acpi_cpu_md.c revision 1.55.2.4 1 1.55.2.2 rmind /* $NetBSD: acpi_cpu_md.c,v 1.55.2.4 2011/04/21 01:41:31 rmind Exp $ */
2 1.55.2.2 rmind
3 1.55.2.2 rmind /*-
4 1.55.2.2 rmind * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.55.2.2 rmind * All rights reserved.
6 1.55.2.2 rmind *
7 1.55.2.2 rmind * Redistribution and use in source and binary forms, with or without
8 1.55.2.2 rmind * modification, are permitted provided that the following conditions
9 1.55.2.2 rmind * are met:
10 1.55.2.2 rmind *
11 1.55.2.2 rmind * 1. Redistributions of source code must retain the above copyright
12 1.55.2.2 rmind * notice, this list of conditions and the following disclaimer.
13 1.55.2.2 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.55.2.2 rmind * notice, this list of conditions and the following disclaimer in the
15 1.55.2.2 rmind * documentation and/or other materials provided with the distribution.
16 1.55.2.2 rmind *
17 1.55.2.2 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.55.2.2 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.55.2.2 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.55.2.2 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.55.2.2 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.55.2.2 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.55.2.2 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.55.2.2 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.55.2.2 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.55.2.2 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.55.2.2 rmind * SUCH DAMAGE.
28 1.55.2.2 rmind */
29 1.55.2.2 rmind #include <sys/cdefs.h>
30 1.55.2.2 rmind __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.55.2.4 2011/04/21 01:41:31 rmind Exp $");
31 1.55.2.2 rmind
32 1.55.2.2 rmind #include <sys/param.h>
33 1.55.2.2 rmind #include <sys/bus.h>
34 1.55.2.2 rmind #include <sys/device.h>
35 1.55.2.2 rmind #include <sys/kcore.h>
36 1.55.2.2 rmind #include <sys/sysctl.h>
37 1.55.2.2 rmind #include <sys/xcall.h>
38 1.55.2.2 rmind
39 1.55.2.2 rmind #include <x86/cpu.h>
40 1.55.2.2 rmind #include <x86/cpufunc.h>
41 1.55.2.2 rmind #include <x86/cputypes.h>
42 1.55.2.2 rmind #include <x86/cpuvar.h>
43 1.55.2.2 rmind #include <x86/cpu_msr.h>
44 1.55.2.2 rmind #include <x86/machdep.h>
45 1.55.2.2 rmind
46 1.55.2.2 rmind #include <dev/acpi/acpica.h>
47 1.55.2.2 rmind #include <dev/acpi/acpi_cpu.h>
48 1.55.2.2 rmind
49 1.55.2.2 rmind #include <dev/pci/pcivar.h>
50 1.55.2.2 rmind #include <dev/pci/pcidevs.h>
51 1.55.2.2 rmind
52 1.55.2.2 rmind #include <machine/acpi_machdep.h>
53 1.55.2.2 rmind
54 1.55.2.2 rmind /*
55 1.55.2.3 rmind * Intel IA32_MISC_ENABLE.
56 1.55.2.3 rmind */
57 1.55.2.3 rmind #define MSR_MISC_ENABLE_EST __BIT(16)
58 1.55.2.3 rmind #define MSR_MISC_ENABLE_TURBO __BIT(38)
59 1.55.2.3 rmind
60 1.55.2.3 rmind /*
61 1.55.2.2 rmind * AMD C1E.
62 1.55.2.2 rmind */
63 1.55.2.2 rmind #define MSR_CMPHALT 0xc0010055
64 1.55.2.2 rmind
65 1.55.2.2 rmind #define MSR_CMPHALT_SMI __BIT(27)
66 1.55.2.2 rmind #define MSR_CMPHALT_C1E __BIT(28)
67 1.55.2.2 rmind #define MSR_CMPHALT_BMSTS __BIT(29)
68 1.55.2.2 rmind
69 1.55.2.2 rmind /*
70 1.55.2.2 rmind * AMD families 10h, 11h, and 14h
71 1.55.2.2 rmind */
72 1.55.2.2 rmind #define MSR_10H_LIMIT 0xc0010061
73 1.55.2.2 rmind #define MSR_10H_CONTROL 0xc0010062
74 1.55.2.2 rmind #define MSR_10H_STATUS 0xc0010063
75 1.55.2.2 rmind #define MSR_10H_CONFIG 0xc0010064
76 1.55.2.2 rmind
77 1.55.2.2 rmind /*
78 1.55.2.2 rmind * AMD family 0Fh.
79 1.55.2.2 rmind */
80 1.55.2.2 rmind #define MSR_0FH_CONTROL 0xc0010041
81 1.55.2.2 rmind #define MSR_0FH_STATUS 0xc0010042
82 1.55.2.2 rmind
83 1.55.2.2 rmind #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 1.55.2.2 rmind #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 1.55.2.2 rmind #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86 1.55.2.2 rmind
87 1.55.2.2 rmind #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 1.55.2.2 rmind #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 1.55.2.2 rmind #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 1.55.2.2 rmind #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91 1.55.2.2 rmind
92 1.55.2.2 rmind #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 1.55.2.2 rmind #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94 1.55.2.2 rmind
95 1.55.2.2 rmind #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 1.55.2.2 rmind #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 1.55.2.2 rmind #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 1.55.2.2 rmind #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 1.55.2.2 rmind #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 1.55.2.2 rmind #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 1.55.2.2 rmind #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102 1.55.2.2 rmind
103 1.55.2.2 rmind #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104 1.55.2.2 rmind
105 1.55.2.2 rmind static char native_idle_text[16];
106 1.55.2.2 rmind void (*native_idle)(void) = NULL;
107 1.55.2.2 rmind
108 1.55.2.4 rmind static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
109 1.55.2.4 rmind static void acpicpu_md_pstate_hwf_reset(void *, void *);
110 1.55.2.2 rmind static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
111 1.55.2.2 rmind uint32_t *);
112 1.55.2.2 rmind static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
113 1.55.2.2 rmind static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
114 1.55.2.2 rmind static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
115 1.55.2.2 rmind uint32_t, uint32_t);
116 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_init(void);
117 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
118 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
119 1.55.2.2 rmind static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
120 1.55.2.2 rmind
121 1.55.2.2 rmind extern struct acpicpu_softc **acpicpu_sc;
122 1.55.2.2 rmind static struct sysctllog *acpicpu_log = NULL;
123 1.55.2.2 rmind
124 1.55.2.2 rmind struct cpu_info *
125 1.55.2.2 rmind acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
126 1.55.2.2 rmind {
127 1.55.2.2 rmind struct cpufeature_attach_args *cfaa = aux;
128 1.55.2.2 rmind
129 1.55.2.2 rmind if (strcmp(cfaa->name, "frequency") != 0)
130 1.55.2.2 rmind return NULL;
131 1.55.2.2 rmind
132 1.55.2.2 rmind return cfaa->ci;
133 1.55.2.2 rmind }
134 1.55.2.2 rmind
135 1.55.2.2 rmind struct cpu_info *
136 1.55.2.2 rmind acpicpu_md_attach(device_t parent, device_t self, void *aux)
137 1.55.2.2 rmind {
138 1.55.2.2 rmind struct cpufeature_attach_args *cfaa = aux;
139 1.55.2.2 rmind
140 1.55.2.2 rmind return cfaa->ci;
141 1.55.2.2 rmind }
142 1.55.2.2 rmind
143 1.55.2.2 rmind uint32_t
144 1.55.2.2 rmind acpicpu_md_cap(void)
145 1.55.2.2 rmind {
146 1.55.2.2 rmind struct cpu_info *ci = curcpu();
147 1.55.2.2 rmind uint32_t regs[4];
148 1.55.2.2 rmind uint32_t val = 0;
149 1.55.2.2 rmind
150 1.55.2.2 rmind if (cpu_vendor != CPUVENDOR_IDT &&
151 1.55.2.2 rmind cpu_vendor != CPUVENDOR_INTEL)
152 1.55.2.2 rmind return val;
153 1.55.2.2 rmind
154 1.55.2.2 rmind /*
155 1.55.2.2 rmind * Basic SMP C-states (required for e.g. _CST).
156 1.55.2.2 rmind */
157 1.55.2.2 rmind val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
158 1.55.2.2 rmind
159 1.55.2.2 rmind /*
160 1.55.2.2 rmind * Claim to support dependency coordination.
161 1.55.2.2 rmind */
162 1.55.2.2 rmind val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
163 1.55.2.2 rmind
164 1.55.2.2 rmind /*
165 1.55.2.2 rmind * If MONITOR/MWAIT is available, announce
166 1.55.2.2 rmind * support for native instructions in all C-states.
167 1.55.2.2 rmind */
168 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
169 1.55.2.2 rmind val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
170 1.55.2.2 rmind
171 1.55.2.2 rmind /*
172 1.55.2.2 rmind * Set native P- and T-states, if available.
173 1.55.2.2 rmind */
174 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
175 1.55.2.2 rmind val |= ACPICPU_PDC_P_FFH;
176 1.55.2.2 rmind
177 1.55.2.2 rmind if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
178 1.55.2.2 rmind val |= ACPICPU_PDC_T_FFH;
179 1.55.2.2 rmind
180 1.55.2.2 rmind /*
181 1.55.2.2 rmind * Declare support for APERF and MPERF.
182 1.55.2.2 rmind */
183 1.55.2.2 rmind if (cpuid_level >= 0x06) {
184 1.55.2.2 rmind
185 1.55.2.2 rmind x86_cpuid(0x00000006, regs);
186 1.55.2.2 rmind
187 1.55.2.2 rmind if ((regs[2] & CPUID_DSPM_HWF) != 0)
188 1.55.2.2 rmind val |= ACPICPU_PDC_P_HWF;
189 1.55.2.2 rmind }
190 1.55.2.2 rmind
191 1.55.2.2 rmind return val;
192 1.55.2.2 rmind }
193 1.55.2.2 rmind
194 1.55.2.2 rmind uint32_t
195 1.55.2.2 rmind acpicpu_md_flags(void)
196 1.55.2.2 rmind {
197 1.55.2.2 rmind struct cpu_info *ci = curcpu();
198 1.55.2.2 rmind struct pci_attach_args pa;
199 1.55.2.2 rmind uint32_t family, val = 0;
200 1.55.2.2 rmind uint32_t regs[4];
201 1.55.2.2 rmind
202 1.55.2.2 rmind if (acpi_md_ncpus() == 1)
203 1.55.2.2 rmind val |= ACPICPU_FLAG_C_BM;
204 1.55.2.2 rmind
205 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
206 1.55.2.2 rmind val |= ACPICPU_FLAG_C_FFH;
207 1.55.2.2 rmind
208 1.55.2.2 rmind /*
209 1.55.2.2 rmind * By default, assume that the local APIC timer
210 1.55.2.2 rmind * as well as TSC are stalled during C3 sleep.
211 1.55.2.2 rmind */
212 1.55.2.2 rmind val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
213 1.55.2.2 rmind
214 1.55.2.2 rmind switch (cpu_vendor) {
215 1.55.2.2 rmind
216 1.55.2.2 rmind case CPUVENDOR_IDT:
217 1.55.2.2 rmind
218 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
219 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH;
220 1.55.2.2 rmind
221 1.55.2.2 rmind if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
222 1.55.2.2 rmind val |= ACPICPU_FLAG_T_FFH;
223 1.55.2.2 rmind
224 1.55.2.2 rmind break;
225 1.55.2.2 rmind
226 1.55.2.2 rmind case CPUVENDOR_INTEL:
227 1.55.2.2 rmind
228 1.55.2.2 rmind /*
229 1.55.2.2 rmind * Bus master control and arbitration should be
230 1.55.2.2 rmind * available on all supported Intel CPUs (to be
231 1.55.2.2 rmind * sure, this is double-checked later from the
232 1.55.2.2 rmind * firmware data). These flags imply that it is
233 1.55.2.2 rmind * not necessary to flush caches before C3 state.
234 1.55.2.2 rmind */
235 1.55.2.2 rmind val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
236 1.55.2.2 rmind
237 1.55.2.2 rmind /*
238 1.55.2.2 rmind * Check if we can use "native", MSR-based,
239 1.55.2.2 rmind * access. If not, we have to resort to I/O.
240 1.55.2.2 rmind */
241 1.55.2.2 rmind if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
242 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH;
243 1.55.2.2 rmind
244 1.55.2.2 rmind if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
245 1.55.2.2 rmind val |= ACPICPU_FLAG_T_FFH;
246 1.55.2.2 rmind
247 1.55.2.2 rmind /*
248 1.55.2.2 rmind * Check whether MSR_APERF, MSR_MPERF, and Turbo
249 1.55.2.2 rmind * Boost are available. Also see if we might have
250 1.55.2.2 rmind * an invariant local APIC timer ("ARAT").
251 1.55.2.2 rmind */
252 1.55.2.2 rmind if (cpuid_level >= 0x06) {
253 1.55.2.2 rmind
254 1.55.2.2 rmind x86_cpuid(0x00000006, regs);
255 1.55.2.2 rmind
256 1.55.2.2 rmind if ((regs[2] & CPUID_DSPM_HWF) != 0)
257 1.55.2.2 rmind val |= ACPICPU_FLAG_P_HWF;
258 1.55.2.2 rmind
259 1.55.2.2 rmind if ((regs[0] & CPUID_DSPM_IDA) != 0)
260 1.55.2.2 rmind val |= ACPICPU_FLAG_P_TURBO;
261 1.55.2.2 rmind
262 1.55.2.2 rmind if ((regs[0] & CPUID_DSPM_ARAT) != 0)
263 1.55.2.2 rmind val &= ~ACPICPU_FLAG_C_APIC;
264 1.55.2.2 rmind }
265 1.55.2.2 rmind
266 1.55.2.2 rmind /*
267 1.55.2.2 rmind * Detect whether TSC is invariant. If it is not,
268 1.55.2.2 rmind * we keep the flag to note that TSC will not run
269 1.55.2.2 rmind * at constant rate. Depending on the CPU, this may
270 1.55.2.2 rmind * affect P- and T-state changes, but especially
271 1.55.2.2 rmind * relevant are C-states; with variant TSC, states
272 1.55.2.2 rmind * larger than C1 may completely stop the counter.
273 1.55.2.2 rmind */
274 1.55.2.2 rmind x86_cpuid(0x80000000, regs);
275 1.55.2.2 rmind
276 1.55.2.2 rmind if (regs[0] >= 0x80000007) {
277 1.55.2.2 rmind
278 1.55.2.2 rmind x86_cpuid(0x80000007, regs);
279 1.55.2.2 rmind
280 1.55.2.2 rmind if ((regs[3] & __BIT(8)) != 0)
281 1.55.2.2 rmind val &= ~ACPICPU_FLAG_C_TSC;
282 1.55.2.2 rmind }
283 1.55.2.2 rmind
284 1.55.2.2 rmind break;
285 1.55.2.2 rmind
286 1.55.2.2 rmind case CPUVENDOR_AMD:
287 1.55.2.2 rmind
288 1.55.2.2 rmind x86_cpuid(0x80000000, regs);
289 1.55.2.2 rmind
290 1.55.2.2 rmind if (regs[0] < 0x80000007)
291 1.55.2.2 rmind break;
292 1.55.2.2 rmind
293 1.55.2.2 rmind x86_cpuid(0x80000007, regs);
294 1.55.2.2 rmind
295 1.55.2.2 rmind family = CPUID2FAMILY(ci->ci_signature);
296 1.55.2.2 rmind
297 1.55.2.2 rmind if (family == 0xf)
298 1.55.2.2 rmind family += CPUID2EXTFAMILY(ci->ci_signature);
299 1.55.2.2 rmind
300 1.55.2.2 rmind switch (family) {
301 1.55.2.2 rmind
302 1.55.2.2 rmind case 0x0f:
303 1.55.2.2 rmind
304 1.55.2.2 rmind /*
305 1.55.2.2 rmind * Evaluate support for the "FID/VID
306 1.55.2.2 rmind * algorithm" also used by powernow(4).
307 1.55.2.2 rmind */
308 1.55.2.2 rmind if ((regs[3] & CPUID_APM_FID) == 0)
309 1.55.2.2 rmind break;
310 1.55.2.2 rmind
311 1.55.2.2 rmind if ((regs[3] & CPUID_APM_VID) == 0)
312 1.55.2.2 rmind break;
313 1.55.2.2 rmind
314 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
315 1.55.2.2 rmind break;
316 1.55.2.2 rmind
317 1.55.2.2 rmind case 0x10:
318 1.55.2.2 rmind case 0x11:
319 1.55.2.2 rmind val |= ACPICPU_FLAG_C_C1E;
320 1.55.2.2 rmind /* FALLTHROUGH */
321 1.55.2.2 rmind
322 1.55.2.2 rmind case 0x14: /* AMD Fusion */
323 1.55.2.2 rmind
324 1.55.2.2 rmind /*
325 1.55.2.2 rmind * Like with Intel, detect invariant TSC,
326 1.55.2.2 rmind * MSR-based P-states, and AMD's "turbo"
327 1.55.2.2 rmind * (Core Performance Boost), respectively.
328 1.55.2.2 rmind */
329 1.55.2.2 rmind if ((regs[3] & CPUID_APM_TSC) != 0)
330 1.55.2.2 rmind val &= ~ACPICPU_FLAG_C_TSC;
331 1.55.2.2 rmind
332 1.55.2.2 rmind if ((regs[3] & CPUID_APM_HWP) != 0)
333 1.55.2.2 rmind val |= ACPICPU_FLAG_P_FFH;
334 1.55.2.2 rmind
335 1.55.2.2 rmind if ((regs[3] & CPUID_APM_CPB) != 0)
336 1.55.2.2 rmind val |= ACPICPU_FLAG_P_TURBO;
337 1.55.2.2 rmind
338 1.55.2.2 rmind /*
339 1.55.2.2 rmind * Also check for APERF and MPERF,
340 1.55.2.2 rmind * first available in the family 10h.
341 1.55.2.2 rmind */
342 1.55.2.2 rmind if (cpuid_level >= 0x06) {
343 1.55.2.2 rmind
344 1.55.2.2 rmind x86_cpuid(0x00000006, regs);
345 1.55.2.2 rmind
346 1.55.2.2 rmind if ((regs[2] & CPUID_DSPM_HWF) != 0)
347 1.55.2.2 rmind val |= ACPICPU_FLAG_P_HWF;
348 1.55.2.2 rmind }
349 1.55.2.2 rmind
350 1.55.2.2 rmind break;
351 1.55.2.2 rmind }
352 1.55.2.2 rmind
353 1.55.2.2 rmind break;
354 1.55.2.2 rmind }
355 1.55.2.2 rmind
356 1.55.2.2 rmind /*
357 1.55.2.2 rmind * There are several erratums for PIIX4.
358 1.55.2.2 rmind */
359 1.55.2.2 rmind if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
360 1.55.2.2 rmind val |= ACPICPU_FLAG_PIIX4;
361 1.55.2.2 rmind
362 1.55.2.2 rmind return val;
363 1.55.2.2 rmind }
364 1.55.2.2 rmind
365 1.55.2.2 rmind static int
366 1.55.2.4 rmind acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
367 1.55.2.2 rmind {
368 1.55.2.2 rmind
369 1.55.2.2 rmind /*
370 1.55.2.2 rmind * XXX: The pci_find_device(9) function only
371 1.55.2.2 rmind * deals with attached devices. Change this
372 1.55.2.2 rmind * to use something like pci_device_foreach().
373 1.55.2.2 rmind */
374 1.55.2.2 rmind if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
375 1.55.2.2 rmind return 0;
376 1.55.2.2 rmind
377 1.55.2.2 rmind if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
378 1.55.2.2 rmind PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
379 1.55.2.2 rmind return 1;
380 1.55.2.2 rmind
381 1.55.2.2 rmind return 0;
382 1.55.2.2 rmind }
383 1.55.2.2 rmind
384 1.55.2.2 rmind void
385 1.55.2.2 rmind acpicpu_md_quirk_c1e(void)
386 1.55.2.2 rmind {
387 1.55.2.2 rmind const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
388 1.55.2.2 rmind uint64_t val;
389 1.55.2.2 rmind
390 1.55.2.2 rmind val = rdmsr(MSR_CMPHALT);
391 1.55.2.2 rmind
392 1.55.2.2 rmind if ((val & c1e) != 0)
393 1.55.2.2 rmind wrmsr(MSR_CMPHALT, val & ~c1e);
394 1.55.2.2 rmind }
395 1.55.2.2 rmind
396 1.55.2.2 rmind int
397 1.55.2.2 rmind acpicpu_md_cstate_start(struct acpicpu_softc *sc)
398 1.55.2.2 rmind {
399 1.55.2.2 rmind const size_t size = sizeof(native_idle_text);
400 1.55.2.2 rmind struct acpicpu_cstate *cs;
401 1.55.2.2 rmind bool ipi = false;
402 1.55.2.2 rmind int i;
403 1.55.2.2 rmind
404 1.55.2.2 rmind /*
405 1.55.2.2 rmind * Save the cpu_idle(9) loop used by default.
406 1.55.2.2 rmind */
407 1.55.2.2 rmind x86_cpu_idle_get(&native_idle, native_idle_text, size);
408 1.55.2.2 rmind
409 1.55.2.2 rmind for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
410 1.55.2.2 rmind
411 1.55.2.2 rmind cs = &sc->sc_cstate[i];
412 1.55.2.2 rmind
413 1.55.2.2 rmind if (cs->cs_method == ACPICPU_C_STATE_HALT) {
414 1.55.2.2 rmind ipi = true;
415 1.55.2.2 rmind break;
416 1.55.2.2 rmind }
417 1.55.2.2 rmind }
418 1.55.2.2 rmind
419 1.55.2.2 rmind x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
420 1.55.2.2 rmind
421 1.55.2.2 rmind return 0;
422 1.55.2.2 rmind }
423 1.55.2.2 rmind
424 1.55.2.2 rmind int
425 1.55.2.2 rmind acpicpu_md_cstate_stop(void)
426 1.55.2.2 rmind {
427 1.55.2.2 rmind uint64_t xc;
428 1.55.2.2 rmind bool ipi;
429 1.55.2.2 rmind
430 1.55.2.2 rmind ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
431 1.55.2.2 rmind x86_cpu_idle_set(native_idle, native_idle_text, ipi);
432 1.55.2.2 rmind
433 1.55.2.2 rmind /*
434 1.55.2.2 rmind * Run a cross-call to ensure that all CPUs are
435 1.55.2.2 rmind * out from the ACPI idle-loop before detachment.
436 1.55.2.2 rmind */
437 1.55.2.2 rmind xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
438 1.55.2.2 rmind xc_wait(xc);
439 1.55.2.2 rmind
440 1.55.2.2 rmind return 0;
441 1.55.2.2 rmind }
442 1.55.2.2 rmind
443 1.55.2.2 rmind /*
444 1.55.2.2 rmind * Called with interrupts disabled.
445 1.55.2.2 rmind * Caller should enable interrupts after return.
446 1.55.2.2 rmind */
447 1.55.2.2 rmind void
448 1.55.2.2 rmind acpicpu_md_cstate_enter(int method, int state)
449 1.55.2.2 rmind {
450 1.55.2.2 rmind struct cpu_info *ci = curcpu();
451 1.55.2.2 rmind
452 1.55.2.2 rmind switch (method) {
453 1.55.2.2 rmind
454 1.55.2.2 rmind case ACPICPU_C_STATE_FFH:
455 1.55.2.2 rmind
456 1.55.2.2 rmind x86_enable_intr();
457 1.55.2.2 rmind x86_monitor(&ci->ci_want_resched, 0, 0);
458 1.55.2.2 rmind
459 1.55.2.2 rmind if (__predict_false(ci->ci_want_resched != 0))
460 1.55.2.2 rmind return;
461 1.55.2.2 rmind
462 1.55.2.2 rmind x86_mwait((state - 1) << 4, 0);
463 1.55.2.2 rmind break;
464 1.55.2.2 rmind
465 1.55.2.2 rmind case ACPICPU_C_STATE_HALT:
466 1.55.2.2 rmind
467 1.55.2.2 rmind if (__predict_false(ci->ci_want_resched != 0))
468 1.55.2.2 rmind return;
469 1.55.2.2 rmind
470 1.55.2.2 rmind x86_stihlt();
471 1.55.2.2 rmind break;
472 1.55.2.2 rmind }
473 1.55.2.2 rmind }
474 1.55.2.2 rmind
475 1.55.2.2 rmind int
476 1.55.2.2 rmind acpicpu_md_pstate_start(struct acpicpu_softc *sc)
477 1.55.2.2 rmind {
478 1.55.2.4 rmind uint64_t xc;
479 1.55.2.4 rmind
480 1.55.2.4 rmind /*
481 1.55.2.4 rmind * Reset the APERF and MPERF counters.
482 1.55.2.4 rmind */
483 1.55.2.4 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
484 1.55.2.4 rmind xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
485 1.55.2.4 rmind xc_wait(xc);
486 1.55.2.4 rmind }
487 1.55.2.4 rmind
488 1.55.2.2 rmind return acpicpu_md_pstate_sysctl_init();
489 1.55.2.2 rmind }
490 1.55.2.2 rmind
491 1.55.2.2 rmind int
492 1.55.2.2 rmind acpicpu_md_pstate_stop(void)
493 1.55.2.2 rmind {
494 1.55.2.2 rmind if (acpicpu_log != NULL)
495 1.55.2.2 rmind sysctl_teardown(&acpicpu_log);
496 1.55.2.2 rmind
497 1.55.2.2 rmind return 0;
498 1.55.2.2 rmind }
499 1.55.2.2 rmind
500 1.55.2.2 rmind int
501 1.55.2.3 rmind acpicpu_md_pstate_init(struct acpicpu_softc *sc)
502 1.55.2.2 rmind {
503 1.55.2.4 rmind struct cpu_info *ci = sc->sc_ci;
504 1.55.2.2 rmind struct acpicpu_pstate *ps, msr;
505 1.55.2.2 rmind uint32_t family, i = 0;
506 1.55.2.3 rmind uint64_t val;
507 1.55.2.2 rmind
508 1.55.2.2 rmind (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
509 1.55.2.2 rmind
510 1.55.2.2 rmind switch (cpu_vendor) {
511 1.55.2.2 rmind
512 1.55.2.2 rmind case CPUVENDOR_IDT:
513 1.55.2.2 rmind case CPUVENDOR_INTEL:
514 1.55.2.2 rmind
515 1.55.2.2 rmind /*
516 1.55.2.3 rmind * Make sure EST is enabled.
517 1.55.2.3 rmind */
518 1.55.2.3 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
519 1.55.2.3 rmind
520 1.55.2.3 rmind val = rdmsr(MSR_MISC_ENABLE);
521 1.55.2.3 rmind
522 1.55.2.3 rmind if ((val & MSR_MISC_ENABLE_EST) == 0) {
523 1.55.2.3 rmind
524 1.55.2.3 rmind val |= MSR_MISC_ENABLE_EST;
525 1.55.2.3 rmind wrmsr(MSR_MISC_ENABLE, val);
526 1.55.2.3 rmind val = rdmsr(MSR_MISC_ENABLE);
527 1.55.2.3 rmind
528 1.55.2.3 rmind if ((val & MSR_MISC_ENABLE_EST) == 0)
529 1.55.2.3 rmind return ENOTTY;
530 1.55.2.3 rmind }
531 1.55.2.3 rmind }
532 1.55.2.3 rmind
533 1.55.2.3 rmind /*
534 1.55.2.2 rmind * If the so-called Turbo Boost is present,
535 1.55.2.2 rmind * the P0-state is always the "turbo state".
536 1.55.2.2 rmind * It is shown as the P1 frequency + 1 MHz.
537 1.55.2.2 rmind *
538 1.55.2.2 rmind * For discussion, see:
539 1.55.2.2 rmind *
540 1.55.2.2 rmind * Intel Corporation: Intel Turbo Boost Technology
541 1.55.2.2 rmind * in Intel Core(tm) Microarchitectures (Nehalem)
542 1.55.2.2 rmind * Based Processors. White Paper, November 2008.
543 1.55.2.2 rmind */
544 1.55.2.3 rmind if (sc->sc_pstate_count >= 2 &&
545 1.55.2.2 rmind (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
546 1.55.2.2 rmind
547 1.55.2.2 rmind ps = &sc->sc_pstate[0];
548 1.55.2.2 rmind
549 1.55.2.2 rmind if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
550 1.55.2.2 rmind ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
551 1.55.2.2 rmind }
552 1.55.2.2 rmind
553 1.55.2.2 rmind msr.ps_control_addr = MSR_PERF_CTL;
554 1.55.2.2 rmind msr.ps_control_mask = __BITS(0, 15);
555 1.55.2.2 rmind
556 1.55.2.2 rmind msr.ps_status_addr = MSR_PERF_STATUS;
557 1.55.2.2 rmind msr.ps_status_mask = __BITS(0, 15);
558 1.55.2.2 rmind break;
559 1.55.2.2 rmind
560 1.55.2.2 rmind case CPUVENDOR_AMD:
561 1.55.2.2 rmind
562 1.55.2.2 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
563 1.55.2.2 rmind msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
564 1.55.2.2 rmind
565 1.55.2.2 rmind family = CPUID2FAMILY(ci->ci_signature);
566 1.55.2.2 rmind
567 1.55.2.2 rmind if (family == 0xf)
568 1.55.2.2 rmind family += CPUID2EXTFAMILY(ci->ci_signature);
569 1.55.2.2 rmind
570 1.55.2.2 rmind switch (family) {
571 1.55.2.2 rmind
572 1.55.2.2 rmind case 0x0f:
573 1.55.2.2 rmind msr.ps_control_addr = MSR_0FH_CONTROL;
574 1.55.2.2 rmind msr.ps_status_addr = MSR_0FH_STATUS;
575 1.55.2.2 rmind break;
576 1.55.2.2 rmind
577 1.55.2.2 rmind case 0x10:
578 1.55.2.2 rmind case 0x11:
579 1.55.2.2 rmind case 0x14: /* AMD Fusion */
580 1.55.2.2 rmind msr.ps_control_addr = MSR_10H_CONTROL;
581 1.55.2.2 rmind msr.ps_control_mask = __BITS(0, 2);
582 1.55.2.2 rmind
583 1.55.2.2 rmind msr.ps_status_addr = MSR_10H_STATUS;
584 1.55.2.2 rmind msr.ps_status_mask = __BITS(0, 2);
585 1.55.2.2 rmind break;
586 1.55.2.2 rmind
587 1.55.2.2 rmind default:
588 1.55.2.3 rmind /*
589 1.55.2.3 rmind * If we have an unknown AMD CPU, rely on XPSS.
590 1.55.2.3 rmind */
591 1.55.2.2 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
592 1.55.2.2 rmind return EOPNOTSUPP;
593 1.55.2.2 rmind }
594 1.55.2.2 rmind
595 1.55.2.2 rmind break;
596 1.55.2.2 rmind
597 1.55.2.2 rmind default:
598 1.55.2.2 rmind return ENODEV;
599 1.55.2.2 rmind }
600 1.55.2.2 rmind
601 1.55.2.2 rmind /*
602 1.55.2.2 rmind * Fill the P-state structures with MSR addresses that are
603 1.55.2.2 rmind * known to be correct. If we do not know the addresses,
604 1.55.2.2 rmind * leave the values intact. If a vendor uses XPSS, we do
605 1.55.2.2 rmind * not necessarily need to do anything to support new CPUs.
606 1.55.2.2 rmind */
607 1.55.2.2 rmind while (i < sc->sc_pstate_count) {
608 1.55.2.2 rmind
609 1.55.2.2 rmind ps = &sc->sc_pstate[i];
610 1.55.2.2 rmind
611 1.55.2.2 rmind if (msr.ps_flags != 0)
612 1.55.2.2 rmind ps->ps_flags |= msr.ps_flags;
613 1.55.2.2 rmind
614 1.55.2.2 rmind if (msr.ps_status_addr != 0)
615 1.55.2.2 rmind ps->ps_status_addr = msr.ps_status_addr;
616 1.55.2.2 rmind
617 1.55.2.2 rmind if (msr.ps_status_mask != 0)
618 1.55.2.2 rmind ps->ps_status_mask = msr.ps_status_mask;
619 1.55.2.2 rmind
620 1.55.2.2 rmind if (msr.ps_control_addr != 0)
621 1.55.2.2 rmind ps->ps_control_addr = msr.ps_control_addr;
622 1.55.2.2 rmind
623 1.55.2.2 rmind if (msr.ps_control_mask != 0)
624 1.55.2.2 rmind ps->ps_control_mask = msr.ps_control_mask;
625 1.55.2.2 rmind
626 1.55.2.2 rmind i++;
627 1.55.2.2 rmind }
628 1.55.2.2 rmind
629 1.55.2.2 rmind return 0;
630 1.55.2.2 rmind }
631 1.55.2.2 rmind
632 1.55.2.3 rmind /*
633 1.55.2.3 rmind * Read the IA32_APERF and IA32_MPERF counters. The first
634 1.55.2.3 rmind * increments at the rate of the fixed maximum frequency
635 1.55.2.3 rmind * configured during the boot, whereas APERF counts at the
636 1.55.2.3 rmind * rate of the actual frequency. Note that the MSRs must be
637 1.55.2.3 rmind * read without delay, and that only the ratio between
638 1.55.2.3 rmind * IA32_APERF and IA32_MPERF is architecturally defined.
639 1.55.2.3 rmind *
640 1.55.2.3 rmind * The function thus returns the percentage of the actual
641 1.55.2.3 rmind * frequency in terms of the maximum frequency of the calling
642 1.55.2.3 rmind * CPU since the last call. A value zero implies an error.
643 1.55.2.3 rmind *
644 1.55.2.3 rmind * For further details, refer to:
645 1.55.2.3 rmind *
646 1.55.2.3 rmind * Intel Corporation: Intel 64 and IA-32 Architectures
647 1.55.2.3 rmind * Software Developer's Manual. Section 13.2, Volume 3A:
648 1.55.2.3 rmind * System Programming Guide, Part 1. July, 2008.
649 1.55.2.3 rmind *
650 1.55.2.3 rmind * Advanced Micro Devices: BIOS and Kernel Developer's
651 1.55.2.3 rmind * Guide (BKDG) for AMD Family 10h Processors. Section
652 1.55.2.3 rmind * 2.4.5, Revision 3.48, April 2010.
653 1.55.2.3 rmind */
654 1.55.2.2 rmind uint8_t
655 1.55.2.4 rmind acpicpu_md_pstate_hwf(struct cpu_info *ci)
656 1.55.2.2 rmind {
657 1.55.2.3 rmind struct acpicpu_softc *sc;
658 1.55.2.2 rmind uint64_t aperf, mperf;
659 1.55.2.3 rmind uint8_t rv = 0;
660 1.55.2.2 rmind
661 1.55.2.3 rmind sc = acpicpu_sc[ci->ci_acpiid];
662 1.55.2.3 rmind
663 1.55.2.3 rmind if (__predict_false(sc == NULL))
664 1.55.2.2 rmind return 0;
665 1.55.2.2 rmind
666 1.55.2.2 rmind if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
667 1.55.2.2 rmind return 0;
668 1.55.2.2 rmind
669 1.55.2.2 rmind aperf = sc->sc_pstate_aperf;
670 1.55.2.2 rmind mperf = sc->sc_pstate_mperf;
671 1.55.2.2 rmind
672 1.55.2.4 rmind x86_disable_intr();
673 1.55.2.4 rmind
674 1.55.2.2 rmind sc->sc_pstate_aperf = rdmsr(MSR_APERF);
675 1.55.2.2 rmind sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
676 1.55.2.2 rmind
677 1.55.2.4 rmind x86_enable_intr();
678 1.55.2.4 rmind
679 1.55.2.2 rmind aperf = sc->sc_pstate_aperf - aperf;
680 1.55.2.2 rmind mperf = sc->sc_pstate_mperf - mperf;
681 1.55.2.2 rmind
682 1.55.2.2 rmind if (__predict_true(mperf != 0))
683 1.55.2.2 rmind rv = (aperf * 100) / mperf;
684 1.55.2.2 rmind
685 1.55.2.2 rmind return rv;
686 1.55.2.2 rmind }
687 1.55.2.2 rmind
688 1.55.2.2 rmind static void
689 1.55.2.4 rmind acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
690 1.55.2.2 rmind {
691 1.55.2.4 rmind struct cpu_info *ci = curcpu();
692 1.55.2.3 rmind struct acpicpu_softc *sc;
693 1.55.2.2 rmind
694 1.55.2.3 rmind sc = acpicpu_sc[ci->ci_acpiid];
695 1.55.2.2 rmind
696 1.55.2.3 rmind if (__predict_false(sc == NULL))
697 1.55.2.3 rmind return;
698 1.55.2.2 rmind
699 1.55.2.4 rmind x86_disable_intr();
700 1.55.2.2 rmind
701 1.55.2.3 rmind wrmsr(MSR_APERF, 0);
702 1.55.2.3 rmind wrmsr(MSR_MPERF, 0);
703 1.55.2.2 rmind
704 1.55.2.4 rmind x86_enable_intr();
705 1.55.2.4 rmind
706 1.55.2.2 rmind sc->sc_pstate_aperf = 0;
707 1.55.2.2 rmind sc->sc_pstate_mperf = 0;
708 1.55.2.2 rmind }
709 1.55.2.2 rmind
710 1.55.2.2 rmind int
711 1.55.2.2 rmind acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
712 1.55.2.2 rmind {
713 1.55.2.2 rmind struct acpicpu_pstate *ps = NULL;
714 1.55.2.2 rmind uint64_t val;
715 1.55.2.2 rmind uint32_t i;
716 1.55.2.2 rmind
717 1.55.2.2 rmind if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
718 1.55.2.2 rmind return acpicpu_md_pstate_fidvid_get(sc, freq);
719 1.55.2.2 rmind
720 1.55.2.2 rmind /*
721 1.55.2.2 rmind * Pick any P-state for the status address.
722 1.55.2.2 rmind */
723 1.55.2.2 rmind for (i = 0; i < sc->sc_pstate_count; i++) {
724 1.55.2.2 rmind
725 1.55.2.2 rmind ps = &sc->sc_pstate[i];
726 1.55.2.2 rmind
727 1.55.2.2 rmind if (__predict_true(ps->ps_freq != 0))
728 1.55.2.2 rmind break;
729 1.55.2.2 rmind }
730 1.55.2.2 rmind
731 1.55.2.2 rmind if (__predict_false(ps == NULL))
732 1.55.2.2 rmind return ENODEV;
733 1.55.2.2 rmind
734 1.55.2.2 rmind if (__predict_false(ps->ps_status_addr == 0))
735 1.55.2.2 rmind return EINVAL;
736 1.55.2.2 rmind
737 1.55.2.2 rmind val = rdmsr(ps->ps_status_addr);
738 1.55.2.2 rmind
739 1.55.2.2 rmind if (__predict_true(ps->ps_status_mask != 0))
740 1.55.2.2 rmind val = val & ps->ps_status_mask;
741 1.55.2.2 rmind
742 1.55.2.2 rmind /*
743 1.55.2.2 rmind * Search for the value from known P-states.
744 1.55.2.2 rmind */
745 1.55.2.2 rmind for (i = 0; i < sc->sc_pstate_count; i++) {
746 1.55.2.2 rmind
747 1.55.2.2 rmind ps = &sc->sc_pstate[i];
748 1.55.2.2 rmind
749 1.55.2.2 rmind if (__predict_false(ps->ps_freq == 0))
750 1.55.2.2 rmind continue;
751 1.55.2.2 rmind
752 1.55.2.2 rmind if (val == ps->ps_status) {
753 1.55.2.2 rmind *freq = ps->ps_freq;
754 1.55.2.2 rmind return 0;
755 1.55.2.2 rmind }
756 1.55.2.2 rmind }
757 1.55.2.2 rmind
758 1.55.2.2 rmind return EIO;
759 1.55.2.2 rmind }
760 1.55.2.2 rmind
761 1.55.2.2 rmind int
762 1.55.2.2 rmind acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
763 1.55.2.2 rmind {
764 1.55.2.3 rmind uint64_t val = 0;
765 1.55.2.2 rmind
766 1.55.2.2 rmind if (__predict_false(ps->ps_control_addr == 0))
767 1.55.2.2 rmind return EINVAL;
768 1.55.2.2 rmind
769 1.55.2.2 rmind if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
770 1.55.2.2 rmind return acpicpu_md_pstate_fidvid_set(ps);
771 1.55.2.2 rmind
772 1.55.2.3 rmind /*
773 1.55.2.3 rmind * If the mask is set, do a read-modify-write.
774 1.55.2.3 rmind */
775 1.55.2.3 rmind if (__predict_true(ps->ps_control_mask != 0)) {
776 1.55.2.3 rmind val = rdmsr(ps->ps_control_addr);
777 1.55.2.3 rmind val &= ~ps->ps_control_mask;
778 1.55.2.3 rmind }
779 1.55.2.2 rmind
780 1.55.2.3 rmind val |= ps->ps_control;
781 1.55.2.2 rmind
782 1.55.2.2 rmind wrmsr(ps->ps_control_addr, val);
783 1.55.2.2 rmind DELAY(ps->ps_latency);
784 1.55.2.2 rmind
785 1.55.2.2 rmind return 0;
786 1.55.2.2 rmind }
787 1.55.2.2 rmind
788 1.55.2.2 rmind static int
789 1.55.2.2 rmind acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
790 1.55.2.2 rmind {
791 1.55.2.2 rmind struct acpicpu_pstate *ps;
792 1.55.2.2 rmind uint32_t fid, i, vid;
793 1.55.2.2 rmind uint32_t cfid, cvid;
794 1.55.2.2 rmind int rv;
795 1.55.2.2 rmind
796 1.55.2.2 rmind /*
797 1.55.2.2 rmind * AMD family 0Fh needs special treatment.
798 1.55.2.2 rmind * While it wants to use ACPI, it does not
799 1.55.2.2 rmind * comply with the ACPI specifications.
800 1.55.2.2 rmind */
801 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
802 1.55.2.2 rmind
803 1.55.2.2 rmind if (rv != 0)
804 1.55.2.2 rmind return rv;
805 1.55.2.2 rmind
806 1.55.2.2 rmind for (i = 0; i < sc->sc_pstate_count; i++) {
807 1.55.2.2 rmind
808 1.55.2.2 rmind ps = &sc->sc_pstate[i];
809 1.55.2.2 rmind
810 1.55.2.2 rmind if (__predict_false(ps->ps_freq == 0))
811 1.55.2.2 rmind continue;
812 1.55.2.2 rmind
813 1.55.2.2 rmind fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
814 1.55.2.2 rmind vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
815 1.55.2.2 rmind
816 1.55.2.2 rmind if (cfid == fid && cvid == vid) {
817 1.55.2.2 rmind *freq = ps->ps_freq;
818 1.55.2.2 rmind return 0;
819 1.55.2.2 rmind }
820 1.55.2.2 rmind }
821 1.55.2.2 rmind
822 1.55.2.2 rmind return EIO;
823 1.55.2.2 rmind }
824 1.55.2.2 rmind
825 1.55.2.2 rmind static int
826 1.55.2.2 rmind acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
827 1.55.2.2 rmind {
828 1.55.2.2 rmind const uint64_t ctrl = ps->ps_control;
829 1.55.2.2 rmind uint32_t cfid, cvid, fid, i, irt;
830 1.55.2.2 rmind uint32_t pll, vco_cfid, vco_fid;
831 1.55.2.2 rmind uint32_t val, vid, vst;
832 1.55.2.2 rmind int rv;
833 1.55.2.2 rmind
834 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
835 1.55.2.2 rmind
836 1.55.2.2 rmind if (rv != 0)
837 1.55.2.2 rmind return rv;
838 1.55.2.2 rmind
839 1.55.2.2 rmind fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
840 1.55.2.2 rmind vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
841 1.55.2.2 rmind irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
842 1.55.2.2 rmind vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
843 1.55.2.2 rmind pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
844 1.55.2.2 rmind
845 1.55.2.2 rmind vst = vst * 20;
846 1.55.2.2 rmind pll = pll * 1000 / 5;
847 1.55.2.2 rmind irt = 10 * __BIT(irt);
848 1.55.2.2 rmind
849 1.55.2.2 rmind /*
850 1.55.2.2 rmind * Phase 1.
851 1.55.2.2 rmind */
852 1.55.2.2 rmind while (cvid > vid) {
853 1.55.2.2 rmind
854 1.55.2.2 rmind val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
855 1.55.2.2 rmind val = (val > cvid) ? 0 : cvid - val;
856 1.55.2.2 rmind
857 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
858 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
859 1.55.2.2 rmind
860 1.55.2.2 rmind if (rv != 0)
861 1.55.2.2 rmind return rv;
862 1.55.2.2 rmind }
863 1.55.2.2 rmind
864 1.55.2.2 rmind i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
865 1.55.2.2 rmind
866 1.55.2.2 rmind for (; i > 0 && cvid > 0; --i) {
867 1.55.2.2 rmind
868 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
869 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
870 1.55.2.2 rmind
871 1.55.2.2 rmind if (rv != 0)
872 1.55.2.2 rmind return rv;
873 1.55.2.2 rmind }
874 1.55.2.2 rmind
875 1.55.2.2 rmind /*
876 1.55.2.2 rmind * Phase 2.
877 1.55.2.2 rmind */
878 1.55.2.2 rmind if (cfid != fid) {
879 1.55.2.2 rmind
880 1.55.2.2 rmind vco_fid = FID_TO_VCO_FID(fid);
881 1.55.2.2 rmind vco_cfid = FID_TO_VCO_FID(cfid);
882 1.55.2.2 rmind
883 1.55.2.2 rmind while (abs(vco_fid - vco_cfid) > 2) {
884 1.55.2.2 rmind
885 1.55.2.2 rmind if (fid <= cfid)
886 1.55.2.2 rmind val = cfid - 2;
887 1.55.2.2 rmind else {
888 1.55.2.2 rmind val = (cfid > 6) ? cfid + 2 :
889 1.55.2.2 rmind FID_TO_VCO_FID(cfid) + 2;
890 1.55.2.2 rmind }
891 1.55.2.2 rmind
892 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
893 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
894 1.55.2.2 rmind
895 1.55.2.2 rmind if (rv != 0)
896 1.55.2.2 rmind return rv;
897 1.55.2.2 rmind
898 1.55.2.2 rmind vco_cfid = FID_TO_VCO_FID(cfid);
899 1.55.2.2 rmind }
900 1.55.2.2 rmind
901 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
902 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
903 1.55.2.2 rmind
904 1.55.2.2 rmind if (rv != 0)
905 1.55.2.2 rmind return rv;
906 1.55.2.2 rmind }
907 1.55.2.2 rmind
908 1.55.2.2 rmind /*
909 1.55.2.2 rmind * Phase 3.
910 1.55.2.2 rmind */
911 1.55.2.2 rmind if (cvid != vid) {
912 1.55.2.2 rmind
913 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
914 1.55.2.2 rmind rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
915 1.55.2.2 rmind
916 1.55.2.2 rmind if (rv != 0)
917 1.55.2.2 rmind return rv;
918 1.55.2.2 rmind }
919 1.55.2.2 rmind
920 1.55.2.2 rmind if (cfid != fid || cvid != vid)
921 1.55.2.2 rmind return EIO;
922 1.55.2.2 rmind
923 1.55.2.2 rmind return 0;
924 1.55.2.2 rmind }
925 1.55.2.2 rmind
926 1.55.2.2 rmind static int
927 1.55.2.2 rmind acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
928 1.55.2.2 rmind {
929 1.55.2.2 rmind int i = ACPICPU_P_STATE_RETRY * 100;
930 1.55.2.2 rmind uint64_t val;
931 1.55.2.2 rmind
932 1.55.2.2 rmind do {
933 1.55.2.2 rmind val = rdmsr(MSR_0FH_STATUS);
934 1.55.2.2 rmind
935 1.55.2.2 rmind } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
936 1.55.2.2 rmind
937 1.55.2.2 rmind if (i == 0)
938 1.55.2.2 rmind return EAGAIN;
939 1.55.2.2 rmind
940 1.55.2.2 rmind if (cfid != NULL)
941 1.55.2.2 rmind *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
942 1.55.2.2 rmind
943 1.55.2.2 rmind if (cvid != NULL)
944 1.55.2.2 rmind *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
945 1.55.2.2 rmind
946 1.55.2.2 rmind return 0;
947 1.55.2.2 rmind }
948 1.55.2.2 rmind
949 1.55.2.2 rmind static void
950 1.55.2.2 rmind acpicpu_md_pstate_fidvid_write(uint32_t fid,
951 1.55.2.2 rmind uint32_t vid, uint32_t cnt, uint32_t tmo)
952 1.55.2.2 rmind {
953 1.55.2.2 rmind uint64_t val = 0;
954 1.55.2.2 rmind
955 1.55.2.2 rmind val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
956 1.55.2.2 rmind val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
957 1.55.2.2 rmind val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
958 1.55.2.2 rmind val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
959 1.55.2.2 rmind
960 1.55.2.2 rmind wrmsr(MSR_0FH_CONTROL, val);
961 1.55.2.2 rmind DELAY(tmo);
962 1.55.2.2 rmind }
963 1.55.2.2 rmind
964 1.55.2.2 rmind int
965 1.55.2.2 rmind acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
966 1.55.2.2 rmind {
967 1.55.2.2 rmind struct acpicpu_tstate *ts;
968 1.55.2.2 rmind uint64_t val;
969 1.55.2.2 rmind uint32_t i;
970 1.55.2.2 rmind
971 1.55.2.2 rmind val = rdmsr(MSR_THERM_CONTROL);
972 1.55.2.2 rmind
973 1.55.2.2 rmind for (i = 0; i < sc->sc_tstate_count; i++) {
974 1.55.2.2 rmind
975 1.55.2.2 rmind ts = &sc->sc_tstate[i];
976 1.55.2.2 rmind
977 1.55.2.2 rmind if (ts->ts_percent == 0)
978 1.55.2.2 rmind continue;
979 1.55.2.2 rmind
980 1.55.2.2 rmind if (val == ts->ts_status) {
981 1.55.2.2 rmind *percent = ts->ts_percent;
982 1.55.2.2 rmind return 0;
983 1.55.2.2 rmind }
984 1.55.2.2 rmind }
985 1.55.2.2 rmind
986 1.55.2.2 rmind return EIO;
987 1.55.2.2 rmind }
988 1.55.2.2 rmind
989 1.55.2.2 rmind int
990 1.55.2.2 rmind acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
991 1.55.2.2 rmind {
992 1.55.2.2 rmind uint64_t val;
993 1.55.2.2 rmind uint8_t i;
994 1.55.2.2 rmind
995 1.55.2.2 rmind val = ts->ts_control;
996 1.55.2.2 rmind val = val & __BITS(1, 4);
997 1.55.2.2 rmind
998 1.55.2.2 rmind wrmsr(MSR_THERM_CONTROL, val);
999 1.55.2.2 rmind
1000 1.55.2.2 rmind if (ts->ts_status == 0) {
1001 1.55.2.2 rmind DELAY(ts->ts_latency);
1002 1.55.2.2 rmind return 0;
1003 1.55.2.2 rmind }
1004 1.55.2.2 rmind
1005 1.55.2.2 rmind for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1006 1.55.2.2 rmind
1007 1.55.2.2 rmind val = rdmsr(MSR_THERM_CONTROL);
1008 1.55.2.2 rmind
1009 1.55.2.2 rmind if (val == ts->ts_status)
1010 1.55.2.2 rmind return 0;
1011 1.55.2.2 rmind
1012 1.55.2.2 rmind DELAY(ts->ts_latency);
1013 1.55.2.2 rmind }
1014 1.55.2.2 rmind
1015 1.55.2.2 rmind return EAGAIN;
1016 1.55.2.2 rmind }
1017 1.55.2.2 rmind
1018 1.55.2.2 rmind /*
1019 1.55.2.2 rmind * A kludge for backwards compatibility.
1020 1.55.2.2 rmind */
1021 1.55.2.2 rmind static int
1022 1.55.2.2 rmind acpicpu_md_pstate_sysctl_init(void)
1023 1.55.2.2 rmind {
1024 1.55.2.2 rmind const struct sysctlnode *fnode, *mnode, *rnode;
1025 1.55.2.2 rmind const char *str;
1026 1.55.2.2 rmind int rv;
1027 1.55.2.2 rmind
1028 1.55.2.2 rmind switch (cpu_vendor) {
1029 1.55.2.2 rmind
1030 1.55.2.2 rmind case CPUVENDOR_IDT:
1031 1.55.2.2 rmind case CPUVENDOR_INTEL:
1032 1.55.2.2 rmind str = "est";
1033 1.55.2.2 rmind break;
1034 1.55.2.2 rmind
1035 1.55.2.2 rmind case CPUVENDOR_AMD:
1036 1.55.2.2 rmind str = "powernow";
1037 1.55.2.2 rmind break;
1038 1.55.2.2 rmind
1039 1.55.2.2 rmind default:
1040 1.55.2.2 rmind return ENODEV;
1041 1.55.2.2 rmind }
1042 1.55.2.2 rmind
1043 1.55.2.2 rmind
1044 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1045 1.55.2.2 rmind CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1046 1.55.2.2 rmind NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1047 1.55.2.2 rmind
1048 1.55.2.2 rmind if (rv != 0)
1049 1.55.2.2 rmind goto fail;
1050 1.55.2.2 rmind
1051 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1052 1.55.2.2 rmind 0, CTLTYPE_NODE, str, NULL,
1053 1.55.2.2 rmind NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1054 1.55.2.2 rmind
1055 1.55.2.2 rmind if (rv != 0)
1056 1.55.2.2 rmind goto fail;
1057 1.55.2.2 rmind
1058 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1059 1.55.2.2 rmind 0, CTLTYPE_NODE, "frequency", NULL,
1060 1.55.2.2 rmind NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1061 1.55.2.2 rmind
1062 1.55.2.2 rmind if (rv != 0)
1063 1.55.2.2 rmind goto fail;
1064 1.55.2.2 rmind
1065 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1066 1.55.2.2 rmind CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1067 1.55.2.2 rmind acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1068 1.55.2.2 rmind
1069 1.55.2.2 rmind if (rv != 0)
1070 1.55.2.2 rmind goto fail;
1071 1.55.2.2 rmind
1072 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1073 1.55.2.2 rmind CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1074 1.55.2.2 rmind acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1075 1.55.2.2 rmind
1076 1.55.2.2 rmind if (rv != 0)
1077 1.55.2.2 rmind goto fail;
1078 1.55.2.2 rmind
1079 1.55.2.2 rmind rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1080 1.55.2.2 rmind CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1081 1.55.2.2 rmind acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1082 1.55.2.2 rmind
1083 1.55.2.2 rmind if (rv != 0)
1084 1.55.2.2 rmind goto fail;
1085 1.55.2.2 rmind
1086 1.55.2.2 rmind return 0;
1087 1.55.2.2 rmind
1088 1.55.2.2 rmind fail:
1089 1.55.2.2 rmind if (acpicpu_log != NULL) {
1090 1.55.2.2 rmind sysctl_teardown(&acpicpu_log);
1091 1.55.2.2 rmind acpicpu_log = NULL;
1092 1.55.2.2 rmind }
1093 1.55.2.2 rmind
1094 1.55.2.2 rmind return rv;
1095 1.55.2.2 rmind }
1096 1.55.2.2 rmind
1097 1.55.2.2 rmind static int
1098 1.55.2.2 rmind acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1099 1.55.2.2 rmind {
1100 1.55.2.2 rmind struct cpu_info *ci = curcpu();
1101 1.55.2.2 rmind struct sysctlnode node;
1102 1.55.2.2 rmind uint32_t freq;
1103 1.55.2.2 rmind int err;
1104 1.55.2.2 rmind
1105 1.55.2.2 rmind err = acpicpu_pstate_get(ci, &freq);
1106 1.55.2.2 rmind
1107 1.55.2.2 rmind if (err != 0)
1108 1.55.2.2 rmind return err;
1109 1.55.2.2 rmind
1110 1.55.2.2 rmind node = *rnode;
1111 1.55.2.2 rmind node.sysctl_data = &freq;
1112 1.55.2.2 rmind
1113 1.55.2.2 rmind err = sysctl_lookup(SYSCTLFN_CALL(&node));
1114 1.55.2.2 rmind
1115 1.55.2.2 rmind if (err != 0 || newp == NULL)
1116 1.55.2.2 rmind return err;
1117 1.55.2.2 rmind
1118 1.55.2.2 rmind return 0;
1119 1.55.2.2 rmind }
1120 1.55.2.2 rmind
1121 1.55.2.2 rmind static int
1122 1.55.2.2 rmind acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1123 1.55.2.2 rmind {
1124 1.55.2.2 rmind struct cpu_info *ci = curcpu();
1125 1.55.2.2 rmind struct sysctlnode node;
1126 1.55.2.2 rmind uint32_t freq;
1127 1.55.2.2 rmind int err;
1128 1.55.2.2 rmind
1129 1.55.2.2 rmind err = acpicpu_pstate_get(ci, &freq);
1130 1.55.2.2 rmind
1131 1.55.2.2 rmind if (err != 0)
1132 1.55.2.2 rmind return err;
1133 1.55.2.2 rmind
1134 1.55.2.2 rmind node = *rnode;
1135 1.55.2.2 rmind node.sysctl_data = &freq;
1136 1.55.2.2 rmind
1137 1.55.2.2 rmind err = sysctl_lookup(SYSCTLFN_CALL(&node));
1138 1.55.2.2 rmind
1139 1.55.2.2 rmind if (err != 0 || newp == NULL)
1140 1.55.2.2 rmind return err;
1141 1.55.2.2 rmind
1142 1.55.2.2 rmind acpicpu_pstate_set(ci, freq);
1143 1.55.2.2 rmind
1144 1.55.2.2 rmind return 0;
1145 1.55.2.2 rmind }
1146 1.55.2.2 rmind
1147 1.55.2.2 rmind static int
1148 1.55.2.2 rmind acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1149 1.55.2.2 rmind {
1150 1.55.2.2 rmind struct cpu_info *ci = curcpu();
1151 1.55.2.2 rmind struct acpicpu_softc *sc;
1152 1.55.2.2 rmind struct sysctlnode node;
1153 1.55.2.2 rmind char buf[1024];
1154 1.55.2.2 rmind size_t len;
1155 1.55.2.2 rmind uint32_t i;
1156 1.55.2.2 rmind int err;
1157 1.55.2.2 rmind
1158 1.55.2.2 rmind sc = acpicpu_sc[ci->ci_acpiid];
1159 1.55.2.2 rmind
1160 1.55.2.2 rmind if (sc == NULL)
1161 1.55.2.2 rmind return ENXIO;
1162 1.55.2.2 rmind
1163 1.55.2.2 rmind (void)memset(&buf, 0, sizeof(buf));
1164 1.55.2.2 rmind
1165 1.55.2.2 rmind mutex_enter(&sc->sc_mtx);
1166 1.55.2.2 rmind
1167 1.55.2.2 rmind for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1168 1.55.2.2 rmind
1169 1.55.2.2 rmind if (sc->sc_pstate[i].ps_freq == 0)
1170 1.55.2.2 rmind continue;
1171 1.55.2.2 rmind
1172 1.55.2.2 rmind len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1173 1.55.2.2 rmind sc->sc_pstate[i].ps_freq,
1174 1.55.2.2 rmind i < (sc->sc_pstate_count - 1) ? " " : "");
1175 1.55.2.2 rmind }
1176 1.55.2.2 rmind
1177 1.55.2.2 rmind mutex_exit(&sc->sc_mtx);
1178 1.55.2.2 rmind
1179 1.55.2.2 rmind node = *rnode;
1180 1.55.2.2 rmind node.sysctl_data = buf;
1181 1.55.2.2 rmind
1182 1.55.2.2 rmind err = sysctl_lookup(SYSCTLFN_CALL(&node));
1183 1.55.2.2 rmind
1184 1.55.2.2 rmind if (err != 0 || newp == NULL)
1185 1.55.2.2 rmind return err;
1186 1.55.2.2 rmind
1187 1.55.2.2 rmind return 0;
1188 1.55.2.2 rmind }
1189 1.55.2.2 rmind
1190