acpi_cpu_md.c revision 1.55.2.3 1 1.55.2.2 rmind /* $NetBSD: acpi_cpu_md.c,v 1.55.2.3 2011/03/06 00:26:58 rmind Exp $ */
2 1.55.2.2 rmind
3 1.55.2.2 rmind /*-
4 1.55.2.2 rmind * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.55.2.2 rmind * All rights reserved.
6 1.55.2.2 rmind *
7 1.55.2.2 rmind * Redistribution and use in source and binary forms, with or without
8 1.55.2.2 rmind * modification, are permitted provided that the following conditions
9 1.55.2.2 rmind * are met:
10 1.55.2.2 rmind *
11 1.55.2.2 rmind * 1. Redistributions of source code must retain the above copyright
12 1.55.2.2 rmind * notice, this list of conditions and the following disclaimer.
13 1.55.2.2 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.55.2.2 rmind * notice, this list of conditions and the following disclaimer in the
15 1.55.2.2 rmind * documentation and/or other materials provided with the distribution.
16 1.55.2.2 rmind *
17 1.55.2.2 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.55.2.2 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.55.2.2 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.55.2.2 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.55.2.2 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.55.2.2 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.55.2.2 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.55.2.2 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.55.2.2 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.55.2.2 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.55.2.2 rmind * SUCH DAMAGE.
28 1.55.2.2 rmind */
29 1.55.2.2 rmind #include <sys/cdefs.h>
30 1.55.2.2 rmind __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.55.2.3 2011/03/06 00:26:58 rmind Exp $");
31 1.55.2.2 rmind
32 1.55.2.2 rmind #include <sys/param.h>
33 1.55.2.2 rmind #include <sys/bus.h>
34 1.55.2.2 rmind #include <sys/device.h>
35 1.55.2.2 rmind #include <sys/kcore.h>
36 1.55.2.2 rmind #include <sys/sysctl.h>
37 1.55.2.2 rmind #include <sys/xcall.h>
38 1.55.2.2 rmind
39 1.55.2.2 rmind #include <x86/cpu.h>
40 1.55.2.2 rmind #include <x86/cpufunc.h>
41 1.55.2.2 rmind #include <x86/cputypes.h>
42 1.55.2.2 rmind #include <x86/cpuvar.h>
43 1.55.2.2 rmind #include <x86/cpu_msr.h>
44 1.55.2.2 rmind #include <x86/machdep.h>
45 1.55.2.2 rmind
46 1.55.2.2 rmind #include <dev/acpi/acpica.h>
47 1.55.2.2 rmind #include <dev/acpi/acpi_cpu.h>
48 1.55.2.2 rmind
49 1.55.2.2 rmind #include <dev/pci/pcivar.h>
50 1.55.2.2 rmind #include <dev/pci/pcidevs.h>
51 1.55.2.2 rmind
52 1.55.2.2 rmind #include <machine/acpi_machdep.h>
53 1.55.2.2 rmind
54 1.55.2.2 rmind /*
55 1.55.2.3 rmind * Intel IA32_MISC_ENABLE.
56 1.55.2.3 rmind */
57 1.55.2.3 rmind #define MSR_MISC_ENABLE_EST __BIT(16)
58 1.55.2.3 rmind #define MSR_MISC_ENABLE_TURBO __BIT(38)
59 1.55.2.3 rmind
60 1.55.2.3 rmind /*
61 1.55.2.2 rmind * AMD C1E.
62 1.55.2.2 rmind */
63 1.55.2.2 rmind #define MSR_CMPHALT 0xc0010055
64 1.55.2.2 rmind
65 1.55.2.2 rmind #define MSR_CMPHALT_SMI __BIT(27)
66 1.55.2.2 rmind #define MSR_CMPHALT_C1E __BIT(28)
67 1.55.2.2 rmind #define MSR_CMPHALT_BMSTS __BIT(29)
68 1.55.2.2 rmind
69 1.55.2.2 rmind /*
70 1.55.2.2 rmind * AMD families 10h, 11h, and 14h
71 1.55.2.2 rmind */
72 1.55.2.2 rmind #define MSR_10H_LIMIT 0xc0010061
73 1.55.2.2 rmind #define MSR_10H_CONTROL 0xc0010062
74 1.55.2.2 rmind #define MSR_10H_STATUS 0xc0010063
75 1.55.2.2 rmind #define MSR_10H_CONFIG 0xc0010064
76 1.55.2.2 rmind
77 1.55.2.2 rmind /*
78 1.55.2.2 rmind * AMD family 0Fh.
79 1.55.2.2 rmind */
80 1.55.2.2 rmind #define MSR_0FH_CONTROL 0xc0010041
81 1.55.2.2 rmind #define MSR_0FH_STATUS 0xc0010042
82 1.55.2.2 rmind
83 1.55.2.2 rmind #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 1.55.2.2 rmind #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 1.55.2.2 rmind #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86 1.55.2.2 rmind
87 1.55.2.2 rmind #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 1.55.2.2 rmind #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 1.55.2.2 rmind #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 1.55.2.2 rmind #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91 1.55.2.2 rmind
92 1.55.2.2 rmind #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 1.55.2.2 rmind #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94 1.55.2.2 rmind
95 1.55.2.2 rmind #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 1.55.2.2 rmind #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 1.55.2.2 rmind #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 1.55.2.2 rmind #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 1.55.2.2 rmind #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 1.55.2.2 rmind #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 1.55.2.2 rmind #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102 1.55.2.2 rmind
103 1.55.2.2 rmind #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104 1.55.2.2 rmind
105 1.55.2.2 rmind static char native_idle_text[16];
106 1.55.2.2 rmind void (*native_idle)(void) = NULL;
107 1.55.2.2 rmind
108 1.55.2.3 rmind static u_long acpicpu_md_lock(struct acpicpu_softc *);
109 1.55.2.3 rmind static void acpicpu_md_unlock(struct acpicpu_softc *, u_long);
110 1.55.2.2 rmind static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
111 1.55.2.3 rmind static void acpicpu_md_pstate_percent_reset(struct cpu_info *);
112 1.55.2.2 rmind static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
113 1.55.2.2 rmind uint32_t *);
114 1.55.2.2 rmind static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
115 1.55.2.2 rmind static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
116 1.55.2.2 rmind static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
117 1.55.2.2 rmind uint32_t, uint32_t);
118 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_init(void);
119 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
120 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
121 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
122 1.55.2.2 rmind
123 1.55.2.2 rmind extern struct acpicpu_softc **acpicpu_sc;
124 1.55.2.2 rmind static struct sysctllog *acpicpu_log = NULL;
125 1.55.2.2 rmind
126 1.55.2.2 rmind struct cpu_info *
127 1.55.2.2 rmind acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
128 1.55.2.2 rmind {
129 1.55.2.2 rmind struct cpufeature_attach_args *cfaa = aux;
130 1.55.2.2 rmind
131 1.55.2.2 rmind if (strcmp(cfaa->name, "frequency") != 0)
132 1.55.2.2 rmind return NULL;
133 1.55.2.2 rmind
134 1.55.2.2 rmind return cfaa->ci;
135 1.55.2.2 rmind }
136 1.55.2.2 rmind
137 1.55.2.2 rmind struct cpu_info *
138 1.55.2.2 rmind acpicpu_md_attach(device_t parent, device_t self, void *aux)
139 1.55.2.2 rmind {
140 1.55.2.2 rmind struct cpufeature_attach_args *cfaa = aux;
141 1.55.2.2 rmind
142 1.55.2.2 rmind return cfaa->ci;
143 1.55.2.2 rmind }
144 1.55.2.2 rmind
145 1.55.2.3 rmind static u_long
146 1.55.2.3 rmind acpicpu_md_lock(struct acpicpu_softc *sc)
147 1.55.2.3 rmind {
148 1.55.2.3 rmind const u_long flags = x86_read_psl();
149 1.55.2.3 rmind
150 1.55.2.3 rmind x86_disable_intr();
151 1.55.2.3 rmind __cpu_simple_lock(&sc->sc_lock);
152 1.55.2.3 rmind
153 1.55.2.3 rmind return flags;
154 1.55.2.3 rmind }
155 1.55.2.3 rmind
156 1.55.2.3 rmind static void
157 1.55.2.3 rmind acpicpu_md_unlock(struct acpicpu_softc *sc, u_long flags)
158 1.55.2.3 rmind {
159 1.55.2.3 rmind __cpu_simple_unlock(&sc->sc_lock);
160 1.55.2.3 rmind x86_write_psl(flags);
161 1.55.2.3 rmind }
162 1.55.2.3 rmind
163 1.55.2.2 rmind uint32_t
164 1.55.2.2 rmind acpicpu_md_cap(void)
165 1.55.2.2 rmind {
166 1.55.2.2 rmind struct cpu_info *ci = curcpu();
167 1.55.2.2 rmind uint32_t regs[4];
168 1.55.2.2 rmind uint32_t val = 0;
169 1.55.2.2 rmind
170 1.55.2.2 rmind if (cpu_vendor != CPUVENDOR_IDT &&
171 1.55.2.2 rmind cpu_vendor != CPUVENDOR_INTEL)
172 1.55.2.2 rmind return val;
173 1.55.2.2 rmind
174 1.55.2.2 rmind /*
175 1.55.2.2 rmind * Basic SMP C-states (required for e.g. _CST).
176 1.55.2.2 rmind */
177 1.55.2.2 rmind val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
178 1.55.2.2 rmind
179 1.55.2.2 rmind /*
180 1.55.2.2 rmind * Claim to support dependency coordination.
181 1.55.2.2 rmind */
182 1.55.2.2 rmind val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
183 1.55.2.2 rmind
184 1.55.2.2 rmind /*
185 1.55.2.2 rmind * If MONITOR/MWAIT is available, announce
186 1.55.2.2 rmind * support for native instructions in all C-states.
187 1.55.2.2 rmind */
188 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
189 1.55.2.2 rmind val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
190 1.55.2.2 rmind
191 1.55.2.2 rmind /*
192 1.55.2.2 rmind * Set native P- and T-states, if available.
193 1.55.2.2 rmind */
194 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
195 1.55.2.2 rmind val |= ACPICPU_PDC_P_FFH;
196 1.55.2.2 rmind
197 1.55.2.2 rmind if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
198 1.55.2.2 rmind val |= ACPICPU_PDC_T_FFH;
199 1.55.2.2 rmind
200 1.55.2.2 rmind /*
201 1.55.2.2 rmind * Declare support for APERF and MPERF.
202 1.55.2.2 rmind */
203 1.55.2.2 rmind if (cpuid_level >= 0x06) {
204 1.55.2.2 rmind
205 1.55.2.2 rmind x86_cpuid(0x00000006, regs);
206 1.55.2.2 rmind
207 1.55.2.2 rmind if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 1.55.2.2 rmind val |= ACPICPU_PDC_P_HWF;
209 1.55.2.2 rmind }
210 1.55.2.2 rmind
211 1.55.2.2 rmind return val;
212 1.55.2.2 rmind }
213 1.55.2.2 rmind
214 1.55.2.2 rmind uint32_t
215 1.55.2.2 rmind acpicpu_md_flags(void)
216 1.55.2.2 rmind {
217 1.55.2.2 rmind struct cpu_info *ci = curcpu();
218 1.55.2.2 rmind struct pci_attach_args pa;
219 1.55.2.2 rmind uint32_t family, val = 0;
220 1.55.2.2 rmind uint32_t regs[4];
221 1.55.2.2 rmind
222 1.55.2.2 rmind if (acpi_md_ncpus() == 1)
223 1.55.2.2 rmind val |= ACPICPU_FLAG_C_BM;
224 1.55.2.2 rmind
225 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
226 1.55.2.2 rmind val |= ACPICPU_FLAG_C_FFH;
227 1.55.2.2 rmind
228 1.55.2.2 rmind /*
229 1.55.2.2 rmind * By default, assume that the local APIC timer
230 1.55.2.2 rmind * as well as TSC are stalled during C3 sleep.
231 1.55.2.2 rmind */
232 1.55.2.2 rmind val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
233 1.55.2.2 rmind
234 1.55.2.2 rmind switch (cpu_vendor) {
235 1.55.2.2 rmind
236 1.55.2.2 rmind case CPUVENDOR_IDT:
237 1.55.2.2 rmind
238 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
239 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH;
240 1.55.2.2 rmind
241 1.55.2.2 rmind if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
242 1.55.2.2 rmind val |= ACPICPU_FLAG_T_FFH;
243 1.55.2.2 rmind
244 1.55.2.2 rmind break;
245 1.55.2.2 rmind
246 1.55.2.2 rmind case CPUVENDOR_INTEL:
247 1.55.2.2 rmind
248 1.55.2.2 rmind /*
249 1.55.2.2 rmind * Bus master control and arbitration should be
250 1.55.2.2 rmind * available on all supported Intel CPUs (to be
251 1.55.2.2 rmind * sure, this is double-checked later from the
252 1.55.2.2 rmind * firmware data). These flags imply that it is
253 1.55.2.2 rmind * not necessary to flush caches before C3 state.
254 1.55.2.2 rmind */
255 1.55.2.2 rmind val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
256 1.55.2.2 rmind
257 1.55.2.2 rmind /*
258 1.55.2.2 rmind * Check if we can use "native", MSR-based,
259 1.55.2.2 rmind * access. If not, we have to resort to I/O.
260 1.55.2.2 rmind */
261 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
262 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH;
263 1.55.2.2 rmind
264 1.55.2.2 rmind if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
265 1.55.2.2 rmind val |= ACPICPU_FLAG_T_FFH;
266 1.55.2.2 rmind
267 1.55.2.2 rmind /*
268 1.55.2.2 rmind * Check whether MSR_APERF, MSR_MPERF, and Turbo
269 1.55.2.2 rmind * Boost are available. Also see if we might have
270 1.55.2.2 rmind * an invariant local APIC timer ("ARAT").
271 1.55.2.2 rmind */
272 1.55.2.2 rmind if (cpuid_level >= 0x06) {
273 1.55.2.2 rmind
274 1.55.2.2 rmind x86_cpuid(0x00000006, regs);
275 1.55.2.2 rmind
276 1.55.2.2 rmind if ((regs[2] & CPUID_DSPM_HWF) != 0)
277 1.55.2.2 rmind val |= ACPICPU_FLAG_P_HWF;
278 1.55.2.2 rmind
279 1.55.2.2 rmind if ((regs[0] & CPUID_DSPM_IDA) != 0)
280 1.55.2.2 rmind val |= ACPICPU_FLAG_P_TURBO;
281 1.55.2.2 rmind
282 1.55.2.2 rmind if ((regs[0] & CPUID_DSPM_ARAT) != 0)
283 1.55.2.2 rmind val &= ~ACPICPU_FLAG_C_APIC;
284 1.55.2.2 rmind }
285 1.55.2.2 rmind
286 1.55.2.2 rmind /*
287 1.55.2.2 rmind * Detect whether TSC is invariant. If it is not,
288 1.55.2.2 rmind * we keep the flag to note that TSC will not run
289 1.55.2.2 rmind * at constant rate. Depending on the CPU, this may
290 1.55.2.2 rmind * affect P- and T-state changes, but especially
291 1.55.2.2 rmind * relevant are C-states; with variant TSC, states
292 1.55.2.2 rmind * larger than C1 may completely stop the counter.
293 1.55.2.2 rmind */
294 1.55.2.2 rmind x86_cpuid(0x80000000, regs);
295 1.55.2.2 rmind
296 1.55.2.2 rmind if (regs[0] >= 0x80000007) {
297 1.55.2.2 rmind
298 1.55.2.2 rmind x86_cpuid(0x80000007, regs);
299 1.55.2.2 rmind
300 1.55.2.2 rmind if ((regs[3] & __BIT(8)) != 0)
301 1.55.2.2 rmind val &= ~ACPICPU_FLAG_C_TSC;
302 1.55.2.2 rmind }
303 1.55.2.2 rmind
304 1.55.2.2 rmind break;
305 1.55.2.2 rmind
306 1.55.2.2 rmind case CPUVENDOR_AMD:
307 1.55.2.2 rmind
308 1.55.2.2 rmind x86_cpuid(0x80000000, regs);
309 1.55.2.2 rmind
310 1.55.2.2 rmind if (regs[0] < 0x80000007)
311 1.55.2.2 rmind break;
312 1.55.2.2 rmind
313 1.55.2.2 rmind x86_cpuid(0x80000007, regs);
314 1.55.2.2 rmind
315 1.55.2.2 rmind family = CPUID2FAMILY(ci->ci_signature);
316 1.55.2.2 rmind
317 1.55.2.2 rmind if (family == 0xf)
318 1.55.2.2 rmind family += CPUID2EXTFAMILY(ci->ci_signature);
319 1.55.2.2 rmind
320 1.55.2.2 rmind switch (family) {
321 1.55.2.2 rmind
322 1.55.2.2 rmind case 0x0f:
323 1.55.2.2 rmind
324 1.55.2.2 rmind /*
325 1.55.2.2 rmind * Evaluate support for the "FID/VID
326 1.55.2.2 rmind * algorithm" also used by powernow(4).
327 1.55.2.2 rmind */
328 1.55.2.2 rmind if ((regs[3] & CPUID_APM_FID) == 0)
329 1.55.2.2 rmind break;
330 1.55.2.2 rmind
331 1.55.2.2 rmind if ((regs[3] & CPUID_APM_VID) == 0)
332 1.55.2.2 rmind break;
333 1.55.2.2 rmind
334 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
335 1.55.2.2 rmind break;
336 1.55.2.2 rmind
337 1.55.2.2 rmind case 0x10:
338 1.55.2.2 rmind case 0x11:
339 1.55.2.2 rmind val |= ACPICPU_FLAG_C_C1E;
340 1.55.2.2 rmind /* FALLTHROUGH */
341 1.55.2.2 rmind
342 1.55.2.2 rmind case 0x14: /* AMD Fusion */
343 1.55.2.2 rmind
344 1.55.2.2 rmind /*
345 1.55.2.2 rmind * Like with Intel, detect invariant TSC,
346 1.55.2.2 rmind * MSR-based P-states, and AMD's "turbo"
347 1.55.2.2 rmind * (Core Performance Boost), respectively.
348 1.55.2.2 rmind */
349 1.55.2.2 rmind if ((regs[3] & CPUID_APM_TSC) != 0)
350 1.55.2.2 rmind val &= ~ACPICPU_FLAG_C_TSC;
351 1.55.2.2 rmind
352 1.55.2.2 rmind if ((regs[3] & CPUID_APM_HWP) != 0)
353 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH;
354 1.55.2.2 rmind
355 1.55.2.2 rmind if ((regs[3] & CPUID_APM_CPB) != 0)
356 1.55.2.2 rmind val |= ACPICPU_FLAG_P_TURBO;
357 1.55.2.2 rmind
358 1.55.2.2 rmind /*
359 1.55.2.2 rmind * Also check for APERF and MPERF,
360 1.55.2.2 rmind * first available in the family 10h.
361 1.55.2.2 rmind */
362 1.55.2.2 rmind if (cpuid_level >= 0x06) {
363 1.55.2.2 rmind
364 1.55.2.2 rmind x86_cpuid(0x00000006, regs);
365 1.55.2.2 rmind
366 1.55.2.2 rmind if ((regs[2] & CPUID_DSPM_HWF) != 0)
367 1.55.2.2 rmind val |= ACPICPU_FLAG_P_HWF;
368 1.55.2.2 rmind }
369 1.55.2.2 rmind
370 1.55.2.2 rmind break;
371 1.55.2.2 rmind }
372 1.55.2.2 rmind
373 1.55.2.2 rmind break;
374 1.55.2.2 rmind }
375 1.55.2.2 rmind
376 1.55.2.2 rmind /*
377 1.55.2.2 rmind * There are several erratums for PIIX4.
378 1.55.2.2 rmind */
379 1.55.2.2 rmind if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
380 1.55.2.2 rmind val |= ACPICPU_FLAG_PIIX4;
381 1.55.2.2 rmind
382 1.55.2.2 rmind return val;
383 1.55.2.2 rmind }
384 1.55.2.2 rmind
385 1.55.2.2 rmind static int
386 1.55.2.2 rmind acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
387 1.55.2.2 rmind {
388 1.55.2.2 rmind
389 1.55.2.2 rmind /*
390 1.55.2.2 rmind * XXX: The pci_find_device(9) function only
391 1.55.2.2 rmind * deals with attached devices. Change this
392 1.55.2.2 rmind * to use something like pci_device_foreach().
393 1.55.2.2 rmind */
394 1.55.2.2 rmind if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
395 1.55.2.2 rmind return 0;
396 1.55.2.2 rmind
397 1.55.2.2 rmind if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
398 1.55.2.2 rmind PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
399 1.55.2.2 rmind return 1;
400 1.55.2.2 rmind
401 1.55.2.2 rmind return 0;
402 1.55.2.2 rmind }
403 1.55.2.2 rmind
404 1.55.2.2 rmind void
405 1.55.2.2 rmind acpicpu_md_quirk_c1e(void)
406 1.55.2.2 rmind {
407 1.55.2.2 rmind const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
408 1.55.2.2 rmind uint64_t val;
409 1.55.2.2 rmind
410 1.55.2.2 rmind val = rdmsr(MSR_CMPHALT);
411 1.55.2.2 rmind
412 1.55.2.2 rmind if ((val & c1e) != 0)
413 1.55.2.2 rmind wrmsr(MSR_CMPHALT, val & ~c1e);
414 1.55.2.2 rmind }
415 1.55.2.2 rmind
416 1.55.2.2 rmind int
417 1.55.2.2 rmind acpicpu_md_cstate_start(struct acpicpu_softc *sc)
418 1.55.2.2 rmind {
419 1.55.2.2 rmind const size_t size = sizeof(native_idle_text);
420 1.55.2.2 rmind struct acpicpu_cstate *cs;
421 1.55.2.2 rmind bool ipi = false;
422 1.55.2.2 rmind int i;
423 1.55.2.2 rmind
424 1.55.2.2 rmind /*
425 1.55.2.2 rmind * Save the cpu_idle(9) loop used by default.
426 1.55.2.2 rmind */
427 1.55.2.2 rmind x86_cpu_idle_get(&native_idle, native_idle_text, size);
428 1.55.2.2 rmind
429 1.55.2.2 rmind for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
430 1.55.2.2 rmind
431 1.55.2.2 rmind cs = &sc->sc_cstate[i];
432 1.55.2.2 rmind
433 1.55.2.2 rmind if (cs->cs_method == ACPICPU_C_STATE_HALT) {
434 1.55.2.2 rmind ipi = true;
435 1.55.2.2 rmind break;
436 1.55.2.2 rmind }
437 1.55.2.2 rmind }
438 1.55.2.2 rmind
439 1.55.2.2 rmind x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
440 1.55.2.2 rmind
441 1.55.2.2 rmind return 0;
442 1.55.2.2 rmind }
443 1.55.2.2 rmind
444 1.55.2.2 rmind int
445 1.55.2.2 rmind acpicpu_md_cstate_stop(void)
446 1.55.2.2 rmind {
447 1.55.2.2 rmind uint64_t xc;
448 1.55.2.2 rmind bool ipi;
449 1.55.2.2 rmind
450 1.55.2.2 rmind ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
451 1.55.2.2 rmind x86_cpu_idle_set(native_idle, native_idle_text, ipi);
452 1.55.2.2 rmind
453 1.55.2.2 rmind /*
454 1.55.2.2 rmind * Run a cross-call to ensure that all CPUs are
455 1.55.2.2 rmind * out from the ACPI idle-loop before detachment.
456 1.55.2.2 rmind */
457 1.55.2.2 rmind xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
458 1.55.2.2 rmind xc_wait(xc);
459 1.55.2.2 rmind
460 1.55.2.2 rmind return 0;
461 1.55.2.2 rmind }
462 1.55.2.2 rmind
463 1.55.2.2 rmind /*
464 1.55.2.2 rmind * Called with interrupts disabled.
465 1.55.2.2 rmind * Caller should enable interrupts after return.
466 1.55.2.2 rmind */
467 1.55.2.2 rmind void
468 1.55.2.2 rmind acpicpu_md_cstate_enter(int method, int state)
469 1.55.2.2 rmind {
470 1.55.2.2 rmind struct cpu_info *ci = curcpu();
471 1.55.2.2 rmind
472 1.55.2.2 rmind switch (method) {
473 1.55.2.2 rmind
474 1.55.2.2 rmind case ACPICPU_C_STATE_FFH:
475 1.55.2.2 rmind
476 1.55.2.2 rmind x86_enable_intr();
477 1.55.2.2 rmind x86_monitor(&ci->ci_want_resched, 0, 0);
478 1.55.2.2 rmind
479 1.55.2.2 rmind if (__predict_false(ci->ci_want_resched != 0))
480 1.55.2.2 rmind return;
481 1.55.2.2 rmind
482 1.55.2.2 rmind x86_mwait((state - 1) << 4, 0);
483 1.55.2.2 rmind break;
484 1.55.2.2 rmind
485 1.55.2.2 rmind case ACPICPU_C_STATE_HALT:
486 1.55.2.2 rmind
487 1.55.2.2 rmind if (__predict_false(ci->ci_want_resched != 0))
488 1.55.2.2 rmind return;
489 1.55.2.2 rmind
490 1.55.2.2 rmind x86_stihlt();
491 1.55.2.2 rmind break;
492 1.55.2.2 rmind }
493 1.55.2.2 rmind }
494 1.55.2.2 rmind
495 1.55.2.2 rmind int
496 1.55.2.2 rmind acpicpu_md_pstate_start(struct acpicpu_softc *sc)
497 1.55.2.2 rmind {
498 1.55.2.2 rmind return acpicpu_md_pstate_sysctl_init();
499 1.55.2.2 rmind }
500 1.55.2.2 rmind
501 1.55.2.2 rmind int
502 1.55.2.2 rmind acpicpu_md_pstate_stop(void)
503 1.55.2.2 rmind {
504 1.55.2.2 rmind if (acpicpu_log != NULL)
505 1.55.2.2 rmind sysctl_teardown(&acpicpu_log);
506 1.55.2.2 rmind
507 1.55.2.2 rmind return 0;
508 1.55.2.2 rmind }
509 1.55.2.2 rmind
510 1.55.2.2 rmind int
511 1.55.2.3 rmind acpicpu_md_pstate_init(struct acpicpu_softc *sc)
512 1.55.2.2 rmind {
513 1.55.2.2 rmind struct acpicpu_pstate *ps, msr;
514 1.55.2.2 rmind struct cpu_info *ci = curcpu();
515 1.55.2.2 rmind uint32_t family, i = 0;
516 1.55.2.3 rmind uint64_t val;
517 1.55.2.2 rmind
518 1.55.2.2 rmind (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
519 1.55.2.2 rmind
520 1.55.2.2 rmind switch (cpu_vendor) {
521 1.55.2.2 rmind
522 1.55.2.2 rmind case CPUVENDOR_IDT:
523 1.55.2.2 rmind case CPUVENDOR_INTEL:
524 1.55.2.2 rmind
525 1.55.2.2 rmind /*
526 1.55.2.3 rmind * Make sure EST is enabled.
527 1.55.2.3 rmind */
528 1.55.2.3 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
529 1.55.2.3 rmind
530 1.55.2.3 rmind val = rdmsr(MSR_MISC_ENABLE);
531 1.55.2.3 rmind
532 1.55.2.3 rmind if ((val & MSR_MISC_ENABLE_EST) == 0) {
533 1.55.2.3 rmind
534 1.55.2.3 rmind val |= MSR_MISC_ENABLE_EST;
535 1.55.2.3 rmind wrmsr(MSR_MISC_ENABLE, val);
536 1.55.2.3 rmind val = rdmsr(MSR_MISC_ENABLE);
537 1.55.2.3 rmind
538 1.55.2.3 rmind if ((val & MSR_MISC_ENABLE_EST) == 0)
539 1.55.2.3 rmind return ENOTTY;
540 1.55.2.3 rmind }
541 1.55.2.3 rmind }
542 1.55.2.3 rmind
543 1.55.2.3 rmind /*
544 1.55.2.2 rmind * If the so-called Turbo Boost is present,
545 1.55.2.2 rmind * the P0-state is always the "turbo state".
546 1.55.2.2 rmind * It is shown as the P1 frequency + 1 MHz.
547 1.55.2.2 rmind *
548 1.55.2.2 rmind * For discussion, see:
549 1.55.2.2 rmind *
550 1.55.2.2 rmind * Intel Corporation: Intel Turbo Boost Technology
551 1.55.2.2 rmind * in Intel Core(tm) Microarchitectures (Nehalem)
552 1.55.2.2 rmind * Based Processors. White Paper, November 2008.
553 1.55.2.2 rmind */
554 1.55.2.3 rmind if (sc->sc_pstate_count >= 2 &&
555 1.55.2.2 rmind (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
556 1.55.2.2 rmind
557 1.55.2.2 rmind ps = &sc->sc_pstate[0];
558 1.55.2.2 rmind
559 1.55.2.2 rmind if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
560 1.55.2.2 rmind ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
561 1.55.2.2 rmind }
562 1.55.2.2 rmind
563 1.55.2.2 rmind msr.ps_control_addr = MSR_PERF_CTL;
564 1.55.2.2 rmind msr.ps_control_mask = __BITS(0, 15);
565 1.55.2.2 rmind
566 1.55.2.2 rmind msr.ps_status_addr = MSR_PERF_STATUS;
567 1.55.2.2 rmind msr.ps_status_mask = __BITS(0, 15);
568 1.55.2.2 rmind break;
569 1.55.2.2 rmind
570 1.55.2.2 rmind case CPUVENDOR_AMD:
571 1.55.2.2 rmind
572 1.55.2.2 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
573 1.55.2.2 rmind msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
574 1.55.2.2 rmind
575 1.55.2.2 rmind family = CPUID2FAMILY(ci->ci_signature);
576 1.55.2.2 rmind
577 1.55.2.2 rmind if (family == 0xf)
578 1.55.2.2 rmind family += CPUID2EXTFAMILY(ci->ci_signature);
579 1.55.2.2 rmind
580 1.55.2.2 rmind switch (family) {
581 1.55.2.2 rmind
582 1.55.2.2 rmind case 0x0f:
583 1.55.2.2 rmind msr.ps_control_addr = MSR_0FH_CONTROL;
584 1.55.2.2 rmind msr.ps_status_addr = MSR_0FH_STATUS;
585 1.55.2.2 rmind break;
586 1.55.2.2 rmind
587 1.55.2.2 rmind case 0x10:
588 1.55.2.2 rmind case 0x11:
589 1.55.2.2 rmind case 0x14: /* AMD Fusion */
590 1.55.2.2 rmind msr.ps_control_addr = MSR_10H_CONTROL;
591 1.55.2.2 rmind msr.ps_control_mask = __BITS(0, 2);
592 1.55.2.2 rmind
593 1.55.2.2 rmind msr.ps_status_addr = MSR_10H_STATUS;
594 1.55.2.2 rmind msr.ps_status_mask = __BITS(0, 2);
595 1.55.2.2 rmind break;
596 1.55.2.2 rmind
597 1.55.2.2 rmind default:
598 1.55.2.2 rmind
599 1.55.2.3 rmind /*
600 1.55.2.3 rmind * If we have an unknown AMD CPU, rely on XPSS.
601 1.55.2.3 rmind */
602 1.55.2.2 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
603 1.55.2.2 rmind return EOPNOTSUPP;
604 1.55.2.2 rmind }
605 1.55.2.2 rmind
606 1.55.2.2 rmind break;
607 1.55.2.2 rmind
608 1.55.2.2 rmind default:
609 1.55.2.2 rmind return ENODEV;
610 1.55.2.2 rmind }
611 1.55.2.2 rmind
612 1.55.2.2 rmind /*
613 1.55.2.2 rmind * Fill the P-state structures with MSR addresses that are
614 1.55.2.2 rmind * known to be correct. If we do not know the addresses,
615 1.55.2.2 rmind * leave the values intact. If a vendor uses XPSS, we do
616 1.55.2.2 rmind * not necessarily need to do anything to support new CPUs.
617 1.55.2.2 rmind */
618 1.55.2.2 rmind while (i < sc->sc_pstate_count) {
619 1.55.2.2 rmind
620 1.55.2.2 rmind ps = &sc->sc_pstate[i];
621 1.55.2.2 rmind
622 1.55.2.2 rmind if (msr.ps_flags != 0)
623 1.55.2.2 rmind ps->ps_flags |= msr.ps_flags;
624 1.55.2.2 rmind
625 1.55.2.2 rmind if (msr.ps_status_addr != 0)
626 1.55.2.2 rmind ps->ps_status_addr = msr.ps_status_addr;
627 1.55.2.2 rmind
628 1.55.2.2 rmind if (msr.ps_status_mask != 0)
629 1.55.2.2 rmind ps->ps_status_mask = msr.ps_status_mask;
630 1.55.2.2 rmind
631 1.55.2.2 rmind if (msr.ps_control_addr != 0)
632 1.55.2.2 rmind ps->ps_control_addr = msr.ps_control_addr;
633 1.55.2.2 rmind
634 1.55.2.2 rmind if (msr.ps_control_mask != 0)
635 1.55.2.2 rmind ps->ps_control_mask = msr.ps_control_mask;
636 1.55.2.2 rmind
637 1.55.2.2 rmind i++;
638 1.55.2.2 rmind }
639 1.55.2.2 rmind
640 1.55.2.3 rmind /*
641 1.55.2.3 rmind * Reset the APERF and MPERF counters.
642 1.55.2.3 rmind *
643 1.55.2.3 rmind * XXX: Should be with xc_unicast(9).
644 1.55.2.3 rmind */
645 1.55.2.3 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0)
646 1.55.2.3 rmind acpicpu_md_pstate_percent_reset(sc->sc_ci);
647 1.55.2.3 rmind
648 1.55.2.2 rmind return 0;
649 1.55.2.2 rmind }
650 1.55.2.2 rmind
651 1.55.2.3 rmind /*
652 1.55.2.3 rmind * Read the IA32_APERF and IA32_MPERF counters. The first
653 1.55.2.3 rmind * increments at the rate of the fixed maximum frequency
654 1.55.2.3 rmind * configured during the boot, whereas APERF counts at the
655 1.55.2.3 rmind * rate of the actual frequency. Note that the MSRs must be
656 1.55.2.3 rmind * read without delay, and that only the ratio between
657 1.55.2.3 rmind * IA32_APERF and IA32_MPERF is architecturally defined.
658 1.55.2.3 rmind *
659 1.55.2.3 rmind * The function thus returns the percentage of the actual
660 1.55.2.3 rmind * frequency in terms of the maximum frequency of the calling
661 1.55.2.3 rmind * CPU since the last call. A value zero implies an error.
662 1.55.2.3 rmind *
663 1.55.2.3 rmind * For further details, refer to:
664 1.55.2.3 rmind *
665 1.55.2.3 rmind * Intel Corporation: Intel 64 and IA-32 Architectures
666 1.55.2.3 rmind * Software Developer's Manual. Section 13.2, Volume 3A:
667 1.55.2.3 rmind * System Programming Guide, Part 1. July, 2008.
668 1.55.2.3 rmind *
669 1.55.2.3 rmind * Advanced Micro Devices: BIOS and Kernel Developer's
670 1.55.2.3 rmind * Guide (BKDG) for AMD Family 10h Processors. Section
671 1.55.2.3 rmind * 2.4.5, Revision 3.48, April 2010.
672 1.55.2.3 rmind */
673 1.55.2.2 rmind uint8_t
674 1.55.2.3 rmind acpicpu_md_pstate_percent(struct cpu_info *ci)
675 1.55.2.2 rmind {
676 1.55.2.3 rmind struct acpicpu_softc *sc;
677 1.55.2.2 rmind uint64_t aperf, mperf;
678 1.55.2.3 rmind uint8_t rv = 0;
679 1.55.2.3 rmind u_long flags;
680 1.55.2.2 rmind
681 1.55.2.3 rmind sc = acpicpu_sc[ci->ci_acpiid];
682 1.55.2.3 rmind
683 1.55.2.3 rmind if (__predict_false(sc == NULL))
684 1.55.2.2 rmind return 0;
685 1.55.2.2 rmind
686 1.55.2.2 rmind if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
687 1.55.2.2 rmind return 0;
688 1.55.2.2 rmind
689 1.55.2.3 rmind flags = acpicpu_md_lock(sc);
690 1.55.2.3 rmind
691 1.55.2.2 rmind aperf = sc->sc_pstate_aperf;
692 1.55.2.2 rmind mperf = sc->sc_pstate_mperf;
693 1.55.2.2 rmind
694 1.55.2.2 rmind sc->sc_pstate_aperf = rdmsr(MSR_APERF);
695 1.55.2.2 rmind sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
696 1.55.2.2 rmind
697 1.55.2.2 rmind aperf = sc->sc_pstate_aperf - aperf;
698 1.55.2.2 rmind mperf = sc->sc_pstate_mperf - mperf;
699 1.55.2.2 rmind
700 1.55.2.2 rmind if (__predict_true(mperf != 0))
701 1.55.2.2 rmind rv = (aperf * 100) / mperf;
702 1.55.2.2 rmind
703 1.55.2.3 rmind acpicpu_md_unlock(sc, flags);
704 1.55.2.3 rmind
705 1.55.2.2 rmind return rv;
706 1.55.2.2 rmind }
707 1.55.2.2 rmind
708 1.55.2.2 rmind static void
709 1.55.2.3 rmind acpicpu_md_pstate_percent_reset(struct cpu_info *ci)
710 1.55.2.2 rmind {
711 1.55.2.3 rmind struct acpicpu_softc *sc;
712 1.55.2.3 rmind u_long flags;
713 1.55.2.2 rmind
714 1.55.2.3 rmind sc = acpicpu_sc[ci->ci_acpiid];
715 1.55.2.2 rmind
716 1.55.2.3 rmind if (__predict_false(sc == NULL))
717 1.55.2.3 rmind return;
718 1.55.2.2 rmind
719 1.55.2.3 rmind flags = acpicpu_md_lock(sc);
720 1.55.2.2 rmind
721 1.55.2.3 rmind wrmsr(MSR_APERF, 0);
722 1.55.2.3 rmind wrmsr(MSR_MPERF, 0);
723 1.55.2.2 rmind
724 1.55.2.2 rmind sc->sc_pstate_aperf = 0;
725 1.55.2.2 rmind sc->sc_pstate_mperf = 0;
726 1.55.2.3 rmind
727 1.55.2.3 rmind acpicpu_md_unlock(sc, flags);
728 1.55.2.2 rmind }
729 1.55.2.2 rmind
730 1.55.2.2 rmind int
731 1.55.2.2 rmind acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
732 1.55.2.2 rmind {
733 1.55.2.2 rmind struct acpicpu_pstate *ps = NULL;
734 1.55.2.2 rmind uint64_t val;
735 1.55.2.2 rmind uint32_t i;
736 1.55.2.2 rmind
737 1.55.2.2 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
738 1.55.2.2 rmind return acpicpu_md_pstate_fidvid_get(sc, freq);
739 1.55.2.2 rmind
740 1.55.2.2 rmind /*
741 1.55.2.2 rmind * Pick any P-state for the status address.
742 1.55.2.2 rmind */
743 1.55.2.2 rmind for (i = 0; i < sc->sc_pstate_count; i++) {
744 1.55.2.2 rmind
745 1.55.2.2 rmind ps = &sc->sc_pstate[i];
746 1.55.2.2 rmind
747 1.55.2.2 rmind if (__predict_true(ps->ps_freq != 0))
748 1.55.2.2 rmind break;
749 1.55.2.2 rmind }
750 1.55.2.2 rmind
751 1.55.2.2 rmind if (__predict_false(ps == NULL))
752 1.55.2.2 rmind return ENODEV;
753 1.55.2.2 rmind
754 1.55.2.2 rmind if (__predict_false(ps->ps_status_addr == 0))
755 1.55.2.2 rmind return EINVAL;
756 1.55.2.2 rmind
757 1.55.2.2 rmind val = rdmsr(ps->ps_status_addr);
758 1.55.2.2 rmind
759 1.55.2.2 rmind if (__predict_true(ps->ps_status_mask != 0))
760 1.55.2.2 rmind val = val & ps->ps_status_mask;
761 1.55.2.2 rmind
762 1.55.2.2 rmind /*
763 1.55.2.2 rmind * Search for the value from known P-states.
764 1.55.2.2 rmind */
765 1.55.2.2 rmind for (i = 0; i < sc->sc_pstate_count; i++) {
766 1.55.2.2 rmind
767 1.55.2.2 rmind ps = &sc->sc_pstate[i];
768 1.55.2.2 rmind
769 1.55.2.2 rmind if (__predict_false(ps->ps_freq == 0))
770 1.55.2.2 rmind continue;
771 1.55.2.2 rmind
772 1.55.2.2 rmind if (val == ps->ps_status) {
773 1.55.2.2 rmind *freq = ps->ps_freq;
774 1.55.2.2 rmind return 0;
775 1.55.2.2 rmind }
776 1.55.2.2 rmind }
777 1.55.2.2 rmind
778 1.55.2.2 rmind return EIO;
779 1.55.2.2 rmind }
780 1.55.2.2 rmind
781 1.55.2.2 rmind int
782 1.55.2.2 rmind acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
783 1.55.2.2 rmind {
784 1.55.2.3 rmind uint64_t val = 0;
785 1.55.2.2 rmind
786 1.55.2.2 rmind if (__predict_false(ps->ps_control_addr == 0))
787 1.55.2.2 rmind return EINVAL;
788 1.55.2.2 rmind
789 1.55.2.2 rmind if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
790 1.55.2.2 rmind return acpicpu_md_pstate_fidvid_set(ps);
791 1.55.2.2 rmind
792 1.55.2.3 rmind /*
793 1.55.2.3 rmind * If the mask is set, do a read-modify-write.
794 1.55.2.3 rmind */
795 1.55.2.3 rmind if (__predict_true(ps->ps_control_mask != 0)) {
796 1.55.2.3 rmind val = rdmsr(ps->ps_control_addr);
797 1.55.2.3 rmind val &= ~ps->ps_control_mask;
798 1.55.2.3 rmind }
799 1.55.2.2 rmind
800 1.55.2.3 rmind val |= ps->ps_control;
801 1.55.2.2 rmind
802 1.55.2.2 rmind wrmsr(ps->ps_control_addr, val);
803 1.55.2.2 rmind DELAY(ps->ps_latency);
804 1.55.2.2 rmind
805 1.55.2.2 rmind return 0;
806 1.55.2.2 rmind }
807 1.55.2.2 rmind
808 1.55.2.2 rmind static int
809 1.55.2.2 rmind acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
810 1.55.2.2 rmind {
811 1.55.2.2 rmind struct acpicpu_pstate *ps;
812 1.55.2.2 rmind uint32_t fid, i, vid;
813 1.55.2.2 rmind uint32_t cfid, cvid;
814 1.55.2.2 rmind int rv;
815 1.55.2.2 rmind
816 1.55.2.2 rmind /*
817 1.55.2.2 rmind * AMD family 0Fh needs special treatment.
818 1.55.2.2 rmind * While it wants to use ACPI, it does not
819 1.55.2.2 rmind * comply with the ACPI specifications.
820 1.55.2.2 rmind */
821 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
822 1.55.2.2 rmind
823 1.55.2.2 rmind if (rv != 0)
824 1.55.2.2 rmind return rv;
825 1.55.2.2 rmind
826 1.55.2.2 rmind for (i = 0; i < sc->sc_pstate_count; i++) {
827 1.55.2.2 rmind
828 1.55.2.2 rmind ps = &sc->sc_pstate[i];
829 1.55.2.2 rmind
830 1.55.2.2 rmind if (__predict_false(ps->ps_freq == 0))
831 1.55.2.2 rmind continue;
832 1.55.2.2 rmind
833 1.55.2.2 rmind fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
834 1.55.2.2 rmind vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
835 1.55.2.2 rmind
836 1.55.2.2 rmind if (cfid == fid && cvid == vid) {
837 1.55.2.2 rmind *freq = ps->ps_freq;
838 1.55.2.2 rmind return 0;
839 1.55.2.2 rmind }
840 1.55.2.2 rmind }
841 1.55.2.2 rmind
842 1.55.2.2 rmind return EIO;
843 1.55.2.2 rmind }
844 1.55.2.2 rmind
845 1.55.2.2 rmind static int
846 1.55.2.2 rmind acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
847 1.55.2.2 rmind {
848 1.55.2.2 rmind const uint64_t ctrl = ps->ps_control;
849 1.55.2.2 rmind uint32_t cfid, cvid, fid, i, irt;
850 1.55.2.2 rmind uint32_t pll, vco_cfid, vco_fid;
851 1.55.2.2 rmind uint32_t val, vid, vst;
852 1.55.2.2 rmind int rv;
853 1.55.2.2 rmind
854 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
855 1.55.2.2 rmind
856 1.55.2.2 rmind if (rv != 0)
857 1.55.2.2 rmind return rv;
858 1.55.2.2 rmind
859 1.55.2.2 rmind fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
860 1.55.2.2 rmind vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
861 1.55.2.2 rmind irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
862 1.55.2.2 rmind vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
863 1.55.2.2 rmind pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
864 1.55.2.2 rmind
865 1.55.2.2 rmind vst = vst * 20;
866 1.55.2.2 rmind pll = pll * 1000 / 5;
867 1.55.2.2 rmind irt = 10 * __BIT(irt);
868 1.55.2.2 rmind
869 1.55.2.2 rmind /*
870 1.55.2.2 rmind * Phase 1.
871 1.55.2.2 rmind */
872 1.55.2.2 rmind while (cvid > vid) {
873 1.55.2.2 rmind
874 1.55.2.2 rmind val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
875 1.55.2.2 rmind val = (val > cvid) ? 0 : cvid - val;
876 1.55.2.2 rmind
877 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
878 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
879 1.55.2.2 rmind
880 1.55.2.2 rmind if (rv != 0)
881 1.55.2.2 rmind return rv;
882 1.55.2.2 rmind }
883 1.55.2.2 rmind
884 1.55.2.2 rmind i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
885 1.55.2.2 rmind
886 1.55.2.2 rmind for (; i > 0 && cvid > 0; --i) {
887 1.55.2.2 rmind
888 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
889 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
890 1.55.2.2 rmind
891 1.55.2.2 rmind if (rv != 0)
892 1.55.2.2 rmind return rv;
893 1.55.2.2 rmind }
894 1.55.2.2 rmind
895 1.55.2.2 rmind /*
896 1.55.2.2 rmind * Phase 2.
897 1.55.2.2 rmind */
898 1.55.2.2 rmind if (cfid != fid) {
899 1.55.2.2 rmind
900 1.55.2.2 rmind vco_fid = FID_TO_VCO_FID(fid);
901 1.55.2.2 rmind vco_cfid = FID_TO_VCO_FID(cfid);
902 1.55.2.2 rmind
903 1.55.2.2 rmind while (abs(vco_fid - vco_cfid) > 2) {
904 1.55.2.2 rmind
905 1.55.2.2 rmind if (fid <= cfid)
906 1.55.2.2 rmind val = cfid - 2;
907 1.55.2.2 rmind else {
908 1.55.2.2 rmind val = (cfid > 6) ? cfid + 2 :
909 1.55.2.2 rmind FID_TO_VCO_FID(cfid) + 2;
910 1.55.2.2 rmind }
911 1.55.2.2 rmind
912 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
913 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
914 1.55.2.2 rmind
915 1.55.2.2 rmind if (rv != 0)
916 1.55.2.2 rmind return rv;
917 1.55.2.2 rmind
918 1.55.2.2 rmind vco_cfid = FID_TO_VCO_FID(cfid);
919 1.55.2.2 rmind }
920 1.55.2.2 rmind
921 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
922 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
923 1.55.2.2 rmind
924 1.55.2.2 rmind if (rv != 0)
925 1.55.2.2 rmind return rv;
926 1.55.2.2 rmind }
927 1.55.2.2 rmind
928 1.55.2.2 rmind /*
929 1.55.2.2 rmind * Phase 3.
930 1.55.2.2 rmind */
931 1.55.2.2 rmind if (cvid != vid) {
932 1.55.2.2 rmind
933 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
934 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
935 1.55.2.2 rmind
936 1.55.2.2 rmind if (rv != 0)
937 1.55.2.2 rmind return rv;
938 1.55.2.2 rmind }
939 1.55.2.2 rmind
940 1.55.2.2 rmind if (cfid != fid || cvid != vid)
941 1.55.2.2 rmind return EIO;
942 1.55.2.2 rmind
943 1.55.2.2 rmind return 0;
944 1.55.2.2 rmind }
945 1.55.2.2 rmind
946 1.55.2.2 rmind static int
947 1.55.2.2 rmind acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
948 1.55.2.2 rmind {
949 1.55.2.2 rmind int i = ACPICPU_P_STATE_RETRY * 100;
950 1.55.2.2 rmind uint64_t val;
951 1.55.2.2 rmind
952 1.55.2.2 rmind do {
953 1.55.2.2 rmind val = rdmsr(MSR_0FH_STATUS);
954 1.55.2.2 rmind
955 1.55.2.2 rmind } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
956 1.55.2.2 rmind
957 1.55.2.2 rmind if (i == 0)
958 1.55.2.2 rmind return EAGAIN;
959 1.55.2.2 rmind
960 1.55.2.2 rmind if (cfid != NULL)
961 1.55.2.2 rmind *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
962 1.55.2.2 rmind
963 1.55.2.2 rmind if (cvid != NULL)
964 1.55.2.2 rmind *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
965 1.55.2.2 rmind
966 1.55.2.2 rmind return 0;
967 1.55.2.2 rmind }
968 1.55.2.2 rmind
969 1.55.2.2 rmind static void
970 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(uint32_t fid,
971 1.55.2.2 rmind uint32_t vid, uint32_t cnt, uint32_t tmo)
972 1.55.2.2 rmind {
973 1.55.2.2 rmind uint64_t val = 0;
974 1.55.2.2 rmind
975 1.55.2.2 rmind val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
976 1.55.2.2 rmind val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
977 1.55.2.2 rmind val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
978 1.55.2.2 rmind val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
979 1.55.2.2 rmind
980 1.55.2.2 rmind wrmsr(MSR_0FH_CONTROL, val);
981 1.55.2.2 rmind DELAY(tmo);
982 1.55.2.2 rmind }
983 1.55.2.2 rmind
984 1.55.2.2 rmind int
985 1.55.2.2 rmind acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
986 1.55.2.2 rmind {
987 1.55.2.2 rmind struct acpicpu_tstate *ts;
988 1.55.2.2 rmind uint64_t val;
989 1.55.2.2 rmind uint32_t i;
990 1.55.2.2 rmind
991 1.55.2.2 rmind val = rdmsr(MSR_THERM_CONTROL);
992 1.55.2.2 rmind
993 1.55.2.2 rmind for (i = 0; i < sc->sc_tstate_count; i++) {
994 1.55.2.2 rmind
995 1.55.2.2 rmind ts = &sc->sc_tstate[i];
996 1.55.2.2 rmind
997 1.55.2.2 rmind if (ts->ts_percent == 0)
998 1.55.2.2 rmind continue;
999 1.55.2.2 rmind
1000 1.55.2.2 rmind if (val == ts->ts_status) {
1001 1.55.2.2 rmind *percent = ts->ts_percent;
1002 1.55.2.2 rmind return 0;
1003 1.55.2.2 rmind }
1004 1.55.2.2 rmind }
1005 1.55.2.2 rmind
1006 1.55.2.2 rmind return EIO;
1007 1.55.2.2 rmind }
1008 1.55.2.2 rmind
1009 1.55.2.2 rmind int
1010 1.55.2.2 rmind acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1011 1.55.2.2 rmind {
1012 1.55.2.2 rmind uint64_t val;
1013 1.55.2.2 rmind uint8_t i;
1014 1.55.2.2 rmind
1015 1.55.2.2 rmind val = ts->ts_control;
1016 1.55.2.2 rmind val = val & __BITS(1, 4);
1017 1.55.2.2 rmind
1018 1.55.2.2 rmind wrmsr(MSR_THERM_CONTROL, val);
1019 1.55.2.2 rmind
1020 1.55.2.2 rmind if (ts->ts_status == 0) {
1021 1.55.2.2 rmind DELAY(ts->ts_latency);
1022 1.55.2.2 rmind return 0;
1023 1.55.2.2 rmind }
1024 1.55.2.2 rmind
1025 1.55.2.2 rmind for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1026 1.55.2.2 rmind
1027 1.55.2.2 rmind val = rdmsr(MSR_THERM_CONTROL);
1028 1.55.2.2 rmind
1029 1.55.2.2 rmind if (val == ts->ts_status)
1030 1.55.2.2 rmind return 0;
1031 1.55.2.2 rmind
1032 1.55.2.2 rmind DELAY(ts->ts_latency);
1033 1.55.2.2 rmind }
1034 1.55.2.2 rmind
1035 1.55.2.2 rmind return EAGAIN;
1036 1.55.2.2 rmind }
1037 1.55.2.2 rmind
1038 1.55.2.2 rmind /*
1039 1.55.2.2 rmind * A kludge for backwards compatibility.
1040 1.55.2.2 rmind */
1041 1.55.2.2 rmind static int
1042 1.55.2.2 rmind acpicpu_md_pstate_sysctl_init(void)
1043 1.55.2.2 rmind {
1044 1.55.2.2 rmind const struct sysctlnode *fnode, *mnode, *rnode;
1045 1.55.2.2 rmind const char *str;
1046 1.55.2.2 rmind int rv;
1047 1.55.2.2 rmind
1048 1.55.2.2 rmind switch (cpu_vendor) {
1049 1.55.2.2 rmind
1050 1.55.2.2 rmind case CPUVENDOR_IDT:
1051 1.55.2.2 rmind case CPUVENDOR_INTEL:
1052 1.55.2.2 rmind str = "est";
1053 1.55.2.2 rmind break;
1054 1.55.2.2 rmind
1055 1.55.2.2 rmind case CPUVENDOR_AMD:
1056 1.55.2.2 rmind str = "powernow";
1057 1.55.2.2 rmind break;
1058 1.55.2.2 rmind
1059 1.55.2.2 rmind default:
1060 1.55.2.2 rmind return ENODEV;
1061 1.55.2.2 rmind }
1062 1.55.2.2 rmind
1063 1.55.2.2 rmind
1064 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1065 1.55.2.2 rmind CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1066 1.55.2.2 rmind NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1067 1.55.2.2 rmind
1068 1.55.2.2 rmind if (rv != 0)
1069 1.55.2.2 rmind goto fail;
1070 1.55.2.2 rmind
1071 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1072 1.55.2.2 rmind 0, CTLTYPE_NODE, str, NULL,
1073 1.55.2.2 rmind NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1074 1.55.2.2 rmind
1075 1.55.2.2 rmind if (rv != 0)
1076 1.55.2.2 rmind goto fail;
1077 1.55.2.2 rmind
1078 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1079 1.55.2.2 rmind 0, CTLTYPE_NODE, "frequency", NULL,
1080 1.55.2.2 rmind NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1081 1.55.2.2 rmind
1082 1.55.2.2 rmind if (rv != 0)
1083 1.55.2.2 rmind goto fail;
1084 1.55.2.2 rmind
1085 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1086 1.55.2.2 rmind CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1087 1.55.2.2 rmind acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1088 1.55.2.2 rmind
1089 1.55.2.2 rmind if (rv != 0)
1090 1.55.2.2 rmind goto fail;
1091 1.55.2.2 rmind
1092 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1093 1.55.2.2 rmind CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1094 1.55.2.2 rmind acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1095 1.55.2.2 rmind
1096 1.55.2.2 rmind if (rv != 0)
1097 1.55.2.2 rmind goto fail;
1098 1.55.2.2 rmind
1099 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1100 1.55.2.2 rmind CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1101 1.55.2.2 rmind acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1102 1.55.2.2 rmind
1103 1.55.2.2 rmind if (rv != 0)
1104 1.55.2.2 rmind goto fail;
1105 1.55.2.2 rmind
1106 1.55.2.2 rmind return 0;
1107 1.55.2.2 rmind
1108 1.55.2.2 rmind fail:
1109 1.55.2.2 rmind if (acpicpu_log != NULL) {
1110 1.55.2.2 rmind sysctl_teardown(&acpicpu_log);
1111 1.55.2.2 rmind acpicpu_log = NULL;
1112 1.55.2.2 rmind }
1113 1.55.2.2 rmind
1114 1.55.2.2 rmind return rv;
1115 1.55.2.2 rmind }
1116 1.55.2.2 rmind
1117 1.55.2.2 rmind static int
1118 1.55.2.2 rmind acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1119 1.55.2.2 rmind {
1120 1.55.2.2 rmind struct cpu_info *ci = curcpu();
1121 1.55.2.2 rmind struct sysctlnode node;
1122 1.55.2.2 rmind uint32_t freq;
1123 1.55.2.2 rmind int err;
1124 1.55.2.2 rmind
1125 1.55.2.2 rmind err = acpicpu_pstate_get(ci, &freq);
1126 1.55.2.2 rmind
1127 1.55.2.2 rmind if (err != 0)
1128 1.55.2.2 rmind return err;
1129 1.55.2.2 rmind
1130 1.55.2.2 rmind node = *rnode;
1131 1.55.2.2 rmind node.sysctl_data = &freq;
1132 1.55.2.2 rmind
1133 1.55.2.2 rmind err = sysctl_lookup(SYSCTLFN_CALL(&node));
1134 1.55.2.2 rmind
1135 1.55.2.2 rmind if (err != 0 || newp == NULL)
1136 1.55.2.2 rmind return err;
1137 1.55.2.2 rmind
1138 1.55.2.2 rmind return 0;
1139 1.55.2.2 rmind }
1140 1.55.2.2 rmind
1141 1.55.2.2 rmind static int
1142 1.55.2.2 rmind acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1143 1.55.2.2 rmind {
1144 1.55.2.2 rmind struct cpu_info *ci = curcpu();
1145 1.55.2.2 rmind struct sysctlnode node;
1146 1.55.2.2 rmind uint32_t freq;
1147 1.55.2.2 rmind int err;
1148 1.55.2.2 rmind
1149 1.55.2.2 rmind err = acpicpu_pstate_get(ci, &freq);
1150 1.55.2.2 rmind
1151 1.55.2.2 rmind if (err != 0)
1152 1.55.2.2 rmind return err;
1153 1.55.2.2 rmind
1154 1.55.2.2 rmind node = *rnode;
1155 1.55.2.2 rmind node.sysctl_data = &freq;
1156 1.55.2.2 rmind
1157 1.55.2.2 rmind err = sysctl_lookup(SYSCTLFN_CALL(&node));
1158 1.55.2.2 rmind
1159 1.55.2.2 rmind if (err != 0 || newp == NULL)
1160 1.55.2.2 rmind return err;
1161 1.55.2.2 rmind
1162 1.55.2.2 rmind acpicpu_pstate_set(ci, freq);
1163 1.55.2.2 rmind
1164 1.55.2.2 rmind return 0;
1165 1.55.2.2 rmind }
1166 1.55.2.2 rmind
1167 1.55.2.2 rmind static int
1168 1.55.2.2 rmind acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1169 1.55.2.2 rmind {
1170 1.55.2.2 rmind struct cpu_info *ci = curcpu();
1171 1.55.2.2 rmind struct acpicpu_softc *sc;
1172 1.55.2.2 rmind struct sysctlnode node;
1173 1.55.2.2 rmind char buf[1024];
1174 1.55.2.2 rmind size_t len;
1175 1.55.2.2 rmind uint32_t i;
1176 1.55.2.2 rmind int err;
1177 1.55.2.2 rmind
1178 1.55.2.2 rmind sc = acpicpu_sc[ci->ci_acpiid];
1179 1.55.2.2 rmind
1180 1.55.2.2 rmind if (sc == NULL)
1181 1.55.2.2 rmind return ENXIO;
1182 1.55.2.2 rmind
1183 1.55.2.2 rmind (void)memset(&buf, 0, sizeof(buf));
1184 1.55.2.2 rmind
1185 1.55.2.2 rmind mutex_enter(&sc->sc_mtx);
1186 1.55.2.2 rmind
1187 1.55.2.2 rmind for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1188 1.55.2.2 rmind
1189 1.55.2.2 rmind if (sc->sc_pstate[i].ps_freq == 0)
1190 1.55.2.2 rmind continue;
1191 1.55.2.2 rmind
1192 1.55.2.2 rmind len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1193 1.55.2.2 rmind sc->sc_pstate[i].ps_freq,
1194 1.55.2.2 rmind i < (sc->sc_pstate_count - 1) ? " " : "");
1195 1.55.2.2 rmind }
1196 1.55.2.2 rmind
1197 1.55.2.2 rmind mutex_exit(&sc->sc_mtx);
1198 1.55.2.2 rmind
1199 1.55.2.2 rmind node = *rnode;
1200 1.55.2.2 rmind node.sysctl_data = buf;
1201 1.55.2.2 rmind
1202 1.55.2.2 rmind err = sysctl_lookup(SYSCTLFN_CALL(&node));
1203 1.55.2.2 rmind
1204 1.55.2.2 rmind if (err != 0 || newp == NULL)
1205 1.55.2.2 rmind return err;
1206 1.55.2.2 rmind
1207 1.55.2.2 rmind return 0;
1208 1.55.2.2 rmind }
1209 1.55.2.2 rmind
1210