    jruoho 		}
    776   1.5    jruoho 	}
    777   1.5    jruoho 
    778  1.13    jruoho 	return EIO;
    779   1.5    jruoho }
    780   1.5    jruoho 
    781   1.5    jruoho int
    782   1.5    jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    783   1.5    jruoho {
    784  1.54    jruoho 	uint64_t val = 0;
    785   1.5    jruoho 
    786  1.37    jruoho 	if (__predict_false(ps->ps_control_addr == 0))
    787  1.37    jruoho 		return EINVAL;
    788  1.37    jruoho 
    789  1.32    jruoho 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    790  1.32    jruoho 		return acpicpu_md_pstate_fidvid_set(ps);
    791  1.32    jruoho 
    792  1.54    jruoho 	/*
    793  1.54    jruoho 	 * If the mask is set, do a read-modify-write.
    794  1.54    jruoho 	 */
    795  1.54    jruoho 	if (__predict_true(ps->ps_control_mask != 0)) {
    796  1.54    jruoho 		val = rdmsr(ps->ps_control_addr);
    797  1.54    jruoho 		val &= ~ps->ps_control_mask;
    798  1.54    jruoho 	}
    799   1.5    jruoho 
    800  1.54    jruoho 	val |= ps->ps_control;
    801  1.13    jruoho 
    802  1.49    jruoho 	wrmsr(ps->ps_control_addr, val);
    803  1.49    jruoho 	DELAY(ps->ps_latency);
    804  1.14    jruoho 
    805  1.49    jruoho 	return 0;
    806   1.5    jruoho }
    807  1.10    jruoho 
    808  1.32    jruoho static int
    809  1.32    jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    810  1.32    jruoho {
    811  1.32    jruoho 	struct acpicpu_pstate *ps;
    812  1.32    jruoho 	uint32_t fid, i, vid;
    813  1.32    jruoho 	uint32_t cfid, cvid;
    814  1.32    jruoho 	int rv;
    815  1.32    jruoho 
    816  1.32    jruoho 	/*
    817  1.32    jruoho 	 * AMD family 0Fh needs special treatment.
    818  1.32    jruoho 	 * While it wants to use ACPI, it does not
    819  1.32    jruoho 	 * comply with the ACPI specifications.
    820  1.32    jruoho 	 */
    821  1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    822  1.32    jruoho 
    823  1.32    jruoho 	if (rv != 0)
    824  1.32    jruoho 		return rv;
    825  1.32    jruoho 
    826  1.32    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    827  1.32    jruoho 
    828  1.32    jruoho 		ps = &sc->sc_pstate[i];
    829  1.32    jruoho 
    830  1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    831  1.32    jruoho 			continue;
    832  1.32    jruoho 
    833  1.32    jruoho 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    834  1.32    jruoho 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    835  1.32    jruoho 
    836  1.32    jruoho 		if (cfid == fid && cvid == vid) {
    837  1.32    jruoho 			*freq = ps->ps_freq;
    838  1.32    jruoho 			return 0;
    839  1.32    jruoho 		}
    840  1.32    jruoho 	}
    841  1.32    jruoho 
    842  1.32    jruoho 	return EIO;
    843  1.32    jruoho }
    844  1.32    jruoho 
    845  1.32    jruoho static int
    846  1.32    jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    847  1.32    jruoho {
    848  1.32    jruoho 	const uint64_t ctrl = ps->ps_control;
    849  1.32    jruoho 	uint32_t cfid, cvid, fid, i, irt;
    850  1.32    jruoho 	uint32_t pll, vco_cfid, vco_fid;
    851  1.32    jruoho 	uint32_t val, vid, vst;
    852  1.32    jruoho 	int rv;
    853  1.32    jruoho 
    854  1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    855  1.32    jruoho 
    856  1.32    jruoho 	if (rv != 0)
    857  1.32    jruoho 		return rv;
    858  1.32    jruoho 
    859  1.32    jruoho 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    860  1.32    jruoho 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    861  1.32    jruoho 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    862  1.32    jruoho 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    863  1.32    jruoho 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    864  1.32    jruoho 
    865  1.32    jruoho 	vst = vst * 20;
    866  1.32    jruoho 	pll = pll * 1000 / 5;
    867  1.32    jruoho 	irt = 10 * __BIT(irt);
    868  1.32    jruoho 
    869  1.32    jruoho 	/*
    870  1.32    jruoho 	 * Phase 1.
    871  1.32    jruoho 	 */
    872  1.32    jruoho 	while (cvid > vid) {
    873  1.32    jruoho 
    874  1.32    jruoho 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    875  1.32    jruoho 		val = (val > cvid) ? 0 : cvid - val;
    876  1.32    jruoho 
    877  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    878  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    879  1.32    jruoho 
    880  1.32    jruoho 		if (rv != 0)
    881  1.32    jruoho 			return rv;
    882  1.32    jruoho 	}
    883  1.32    jruoho 
    884  1.32    jruoho 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    885  1.32    jruoho 
    886  1.32    jruoho 	for (; i > 0 && cvid > 0; --i) {
    887  1.32    jruoho 
    888  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    889  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    890  1.32    jruoho 
    891  1.32    jruoho 		if (rv != 0)
    892  1.32    jruoho 			return rv;
    893  1.32    jruoho 	}
    894  1.32    jruoho 
    895  1.32    jruoho 	/*
    896  1.32    jruoho 	 * Phase 2.
    897  1.32    jruoho 	 */
    898  1.32    jruoho 	if (cfid != fid) {
    899  1.32    jruoho 
    900  1.32    jruoho 		vco_fid  = FID_TO_VCO_FID(fid);
    901  1.32    jruoho 		vco_cfid = FID_TO_VCO_FID(cfid);
    902  1.32    jruoho 
    903  1.32    jruoho 		while (abs(vco_fid - vco_cfid) > 2) {
    904  1.32    jruoho 
    905  1.32    jruoho 			if (fid <= cfid)
    906  1.32    jruoho 				val = cfid - 2;
    907  1.32    jruoho 			else {
    908  1.32    jruoho 				val = (cfid > 6) ? cfid + 2 :
    909  1.32    jruoho 				    FID_TO_VCO_FID(cfid) + 2;
    910  1.32    jruoho 			}
    911  1.32    jruoho 
    912  1.32    jruoho 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    913  1.32    jruoho 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    914  1.32    jruoho 
    915  1.32    jruoho 			if (rv != 0)
    916  1.32    jruoho 				return rv;
    917  1.32    jruoho 
    918  1.32    jruoho 			vco_cfid = FID_TO_VCO_FID(cfid);
    919  1.32    jruoho 		}
    920  1.32    jruoho 
    921  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    922  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    923  1.32    jruoho 
    924  1.32    jruoho 		if (rv != 0)
    925  1.32    jruoho 			return rv;
    926  1.32    jruoho 	}
    927  1.32    jruoho 
    928  1.32    jruoho 	/*
    929  1.32    jruoho 	 * Phase 3.
    930  1.32    jruoho 	 */
    931  1.32    jruoho 	if (cvid != vid) {
    932  1.32    jruoho 
    933  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    934  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    935  1.32    jruoho 
    936  1.32    jruoho 		if (rv != 0)
    937  1.32    jruoho 			return rv;
    938  1.32    jruoho 	}
    939  1.32    jruoho 
    940  1.32    jruoho 	if (cfid != fid || cvid != vid)
    941  1.32    jruoho 		return EIO;
    942  1.32    jruoho 
    943  1.32    jruoho 	return 0;
    944  1.32    jruoho }
    945  1.32    jruoho 
    946  1.32    jruoho static int
    947  1.32    jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    948  1.32    jruoho {
    949  1.32    jruoho 	int i = ACPICPU_P_STATE_RETRY * 100;
    950  1.32    jruoho 	uint64_t val;
    951  1.32    jruoho 
    952  1.32    jruoho 	do {
    953  1.32    jruoho 		val = rdmsr(MSR_0FH_STATUS);
    954  1.32    jruoho 
    955  1.32    jruoho 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    956  1.32    jruoho 
    957  1.32    jruoho 	if (i == 0)
    958  1.32    jruoho 		return EAGAIN;
    959  1.32    jruoho 
    960  1.32    jruoho 	if (cfid != NULL)
    961  1.32    jruoho 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    962  1.32    jruoho 
    963  1.32    jruoho 	if (cvid != NULL)
    964  1.32    jruoho 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    965  1.32    jruoho 
    966  1.32    jruoho 	return 0;
    967  1.32    jruoho }
    968  1.32    jruoho 
    969  1.32    jruoho static void
    970  1.32    jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
    971  1.32    jruoho     uint32_t vid, uint32_t cnt, uint32_t tmo)
    972  1.32    jruoho {
    973  1.49    jruoho 	uint64_t val = 0;
    974  1.32    jruoho 
    975  1.49    jruoho 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    976  1.49    jruoho 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    977  1.49    jruoho 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    978  1.49    jruoho 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    979  1.32    jruoho 
    980  1.49    jruoho 	wrmsr(MSR_0FH_CONTROL, val);
    981  1.32    jruoho 	DELAY(tmo);
    982  1.32    jruoho }
    983  1.32    jruoho 
    984  1.10    jruoho int
    985  1.10    jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    986  1.10    jruoho {
    987  1.10    jruoho 	struct acpicpu_tstate *ts;
    988  1.14    jruoho 	uint64_t val;
    989  1.10    jruoho 	uint32_t i;
    990  1.10    jruoho 
    991  1.14    jruoho 	val = rdmsr(MSR_THERM_CONTROL);
    992  1.10    jruoho 
    993  1.10    jruoho 	for (i = 0; i < sc->sc_tstate_count; i++) {
    994  1.10    jruoho 
    995  1.10    jruoho 		ts = &sc->sc_tstate[i];
    996  1.10    jruoho 
    997  1.10    jruoho 		if (ts->ts_percent == 0)
    998  1.10    jruoho 			continue;
    999  1.10    jruoho 
   1000  1.29    jruoho 		if (val == ts->ts_status) {
   1001  1.10    jruoho 			*percent = ts->ts_percent;
   1002  1.10    jruoho 			return 0;
   1003  1.10    jruoho 		}
   1004  1.10    jruoho 	}
   1005  1.10    jruoho 
   1006  1.10    jruoho 	return EIO;
   1007  1.10    jruoho }
   1008  1.10    jruoho 
   1009  1.10    jruoho int
   1010  1.10    jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
   1011  1.10    jruoho {
   1012  1.49    jruoho 	uint64_t val;
   1013  1.49    jruoho 	uint8_t i;
   1014  1.10    jruoho 
   1015  1.49    jruoho 	val = ts->ts_control;
   1016  1.49    jruoho 	val = val & __BITS(1, 4);
   1017  1.10    jruoho 
   1018  1.49    jruoho 	wrmsr(MSR_THERM_CONTROL, val);
   1019  1.10    jruoho 
   1020  1.30    jruoho 	if (ts->ts_status == 0) {
   1021  1.30    jruoho 		DELAY(ts->ts_latency);
   1022  1.10    jruoho 		return 0;
   1023  1.30    jruoho 	}
   1024  1.10    jruoho 
   1025  1.10    jruoho 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1026  1.10    jruoho 
   1027  1.14    jruoho 		val = rdmsr(MSR_THERM_CONTROL);
   1028  1.10    jruoho 
   1029  1.29    jruoho 		if (val == ts->ts_status)
   1030  1.49    jruoho 			return 0;
   1031  1.10    jruoho 
   1032  1.10    jruoho 		DELAY(ts->ts_latency);
   1033  1.10    jruoho 	}
   1034  1.10    jruoho 
   1035  1.49    jruoho 	return EAGAIN;
   1036  1.10    jruoho }
   1037  1.19    jruoho 
   1038  1.19    jruoho /*
   1039  1.19    jruoho  * A kludge for backwards compatibility.
   1040  1.19    jruoho  */
   1041  1.19    jruoho static int
   1042  1.19    jruoho acpicpu_md_pstate_sysctl_init(void)
   1043  1.19    jruoho {
   1044  1.19    jruoho 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1045  1.19    jruoho 	const char *str;
   1046  1.19    jruoho 	int rv;
   1047  1.19    jruoho 
   1048  1.19    jruoho 	switch (cpu_vendor) {
   1049  1.19    jruoho 
   1050  1.19    jruoho 	case CPUVENDOR_IDT:
   1051  1.19    jruoho 	case CPUVENDOR_INTEL:
   1052  1.19    jruoho 		str = "est";
   1053  1.19    jruoho 		break;
   1054  1.19    jruoho 
   1055  1.19    jruoho 	case CPUVENDOR_AMD:
   1056  1.19    jruoho 		str = "powernow";
   1057  1.19    jruoho 		break;
   1058  1.19    jruoho 
   1059  1.19    jruoho 	default:
   1060  1.19    jruoho 		return ENODEV;
   1061  1.19    jruoho 	}
   1062  1.19    jruoho 
   1063  1.19    jruoho 
   1064  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1065  1.19    jruoho 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1066  1.19    jruoho 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1067  1.19    jruoho 
   1068  1.19    jruoho 	if (rv != 0)
   1069  1.19    jruoho 		goto fail;
   1070  1.19    jruoho 
   1071  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1072  1.19    jruoho 	    0, CTLTYPE_NODE, str, NULL,
   1073  1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1074  1.19    jruoho 
   1075  1.19    jruoho 	if (rv != 0)
   1076  1.19    jruoho 		goto fail;
   1077  1.19    jruoho 
   1078  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1079  1.19    jruoho 	    0, CTLTYPE_NODE, "frequency", NULL,
   1080  1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1081  1.19    jruoho 
   1082  1.19    jruoho 	if (rv != 0)
   1083  1.19    jruoho 		goto fail;
   1084  1.19    jruoho 
   1085  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1086  1.19    jruoho 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1087  1.19    jruoho 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1088  1.19    jruoho 
   1089  1.19    jruoho 	if (rv != 0)
   1090  1.19    jruoho 		goto fail;
   1091  1.19    jruoho 
   1092  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1093  1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1094  1.19    jruoho 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1095  1.19    jruoho 
   1096  1.19    jruoho 	if (rv != 0)
   1097  1.19    jruoho 		goto fail;
   1098  1.19    jruoho 
   1099  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1100  1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1101  1.19    jruoho 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1102  1.19    jruoho 
   1103  1.19    jruoho 	if (rv != 0)
   1104  1.19    jruoho 		goto fail;
   1105  1.19    jruoho 
   1106  1.19    jruoho 	return 0;
   1107  1.19    jruoho 
   1108  1.19    jruoho fail:
   1109  1.19    jruoho 	if (acpicpu_log != NULL) {
   1110  1.19    jruoho 		sysctl_teardown(&acpicpu_log);
   1111  1.19    jruoho 		acpicpu_log = NULL;
   1112  1.19    jruoho 	}
   1113  1.19    jruoho 
   1114  1.19    jruoho 	return rv;
   1115  1.19    jruoho }
   1116  1.19    jruoho 
   1117  1.19    jruoho static int
   1118  1.19    jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1119  1.19    jruoho {
   1120  1.19    jruoho 	struct cpu_info *ci = curcpu();
   1121  1.19    jruoho 	struct sysctlnode node;
   1122  1.19    jruoho 	uint32_t freq;
   1123  1.19    jruoho 	int err;
   1124  1.19    jruoho 
   1125  1.49    jruoho 	err = acpicpu_pstate_get(ci, &freq);
   1126  1.19    jruoho 
   1127  1.19    jruoho 	if (err != 0)
   1128  1.19    jruoho 		return err;
   1129  1.19    jruoho 
   1130  1.19    jruoho 	node = *rnode;
   1131  1.19    jruoho 	node.sysctl_data = &freq;
   1132  1.19    jruoho 
   1133  1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1134  1.19    jruoho 
   1135  1.19    jruoho 	if (err != 0 || newp == NULL)
   1136  1.19    jruoho 		return err;
   1137  1.19    jruoho 
   1138  1.19    jruoho 	return 0;
   1139  1.19    jruoho }
   1140  1.19    jruoho 
   1141  1.19    jruoho static int
   1142  1.19    jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1143  1.19    jruoho {
   1144  1.19    jruoho 	struct cpu_info *ci = curcpu();
   1145  1.19    jruoho 	struct sysctlnode node;
   1146  1.19    jruoho 	uint32_t freq;
   1147  1.19    jruoho 	int err;
   1148  1.19    jruoho 
   1149  1.49    jruoho 	err = acpicpu_pstate_get(ci, &freq);
   1150  1.19    jruoho 
   1151  1.19    jruoho 	if (err != 0)
   1152  1.19    jruoho 		return err;
   1153  1.19    jruoho 
   1154  1.19    jruoho 	node = *rnode;
   1155  1.19    jruoho 	node.sysctl_data = &freq;
   1156  1.19    jruoho 
   1157  1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1158  1.19    jruoho 
   1159  1.19    jruoho 	if (err != 0 || newp == NULL)
   1160  1.19    jruoho 		return err;
   1161  1.19    jruoho 
   1162  1.49    jruoho 	acpicpu_pstate_set(ci, freq);
   1163  1.19    jruoho 
   1164  1.19    jruoho 	return 0;
   1165  1.19    jruoho }
   1166  1.19    jruoho 
   1167  1.19    jruoho static int
   1168  1.19    jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1169  1.19    jruoho {
   1170  1.19    jruoho 	struct cpu_info *ci = curcpu();
   1171  1.19    jruoho 	struct acpicpu_softc *sc;
   1172  1.19    jruoho 	struct sysctlnode node;
   1173  1.19    jruoho 	char buf[1024];
   1174  1.19    jruoho 	size_t len;
   1175  1.19    jruoho 	uint32_t i;
   1176  1.19    jruoho 	int err;
   1177  1.19    jruoho 
   1178  1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1179  1.19    jruoho 
   1180  1.19    jruoho 	if (sc == NULL)
   1181  1.19    jruoho 		return ENXIO;
   1182  1.19    jruoho 
   1183  1.19    jruoho 	(void)memset(&buf, 0, sizeof(buf));
   1184  1.19    jruoho 
   1185  1.19    jruoho 	mutex_enter(&sc->sc_mtx);
   1186  1.19    jruoho 
   1187  1.19    jruoho 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1188  1.19    jruoho 
   1189  1.19    jruoho 		if (sc->sc_pstate[i].ps_freq == 0)
   1190  1.19    jruoho 			continue;
   1191  1.19    jruoho 
   1192  1.19    jruoho 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1193  1.19    jruoho 		    sc->sc_pstate[i].ps_freq,
   1194  1.19    jruoho 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1195  1.19    jruoho 	}
   1196  1.19    jruoho 
   1197  1.19    jruoho 	mutex_exit(&sc->sc_mtx);
   1198  1.19    jruoho 
   1199  1.19    jruoho 	node = *rnode;
   1200  1.19    jruoho 	node.sysctl_data = buf;
   1201  1.19    jruoho 
   1202  1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1203  1.19    jruoho 
   1204  1.19    jruoho 	if (err != 0 || newp == NULL)
   1205  1.19    jruoho 		return err;
   1206  1.19    jruoho 
   1207  1.19    jruoho 	return 0;
   1208  1.19    jruoho }
   1209  1.19    jruoho 
   1210