Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.59.2.1
      1  1.59.2.1    cherry /* $NetBSD: acpi_cpu_md.c,v 1.59.2.1 2011/06/23 14:19:47 cherry Exp $ */
      2       1.1    jruoho 
      3       1.1    jruoho /*-
      4      1.41    jruoho  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5       1.1    jruoho  * All rights reserved.
      6       1.1    jruoho  *
      7       1.1    jruoho  * Redistribution and use in source and binary forms, with or without
      8       1.1    jruoho  * modification, are permitted provided that the following conditions
      9       1.1    jruoho  * are met:
     10       1.1    jruoho  *
     11       1.1    jruoho  * 1. Redistributions of source code must retain the above copyright
     12       1.1    jruoho  *    notice, this list of conditions and the following disclaimer.
     13       1.1    jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1    jruoho  *    notice, this list of conditions and the following disclaimer in the
     15       1.1    jruoho  *    documentation and/or other materials provided with the distribution.
     16       1.1    jruoho  *
     17       1.1    jruoho  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18       1.1    jruoho  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19       1.1    jruoho  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20       1.1    jruoho  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21       1.1    jruoho  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22       1.1    jruoho  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23       1.1    jruoho  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24       1.1    jruoho  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25       1.1    jruoho  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26       1.1    jruoho  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27       1.1    jruoho  * SUCH DAMAGE.
     28       1.1    jruoho  */
     29       1.1    jruoho #include <sys/cdefs.h>
     30  1.59.2.1    cherry __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.59.2.1 2011/06/23 14:19:47 cherry Exp $");
     31       1.1    jruoho 
     32       1.1    jruoho #include <sys/param.h>
     33       1.1    jruoho #include <sys/bus.h>
     34      1.48    jruoho #include <sys/device.h>
     35       1.1    jruoho #include <sys/kcore.h>
     36       1.5    jruoho #include <sys/sysctl.h>
     37       1.4    jruoho #include <sys/xcall.h>
     38       1.1    jruoho 
     39       1.1    jruoho #include <x86/cpu.h>
     40       1.5    jruoho #include <x86/cpufunc.h>
     41       1.5    jruoho #include <x86/cputypes.h>
     42       1.1    jruoho #include <x86/cpuvar.h>
     43       1.5    jruoho #include <x86/cpu_msr.h>
     44       1.1    jruoho #include <x86/machdep.h>
     45       1.1    jruoho 
     46       1.1    jruoho #include <dev/acpi/acpica.h>
     47       1.1    jruoho #include <dev/acpi/acpi_cpu.h>
     48       1.1    jruoho 
     49      1.12    jruoho #include <dev/pci/pcivar.h>
     50      1.12    jruoho #include <dev/pci/pcidevs.h>
     51      1.12    jruoho 
     52      1.38    jruoho #include <machine/acpi_machdep.h>
     53      1.38    jruoho 
     54      1.35    jruoho /*
     55      1.55    jruoho  * Intel IA32_MISC_ENABLE.
     56      1.55    jruoho  */
     57      1.55    jruoho #define MSR_MISC_ENABLE_EST	__BIT(16)
     58      1.55    jruoho #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     59      1.55    jruoho 
     60      1.55    jruoho /*
     61      1.35    jruoho  * AMD C1E.
     62      1.35    jruoho  */
     63      1.35    jruoho #define MSR_CMPHALT		0xc0010055
     64      1.35    jruoho 
     65      1.35    jruoho #define MSR_CMPHALT_SMI		__BIT(27)
     66      1.35    jruoho #define MSR_CMPHALT_C1E		__BIT(28)
     67      1.35    jruoho #define MSR_CMPHALT_BMSTS	__BIT(29)
     68      1.33    jruoho 
     69      1.32    jruoho /*
     70      1.40  jmcneill  * AMD families 10h, 11h, and 14h
     71      1.32    jruoho  */
     72      1.32    jruoho #define MSR_10H_LIMIT		0xc0010061
     73      1.32    jruoho #define MSR_10H_CONTROL		0xc0010062
     74      1.32    jruoho #define MSR_10H_STATUS		0xc0010063
     75      1.32    jruoho #define MSR_10H_CONFIG		0xc0010064
     76      1.22    jruoho 
     77      1.32    jruoho /*
     78      1.32    jruoho  * AMD family 0Fh.
     79      1.32    jruoho  */
     80      1.32    jruoho #define MSR_0FH_CONTROL		0xc0010041
     81      1.17    jruoho #define MSR_0FH_STATUS		0xc0010042
     82      1.17    jruoho 
     83      1.32    jruoho #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     84      1.32    jruoho #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     85      1.32    jruoho #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     86      1.32    jruoho 
     87      1.32    jruoho #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     88      1.32    jruoho #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     89      1.32    jruoho #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     90      1.32    jruoho #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     91      1.32    jruoho 
     92      1.32    jruoho #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     93      1.32    jruoho #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     94      1.32    jruoho 
     95      1.32    jruoho #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     96      1.32    jruoho #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     97      1.32    jruoho #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     98      1.32    jruoho #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     99      1.32    jruoho #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    100      1.32    jruoho #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    101      1.32    jruoho #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    102      1.32    jruoho 
    103      1.32    jruoho #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    104      1.17    jruoho 
    105       1.5    jruoho static char	  native_idle_text[16];
    106       1.5    jruoho void		(*native_idle)(void) = NULL;
    107       1.1    jruoho 
    108      1.58    dyoung static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    109      1.56    jruoho static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    110      1.32    jruoho static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    111      1.32    jruoho                                               uint32_t *);
    112      1.32    jruoho static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    113      1.32    jruoho static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    114      1.32    jruoho static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    115      1.32    jruoho 					        uint32_t, uint32_t);
    116      1.19    jruoho static int	 acpicpu_md_pstate_sysctl_init(void);
    117       1.5    jruoho static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    118       1.5    jruoho static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    119       1.5    jruoho static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    120       1.5    jruoho 
    121       1.5    jruoho extern struct acpicpu_softc **acpicpu_sc;
    122      1.19    jruoho static struct sysctllog *acpicpu_log = NULL;
    123       1.1    jruoho 
    124      1.48    jruoho struct cpu_info *
    125      1.48    jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    126      1.48    jruoho {
    127      1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    128      1.48    jruoho 
    129      1.48    jruoho 	if (strcmp(cfaa->name, "frequency") != 0)
    130      1.48    jruoho 		return NULL;
    131      1.48    jruoho 
    132      1.48    jruoho 	return cfaa->ci;
    133      1.48    jruoho }
    134      1.48    jruoho 
    135      1.48    jruoho struct cpu_info *
    136      1.48    jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
    137      1.48    jruoho {
    138      1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    139      1.48    jruoho 
    140      1.48    jruoho 	return cfaa->ci;
    141      1.48    jruoho }
    142      1.48    jruoho 
    143       1.1    jruoho uint32_t
    144      1.43    jruoho acpicpu_md_flags(void)
    145       1.1    jruoho {
    146       1.1    jruoho 	struct cpu_info *ci = curcpu();
    147      1.12    jruoho 	struct pci_attach_args pa;
    148      1.18    jruoho 	uint32_t family, val = 0;
    149      1.21    jruoho 	uint32_t regs[4];
    150       1.1    jruoho 
    151      1.38    jruoho 	if (acpi_md_ncpus() == 1)
    152       1.1    jruoho 		val |= ACPICPU_FLAG_C_BM;
    153       1.1    jruoho 
    154       1.1    jruoho 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    155       1.5    jruoho 		val |= ACPICPU_FLAG_C_FFH;
    156       1.1    jruoho 
    157      1.39    jruoho 	/*
    158      1.39    jruoho 	 * By default, assume that the local APIC timer
    159      1.39    jruoho 	 * as well as TSC are stalled during C3 sleep.
    160      1.39    jruoho 	 */
    161      1.25    jruoho 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    162      1.22    jruoho 
    163       1.1    jruoho 	switch (cpu_vendor) {
    164       1.1    jruoho 
    165      1.17    jruoho 	case CPUVENDOR_IDT:
    166      1.22    jruoho 
    167      1.22    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    168      1.22    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    169      1.22    jruoho 
    170      1.22    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    171      1.22    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    172      1.22    jruoho 
    173      1.22    jruoho 		break;
    174      1.22    jruoho 
    175       1.1    jruoho 	case CPUVENDOR_INTEL:
    176      1.17    jruoho 
    177      1.39    jruoho 		/*
    178      1.39    jruoho 		 * Bus master control and arbitration should be
    179      1.39    jruoho 		 * available on all supported Intel CPUs (to be
    180      1.39    jruoho 		 * sure, this is double-checked later from the
    181      1.39    jruoho 		 * firmware data). These flags imply that it is
    182      1.39    jruoho 		 * not necessary to flush caches before C3 state.
    183      1.39    jruoho 		 */
    184      1.22    jruoho 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    185      1.22    jruoho 
    186      1.39    jruoho 		/*
    187      1.39    jruoho 		 * Check if we can use "native", MSR-based,
    188      1.39    jruoho 		 * access. If not, we have to resort to I/O.
    189      1.39    jruoho 		 */
    190       1.5    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    191       1.5    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    192       1.5    jruoho 
    193      1.10    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    194      1.10    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    195      1.10    jruoho 
    196      1.22    jruoho 		/*
    197      1.25    jruoho 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    198      1.25    jruoho 		 * Boost are available. Also see if we might have
    199      1.25    jruoho 		 * an invariant local APIC timer ("ARAT").
    200      1.23    jruoho 		 */
    201      1.23    jruoho 		if (cpuid_level >= 0x06) {
    202      1.23    jruoho 
    203      1.44    jruoho 			x86_cpuid(0x00000006, regs);
    204      1.23    jruoho 
    205      1.34    jruoho 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    206      1.53    jruoho 				val |= ACPICPU_FLAG_P_HWF;
    207      1.23    jruoho 
    208      1.34    jruoho 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    209      1.24    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    210      1.25    jruoho 
    211      1.34    jruoho 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    212      1.25    jruoho 				val &= ~ACPICPU_FLAG_C_APIC;
    213      1.23    jruoho 		}
    214      1.23    jruoho 
    215      1.23    jruoho 		/*
    216      1.22    jruoho 		 * Detect whether TSC is invariant. If it is not,
    217      1.22    jruoho 		 * we keep the flag to note that TSC will not run
    218      1.22    jruoho 		 * at constant rate. Depending on the CPU, this may
    219      1.22    jruoho 		 * affect P- and T-state changes, but especially
    220      1.22    jruoho 		 * relevant are C-states; with variant TSC, states
    221      1.24    jruoho 		 * larger than C1 may completely stop the counter.
    222      1.22    jruoho 		 */
    223      1.22    jruoho 		x86_cpuid(0x80000000, regs);
    224      1.22    jruoho 
    225      1.22    jruoho 		if (regs[0] >= 0x80000007) {
    226      1.22    jruoho 
    227      1.22    jruoho 			x86_cpuid(0x80000007, regs);
    228      1.22    jruoho 
    229      1.32    jruoho 			if ((regs[3] & __BIT(8)) != 0)
    230      1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    231      1.22    jruoho 		}
    232      1.22    jruoho 
    233      1.17    jruoho 		break;
    234      1.12    jruoho 
    235      1.17    jruoho 	case CPUVENDOR_AMD:
    236      1.17    jruoho 
    237      1.32    jruoho 		x86_cpuid(0x80000000, regs);
    238      1.32    jruoho 
    239      1.32    jruoho 		if (regs[0] < 0x80000007)
    240      1.32    jruoho 			break;
    241      1.32    jruoho 
    242      1.32    jruoho 		x86_cpuid(0x80000007, regs);
    243      1.32    jruoho 
    244      1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    245      1.18    jruoho 
    246      1.18    jruoho 		if (family == 0xf)
    247      1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    248      1.18    jruoho 
    249      1.32    jruoho     		switch (family) {
    250       1.1    jruoho 
    251      1.22    jruoho 		case 0x0f:
    252      1.32    jruoho 
    253      1.45    jruoho 			/*
    254      1.45    jruoho 			 * Evaluate support for the "FID/VID
    255      1.45    jruoho 			 * algorithm" also used by powernow(4).
    256      1.45    jruoho 			 */
    257      1.32    jruoho 			if ((regs[3] & CPUID_APM_FID) == 0)
    258      1.32    jruoho 				break;
    259      1.32    jruoho 
    260      1.32    jruoho 			if ((regs[3] & CPUID_APM_VID) == 0)
    261      1.32    jruoho 				break;
    262      1.32    jruoho 
    263      1.32    jruoho 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    264      1.32    jruoho 			break;
    265      1.32    jruoho 
    266      1.17    jruoho 		case 0x10:
    267      1.17    jruoho 		case 0x11:
    268      1.40  jmcneill 			val |= ACPICPU_FLAG_C_C1E;
    269      1.40  jmcneill 			/* FALLTHROUGH */
    270      1.40  jmcneill 
    271      1.40  jmcneill 		case 0x14: /* AMD Fusion */
    272       1.1    jruoho 
    273      1.42    jruoho 			/*
    274      1.42    jruoho 			 * Like with Intel, detect invariant TSC,
    275      1.42    jruoho 			 * MSR-based P-states, and AMD's "turbo"
    276      1.42    jruoho 			 * (Core Performance Boost), respectively.
    277      1.42    jruoho 			 */
    278      1.22    jruoho 			if ((regs[3] & CPUID_APM_TSC) != 0)
    279      1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    280      1.22    jruoho 
    281      1.21    jruoho 			if ((regs[3] & CPUID_APM_HWP) != 0)
    282      1.17    jruoho 				val |= ACPICPU_FLAG_P_FFH;
    283      1.21    jruoho 
    284      1.21    jruoho 			if ((regs[3] & CPUID_APM_CPB) != 0)
    285      1.21    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    286      1.35    jruoho 
    287      1.42    jruoho 			/*
    288      1.42    jruoho 			 * Also check for APERF and MPERF,
    289      1.42    jruoho 			 * first available in the family 10h.
    290      1.42    jruoho 			 */
    291      1.42    jruoho 			if (cpuid_level >= 0x06) {
    292      1.42    jruoho 
    293      1.42    jruoho 				x86_cpuid(0x00000006, regs);
    294      1.42    jruoho 
    295      1.44    jruoho 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    296      1.53    jruoho 					val |= ACPICPU_FLAG_P_HWF;
    297      1.42    jruoho 			}
    298      1.42    jruoho 
    299      1.35    jruoho 			break;
    300      1.17    jruoho 		}
    301       1.1    jruoho 
    302       1.1    jruoho 		break;
    303       1.1    jruoho 	}
    304       1.1    jruoho 
    305      1.12    jruoho 	/*
    306      1.12    jruoho 	 * There are several erratums for PIIX4.
    307      1.12    jruoho 	 */
    308      1.43    jruoho 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    309      1.12    jruoho 		val |= ACPICPU_FLAG_PIIX4;
    310      1.12    jruoho 
    311       1.1    jruoho 	return val;
    312       1.1    jruoho }
    313       1.1    jruoho 
    314      1.12    jruoho static int
    315      1.58    dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    316      1.12    jruoho {
    317      1.12    jruoho 
    318      1.12    jruoho 	/*
    319      1.12    jruoho 	 * XXX: The pci_find_device(9) function only
    320      1.12    jruoho 	 *	deals with attached devices. Change this
    321      1.12    jruoho 	 *	to use something like pci_device_foreach().
    322      1.12    jruoho 	 */
    323      1.12    jruoho 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    324      1.12    jruoho 		return 0;
    325      1.12    jruoho 
    326      1.12    jruoho 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    327      1.12    jruoho 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    328      1.12    jruoho 		return 1;
    329      1.12    jruoho 
    330      1.12    jruoho 	return 0;
    331      1.12    jruoho }
    332      1.12    jruoho 
    333      1.35    jruoho void
    334      1.43    jruoho acpicpu_md_quirk_c1e(void)
    335      1.35    jruoho {
    336      1.35    jruoho 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    337      1.35    jruoho 	uint64_t val;
    338      1.35    jruoho 
    339      1.35    jruoho 	val = rdmsr(MSR_CMPHALT);
    340      1.35    jruoho 
    341      1.35    jruoho 	if ((val & c1e) != 0)
    342      1.35    jruoho 		wrmsr(MSR_CMPHALT, val & ~c1e);
    343      1.35    jruoho }
    344      1.35    jruoho 
    345       1.1    jruoho int
    346      1.43    jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    347       1.1    jruoho {
    348       1.1    jruoho 	const size_t size = sizeof(native_idle_text);
    349      1.31    jruoho 	struct acpicpu_cstate *cs;
    350      1.31    jruoho 	bool ipi = false;
    351      1.31    jruoho 	int i;
    352       1.1    jruoho 
    353      1.45    jruoho 	/*
    354      1.45    jruoho 	 * Save the cpu_idle(9) loop used by default.
    355      1.45    jruoho 	 */
    356       1.1    jruoho 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    357      1.31    jruoho 
    358      1.31    jruoho 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    359      1.31    jruoho 
    360      1.31    jruoho 		cs = &sc->sc_cstate[i];
    361      1.31    jruoho 
    362      1.31    jruoho 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    363      1.31    jruoho 			ipi = true;
    364      1.31    jruoho 			break;
    365      1.31    jruoho 		}
    366      1.31    jruoho 	}
    367      1.31    jruoho 
    368      1.31    jruoho 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    369       1.1    jruoho 
    370       1.1    jruoho 	return 0;
    371       1.1    jruoho }
    372       1.1    jruoho 
    373       1.1    jruoho int
    374      1.43    jruoho acpicpu_md_cstate_stop(void)
    375       1.1    jruoho {
    376       1.4    jruoho 	uint64_t xc;
    377      1.31    jruoho 	bool ipi;
    378       1.1    jruoho 
    379      1.31    jruoho 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    380      1.31    jruoho 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    381       1.1    jruoho 
    382       1.4    jruoho 	/*
    383       1.4    jruoho 	 * Run a cross-call to ensure that all CPUs are
    384       1.4    jruoho 	 * out from the ACPI idle-loop before detachment.
    385       1.4    jruoho 	 */
    386       1.4    jruoho 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    387       1.4    jruoho 	xc_wait(xc);
    388       1.1    jruoho 
    389       1.1    jruoho 	return 0;
    390       1.1    jruoho }
    391       1.1    jruoho 
    392       1.3    jruoho /*
    393      1.31    jruoho  * Called with interrupts disabled.
    394      1.31    jruoho  * Caller should enable interrupts after return.
    395       1.3    jruoho  */
    396       1.1    jruoho void
    397      1.43    jruoho acpicpu_md_cstate_enter(int method, int state)
    398       1.1    jruoho {
    399       1.3    jruoho 	struct cpu_info *ci = curcpu();
    400       1.1    jruoho 
    401       1.1    jruoho 	switch (method) {
    402       1.1    jruoho 
    403       1.1    jruoho 	case ACPICPU_C_STATE_FFH:
    404       1.3    jruoho 
    405       1.3    jruoho 		x86_enable_intr();
    406       1.3    jruoho 		x86_monitor(&ci->ci_want_resched, 0, 0);
    407       1.3    jruoho 
    408      1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    409       1.3    jruoho 			return;
    410       1.3    jruoho 
    411       1.1    jruoho 		x86_mwait((state - 1) << 4, 0);
    412       1.1    jruoho 		break;
    413       1.1    jruoho 
    414       1.1    jruoho 	case ACPICPU_C_STATE_HALT:
    415       1.3    jruoho 
    416      1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    417       1.3    jruoho 			return;
    418       1.3    jruoho 
    419       1.1    jruoho 		x86_stihlt();
    420       1.1    jruoho 		break;
    421       1.1    jruoho 	}
    422       1.1    jruoho }
    423       1.5    jruoho 
    424       1.5    jruoho int
    425      1.41    jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    426       1.5    jruoho {
    427      1.57    jruoho 	uint64_t xc;
    428      1.57    jruoho 
    429      1.57    jruoho 	/*
    430      1.57    jruoho 	 * Reset the APERF and MPERF counters.
    431      1.57    jruoho 	 */
    432      1.57    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    433      1.57    jruoho 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    434      1.57    jruoho 		xc_wait(xc);
    435      1.57    jruoho 	}
    436      1.57    jruoho 
    437      1.19    jruoho 	return acpicpu_md_pstate_sysctl_init();
    438       1.5    jruoho }
    439       1.5    jruoho 
    440       1.5    jruoho int
    441       1.5    jruoho acpicpu_md_pstate_stop(void)
    442       1.5    jruoho {
    443      1.19    jruoho 	if (acpicpu_log != NULL)
    444      1.19    jruoho 		sysctl_teardown(&acpicpu_log);
    445       1.5    jruoho 
    446       1.5    jruoho 	return 0;
    447       1.5    jruoho }
    448       1.5    jruoho 
    449       1.5    jruoho int
    450      1.55    jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    451       1.5    jruoho {
    452      1.56    jruoho 	struct cpu_info *ci = sc->sc_ci;
    453      1.15    jruoho 	struct acpicpu_pstate *ps, msr;
    454      1.18    jruoho 	uint32_t family, i = 0;
    455      1.57    jruoho 	uint64_t val;
    456      1.13    jruoho 
    457      1.15    jruoho 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    458      1.13    jruoho 
    459       1.5    jruoho 	switch (cpu_vendor) {
    460       1.5    jruoho 
    461      1.17    jruoho 	case CPUVENDOR_IDT:
    462       1.5    jruoho 	case CPUVENDOR_INTEL:
    463      1.33    jruoho 
    464      1.33    jruoho 		/*
    465      1.55    jruoho 		 * Make sure EST is enabled.
    466      1.55    jruoho 		 */
    467      1.55    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    468      1.55    jruoho 
    469      1.55    jruoho 			val = rdmsr(MSR_MISC_ENABLE);
    470      1.55    jruoho 
    471      1.55    jruoho 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    472      1.55    jruoho 
    473      1.55    jruoho 				val |= MSR_MISC_ENABLE_EST;
    474      1.55    jruoho 				wrmsr(MSR_MISC_ENABLE, val);
    475      1.55    jruoho 				val = rdmsr(MSR_MISC_ENABLE);
    476      1.55    jruoho 
    477      1.55    jruoho 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    478      1.55    jruoho 					return ENOTTY;
    479      1.55    jruoho 			}
    480      1.55    jruoho 		}
    481      1.55    jruoho 
    482      1.55    jruoho 		/*
    483      1.33    jruoho 		 * If the so-called Turbo Boost is present,
    484      1.33    jruoho 		 * the P0-state is always the "turbo state".
    485      1.51    jruoho 		 * It is shown as the P1 frequency + 1 MHz.
    486      1.33    jruoho 		 *
    487      1.33    jruoho 		 * For discussion, see:
    488      1.33    jruoho 		 *
    489      1.33    jruoho 		 *	Intel Corporation: Intel Turbo Boost Technology
    490      1.33    jruoho 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    491      1.33    jruoho 		 *	Based Processors. White Paper, November 2008.
    492      1.33    jruoho 		 */
    493      1.55    jruoho 		if (sc->sc_pstate_count >= 2 &&
    494      1.52    jruoho 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    495      1.51    jruoho 
    496      1.51    jruoho 			ps = &sc->sc_pstate[0];
    497      1.51    jruoho 
    498      1.51    jruoho 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    499      1.51    jruoho 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    500      1.51    jruoho 		}
    501      1.33    jruoho 
    502      1.15    jruoho 		msr.ps_control_addr = MSR_PERF_CTL;
    503      1.15    jruoho 		msr.ps_control_mask = __BITS(0, 15);
    504      1.15    jruoho 
    505      1.15    jruoho 		msr.ps_status_addr  = MSR_PERF_STATUS;
    506      1.15    jruoho 		msr.ps_status_mask  = __BITS(0, 15);
    507      1.13    jruoho 		break;
    508      1.13    jruoho 
    509      1.13    jruoho 	case CPUVENDOR_AMD:
    510      1.13    jruoho 
    511      1.33    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    512      1.33    jruoho 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    513      1.33    jruoho 
    514      1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    515      1.18    jruoho 
    516      1.18    jruoho 		if (family == 0xf)
    517      1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    518      1.18    jruoho 
    519      1.18    jruoho 		switch (family) {
    520      1.17    jruoho 
    521      1.32    jruoho 		case 0x0f:
    522      1.32    jruoho 			msr.ps_control_addr = MSR_0FH_CONTROL;
    523      1.32    jruoho 			msr.ps_status_addr  = MSR_0FH_STATUS;
    524      1.32    jruoho 			break;
    525      1.32    jruoho 
    526      1.17    jruoho 		case 0x10:
    527      1.17    jruoho 		case 0x11:
    528      1.40  jmcneill 		case 0x14: /* AMD Fusion */
    529      1.17    jruoho 			msr.ps_control_addr = MSR_10H_CONTROL;
    530      1.17    jruoho 			msr.ps_control_mask = __BITS(0, 2);
    531      1.17    jruoho 
    532      1.17    jruoho 			msr.ps_status_addr  = MSR_10H_STATUS;
    533      1.17    jruoho 			msr.ps_status_mask  = __BITS(0, 2);
    534      1.17    jruoho 			break;
    535      1.17    jruoho 
    536      1.17    jruoho 		default:
    537      1.55    jruoho 			/*
    538      1.55    jruoho 			 * If we have an unknown AMD CPU, rely on XPSS.
    539      1.55    jruoho 			 */
    540      1.17    jruoho 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    541      1.17    jruoho 				return EOPNOTSUPP;
    542      1.17    jruoho 		}
    543      1.13    jruoho 
    544      1.13    jruoho 		break;
    545      1.13    jruoho 
    546      1.13    jruoho 	default:
    547      1.13    jruoho 		return ENODEV;
    548      1.13    jruoho 	}
    549       1.5    jruoho 
    550      1.26    jruoho 	/*
    551      1.26    jruoho 	 * Fill the P-state structures with MSR addresses that are
    552      1.27    jruoho 	 * known to be correct. If we do not know the addresses,
    553      1.27    jruoho 	 * leave the values intact. If a vendor uses XPSS, we do
    554      1.39    jruoho 	 * not necessarily need to do anything to support new CPUs.
    555      1.26    jruoho 	 */
    556      1.15    jruoho 	while (i < sc->sc_pstate_count) {
    557      1.15    jruoho 
    558      1.15    jruoho 		ps = &sc->sc_pstate[i];
    559      1.15    jruoho 
    560      1.32    jruoho 		if (msr.ps_flags != 0)
    561      1.32    jruoho 			ps->ps_flags |= msr.ps_flags;
    562      1.32    jruoho 
    563      1.27    jruoho 		if (msr.ps_status_addr != 0)
    564      1.15    jruoho 			ps->ps_status_addr = msr.ps_status_addr;
    565      1.15    jruoho 
    566      1.27    jruoho 		if (msr.ps_status_mask != 0)
    567      1.15    jruoho 			ps->ps_status_mask = msr.ps_status_mask;
    568      1.15    jruoho 
    569      1.27    jruoho 		if (msr.ps_control_addr != 0)
    570      1.15    jruoho 			ps->ps_control_addr = msr.ps_control_addr;
    571      1.15    jruoho 
    572      1.27    jruoho 		if (msr.ps_control_mask != 0)
    573      1.15    jruoho 			ps->ps_control_mask = msr.ps_control_mask;
    574      1.15    jruoho 
    575      1.15    jruoho 		i++;
    576      1.15    jruoho 	}
    577      1.15    jruoho 
    578      1.15    jruoho 	return 0;
    579      1.15    jruoho }
    580      1.15    jruoho 
    581      1.55    jruoho /*
    582      1.55    jruoho  * Read the IA32_APERF and IA32_MPERF counters. The first
    583      1.55    jruoho  * increments at the rate of the fixed maximum frequency
    584      1.55    jruoho  * configured during the boot, whereas APERF counts at the
    585      1.55    jruoho  * rate of the actual frequency. Note that the MSRs must be
    586      1.55    jruoho  * read without delay, and that only the ratio between
    587      1.55    jruoho  * IA32_APERF and IA32_MPERF is architecturally defined.
    588      1.55    jruoho  *
    589      1.55    jruoho  * The function thus returns the percentage of the actual
    590      1.55    jruoho  * frequency in terms of the maximum frequency of the calling
    591      1.55    jruoho  * CPU since the last call. A value zero implies an error.
    592      1.55    jruoho  *
    593      1.55    jruoho  * For further details, refer to:
    594      1.55    jruoho  *
    595      1.55    jruoho  *	Intel Corporation: Intel 64 and IA-32 Architectures
    596      1.55    jruoho  *	Software Developer's Manual. Section 13.2, Volume 3A:
    597      1.55    jruoho  *	System Programming Guide, Part 1. July, 2008.
    598      1.55    jruoho  *
    599      1.55    jruoho  *	Advanced Micro Devices: BIOS and Kernel Developer's
    600      1.55    jruoho  *	Guide (BKDG) for AMD Family 10h Processors. Section
    601      1.55    jruoho  *	2.4.5, Revision 3.48, April 2010.
    602      1.55    jruoho  */
    603      1.41    jruoho uint8_t
    604      1.56    jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
    605      1.41    jruoho {
    606      1.55    jruoho 	struct acpicpu_softc *sc;
    607      1.41    jruoho 	uint64_t aperf, mperf;
    608      1.55    jruoho 	uint8_t rv = 0;
    609      1.55    jruoho 
    610      1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    611      1.41    jruoho 
    612      1.55    jruoho 	if (__predict_false(sc == NULL))
    613      1.50    jruoho 		return 0;
    614      1.50    jruoho 
    615      1.53    jruoho 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    616      1.50    jruoho 		return 0;
    617      1.41    jruoho 
    618      1.41    jruoho 	aperf = sc->sc_pstate_aperf;
    619      1.41    jruoho 	mperf = sc->sc_pstate_mperf;
    620      1.41    jruoho 
    621      1.56    jruoho 	x86_disable_intr();
    622      1.56    jruoho 
    623      1.50    jruoho 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    624      1.50    jruoho 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    625      1.41    jruoho 
    626      1.56    jruoho 	x86_enable_intr();
    627      1.56    jruoho 
    628      1.41    jruoho 	aperf = sc->sc_pstate_aperf - aperf;
    629      1.41    jruoho 	mperf = sc->sc_pstate_mperf - mperf;
    630      1.41    jruoho 
    631      1.41    jruoho 	if (__predict_true(mperf != 0))
    632      1.41    jruoho 		rv = (aperf * 100) / mperf;
    633      1.41    jruoho 
    634      1.41    jruoho 	return rv;
    635      1.41    jruoho }
    636      1.41    jruoho 
    637      1.41    jruoho static void
    638      1.56    jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    639      1.41    jruoho {
    640      1.56    jruoho 	struct cpu_info *ci = curcpu();
    641      1.55    jruoho 	struct acpicpu_softc *sc;
    642      1.41    jruoho 
    643      1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    644      1.41    jruoho 
    645      1.55    jruoho 	if (__predict_false(sc == NULL))
    646      1.55    jruoho 		return;
    647      1.46    jruoho 
    648      1.56    jruoho 	x86_disable_intr();
    649      1.46    jruoho 
    650      1.55    jruoho 	wrmsr(MSR_APERF, 0);
    651      1.55    jruoho 	wrmsr(MSR_MPERF, 0);
    652      1.41    jruoho 
    653      1.56    jruoho 	x86_enable_intr();
    654      1.56    jruoho 
    655      1.41    jruoho 	sc->sc_pstate_aperf = 0;
    656      1.41    jruoho 	sc->sc_pstate_mperf = 0;
    657      1.41    jruoho }
    658      1.41    jruoho 
    659      1.15    jruoho int
    660      1.15    jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    661      1.15    jruoho {
    662      1.15    jruoho 	struct acpicpu_pstate *ps = NULL;
    663      1.15    jruoho 	uint64_t val;
    664      1.15    jruoho 	uint32_t i;
    665      1.15    jruoho 
    666      1.32    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    667      1.32    jruoho 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    668      1.32    jruoho 
    669      1.49    jruoho 	/*
    670      1.49    jruoho 	 * Pick any P-state for the status address.
    671      1.49    jruoho 	*/
    672      1.15    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    673      1.15    jruoho 
    674      1.15    jruoho 		ps = &sc->sc_pstate[i];
    675      1.15    jruoho 
    676      1.32    jruoho 		if (__predict_true(ps->ps_freq != 0))
    677      1.15    jruoho 			break;
    678      1.15    jruoho 	}
    679      1.15    jruoho 
    680      1.15    jruoho 	if (__predict_false(ps == NULL))
    681      1.17    jruoho 		return ENODEV;
    682      1.15    jruoho 
    683      1.28    jruoho 	if (__predict_false(ps->ps_status_addr == 0))
    684      1.13    jruoho 		return EINVAL;
    685       1.5    jruoho 
    686      1.13    jruoho 	val = rdmsr(ps->ps_status_addr);
    687       1.5    jruoho 
    688      1.28    jruoho 	if (__predict_true(ps->ps_status_mask != 0))
    689      1.13    jruoho 		val = val & ps->ps_status_mask;
    690       1.5    jruoho 
    691      1.49    jruoho 	/*
    692      1.49    jruoho 	 * Search for the value from known P-states.
    693      1.49    jruoho 	 */
    694      1.13    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    695       1.5    jruoho 
    696      1.13    jruoho 		ps = &sc->sc_pstate[i];
    697       1.5    jruoho 
    698      1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    699      1.13    jruoho 			continue;
    700       1.5    jruoho 
    701      1.29    jruoho 		if (val == ps->ps_status) {
    702      1.13    jruoho 			*freq = ps->ps_freq;
    703      1.13    jruoho 			return 0;
    704      1.13    jruoho 		}
    705       1.5    jruoho 	}
    706       1.5    jruoho 
    707  1.59.2.1    cherry 	/*
    708  1.59.2.1    cherry 	 * If the value was not found, try APERF/MPERF.
    709  1.59.2.1    cherry 	 * The state is P0 if the return value is 100 %.
    710  1.59.2.1    cherry 	 */
    711  1.59.2.1    cherry 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    712  1.59.2.1    cherry 
    713  1.59.2.1    cherry 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    714  1.59.2.1    cherry 			*freq = sc->sc_pstate[0].ps_freq;
    715  1.59.2.1    cherry 			return 0;
    716  1.59.2.1    cherry 		}
    717  1.59.2.1    cherry 	}
    718  1.59.2.1    cherry 
    719      1.13    jruoho 	return EIO;
    720       1.5    jruoho }
    721       1.5    jruoho 
    722       1.5    jruoho int
    723       1.5    jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    724       1.5    jruoho {
    725      1.54    jruoho 	uint64_t val = 0;
    726       1.5    jruoho 
    727      1.37    jruoho 	if (__predict_false(ps->ps_control_addr == 0))
    728      1.37    jruoho 		return EINVAL;
    729      1.37    jruoho 
    730      1.32    jruoho 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    731      1.32    jruoho 		return acpicpu_md_pstate_fidvid_set(ps);
    732      1.32    jruoho 
    733      1.54    jruoho 	/*
    734      1.54    jruoho 	 * If the mask is set, do a read-modify-write.
    735      1.54    jruoho 	 */
    736      1.54    jruoho 	if (__predict_true(ps->ps_control_mask != 0)) {
    737      1.54    jruoho 		val = rdmsr(ps->ps_control_addr);
    738      1.54    jruoho 		val &= ~ps->ps_control_mask;
    739      1.54    jruoho 	}
    740       1.5    jruoho 
    741      1.54    jruoho 	val |= ps->ps_control;
    742      1.13    jruoho 
    743      1.49    jruoho 	wrmsr(ps->ps_control_addr, val);
    744      1.49    jruoho 	DELAY(ps->ps_latency);
    745      1.14    jruoho 
    746      1.49    jruoho 	return 0;
    747       1.5    jruoho }
    748      1.10    jruoho 
    749      1.32    jruoho static int
    750      1.32    jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    751      1.32    jruoho {
    752      1.32    jruoho 	struct acpicpu_pstate *ps;
    753      1.32    jruoho 	uint32_t fid, i, vid;
    754      1.32    jruoho 	uint32_t cfid, cvid;
    755      1.32    jruoho 	int rv;
    756      1.32    jruoho 
    757      1.32    jruoho 	/*
    758      1.32    jruoho 	 * AMD family 0Fh needs special treatment.
    759      1.32    jruoho 	 * While it wants to use ACPI, it does not
    760      1.32    jruoho 	 * comply with the ACPI specifications.
    761      1.32    jruoho 	 */
    762      1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    763      1.32    jruoho 
    764      1.32    jruoho 	if (rv != 0)
    765      1.32    jruoho 		return rv;
    766      1.32    jruoho 
    767      1.32    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    768      1.32    jruoho 
    769      1.32    jruoho 		ps = &sc->sc_pstate[i];
    770      1.32    jruoho 
    771      1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    772      1.32    jruoho 			continue;
    773      1.32    jruoho 
    774      1.32    jruoho 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    775      1.32    jruoho 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    776      1.32    jruoho 
    777      1.32    jruoho 		if (cfid == fid && cvid == vid) {
    778      1.32    jruoho 			*freq = ps->ps_freq;
    779      1.32    jruoho 			return 0;
    780      1.32    jruoho 		}
    781      1.32    jruoho 	}
    782      1.32    jruoho 
    783      1.32    jruoho 	return EIO;
    784      1.32    jruoho }
    785      1.32    jruoho 
    786      1.32    jruoho static int
    787      1.32    jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    788      1.32    jruoho {
    789      1.32    jruoho 	const uint64_t ctrl = ps->ps_control;
    790      1.32    jruoho 	uint32_t cfid, cvid, fid, i, irt;
    791      1.32    jruoho 	uint32_t pll, vco_cfid, vco_fid;
    792      1.32    jruoho 	uint32_t val, vid, vst;
    793      1.32    jruoho 	int rv;
    794      1.32    jruoho 
    795      1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    796      1.32    jruoho 
    797      1.32    jruoho 	if (rv != 0)
    798      1.32    jruoho 		return rv;
    799      1.32    jruoho 
    800      1.32    jruoho 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    801      1.32    jruoho 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    802      1.32    jruoho 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    803      1.32    jruoho 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    804      1.32    jruoho 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    805      1.32    jruoho 
    806      1.32    jruoho 	vst = vst * 20;
    807      1.32    jruoho 	pll = pll * 1000 / 5;
    808      1.32    jruoho 	irt = 10 * __BIT(irt);
    809      1.32    jruoho 
    810      1.32    jruoho 	/*
    811      1.32    jruoho 	 * Phase 1.
    812      1.32    jruoho 	 */
    813      1.32    jruoho 	while (cvid > vid) {
    814      1.32    jruoho 
    815      1.32    jruoho 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    816      1.32    jruoho 		val = (val > cvid) ? 0 : cvid - val;
    817      1.32    jruoho 
    818      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    819      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    820      1.32    jruoho 
    821      1.32    jruoho 		if (rv != 0)
    822      1.32    jruoho 			return rv;
    823      1.32    jruoho 	}
    824      1.32    jruoho 
    825      1.32    jruoho 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    826      1.32    jruoho 
    827      1.32    jruoho 	for (; i > 0 && cvid > 0; --i) {
    828      1.32    jruoho 
    829      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    830      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    831      1.32    jruoho 
    832      1.32    jruoho 		if (rv != 0)
    833      1.32    jruoho 			return rv;
    834      1.32    jruoho 	}
    835      1.32    jruoho 
    836      1.32    jruoho 	/*
    837      1.32    jruoho 	 * Phase 2.
    838      1.32    jruoho 	 */
    839      1.32    jruoho 	if (cfid != fid) {
    840      1.32    jruoho 
    841      1.32    jruoho 		vco_fid  = FID_TO_VCO_FID(fid);
    842      1.32    jruoho 		vco_cfid = FID_TO_VCO_FID(cfid);
    843      1.32    jruoho 
    844      1.32    jruoho 		while (abs(vco_fid - vco_cfid) > 2) {
    845      1.32    jruoho 
    846      1.32    jruoho 			if (fid <= cfid)
    847      1.32    jruoho 				val = cfid - 2;
    848      1.32    jruoho 			else {
    849      1.32    jruoho 				val = (cfid > 6) ? cfid + 2 :
    850      1.32    jruoho 				    FID_TO_VCO_FID(cfid) + 2;
    851      1.32    jruoho 			}
    852      1.32    jruoho 
    853      1.32    jruoho 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    854      1.32    jruoho 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    855      1.32    jruoho 
    856      1.32    jruoho 			if (rv != 0)
    857      1.32    jruoho 				return rv;
    858      1.32    jruoho 
    859      1.32    jruoho 			vco_cfid = FID_TO_VCO_FID(cfid);
    860      1.32    jruoho 		}
    861      1.32    jruoho 
    862      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    863      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    864      1.32    jruoho 
    865      1.32    jruoho 		if (rv != 0)
    866      1.32    jruoho 			return rv;
    867      1.32    jruoho 	}
    868      1.32    jruoho 
    869      1.32    jruoho 	/*
    870      1.32    jruoho 	 * Phase 3.
    871      1.32    jruoho 	 */
    872      1.32    jruoho 	if (cvid != vid) {
    873      1.32    jruoho 
    874      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    875      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    876      1.32    jruoho 
    877      1.32    jruoho 		if (rv != 0)
    878      1.32    jruoho 			return rv;
    879      1.32    jruoho 	}
    880      1.32    jruoho 
    881      1.32    jruoho 	return 0;
    882      1.32    jruoho }
    883      1.32    jruoho 
    884      1.32    jruoho static int
    885      1.32    jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    886      1.32    jruoho {
    887      1.32    jruoho 	int i = ACPICPU_P_STATE_RETRY * 100;
    888      1.32    jruoho 	uint64_t val;
    889      1.32    jruoho 
    890      1.32    jruoho 	do {
    891      1.32    jruoho 		val = rdmsr(MSR_0FH_STATUS);
    892      1.32    jruoho 
    893      1.32    jruoho 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    894      1.32    jruoho 
    895      1.32    jruoho 	if (i == 0)
    896      1.32    jruoho 		return EAGAIN;
    897      1.32    jruoho 
    898      1.32    jruoho 	if (cfid != NULL)
    899      1.32    jruoho 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    900      1.32    jruoho 
    901      1.32    jruoho 	if (cvid != NULL)
    902      1.32    jruoho 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    903      1.32    jruoho 
    904      1.32    jruoho 	return 0;
    905      1.32    jruoho }
    906      1.32    jruoho 
    907      1.32    jruoho static void
    908      1.32    jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
    909      1.32    jruoho     uint32_t vid, uint32_t cnt, uint32_t tmo)
    910      1.32    jruoho {
    911      1.49    jruoho 	uint64_t val = 0;
    912      1.32    jruoho 
    913      1.49    jruoho 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    914      1.49    jruoho 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    915      1.49    jruoho 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    916      1.49    jruoho 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    917      1.32    jruoho 
    918      1.49    jruoho 	wrmsr(MSR_0FH_CONTROL, val);
    919      1.32    jruoho 	DELAY(tmo);
    920      1.32    jruoho }
    921      1.32    jruoho 
    922      1.10    jruoho int
    923      1.10    jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    924      1.10    jruoho {
    925      1.10    jruoho 	struct acpicpu_tstate *ts;
    926      1.14    jruoho 	uint64_t val;
    927      1.10    jruoho 	uint32_t i;
    928      1.10    jruoho 
    929      1.14    jruoho 	val = rdmsr(MSR_THERM_CONTROL);
    930      1.10    jruoho 
    931      1.10    jruoho 	for (i = 0; i < sc->sc_tstate_count; i++) {
    932      1.10    jruoho 
    933      1.10    jruoho 		ts = &sc->sc_tstate[i];
    934      1.10    jruoho 
    935      1.10    jruoho 		if (ts->ts_percent == 0)
    936      1.10    jruoho 			continue;
    937      1.10    jruoho 
    938      1.29    jruoho 		if (val == ts->ts_status) {
    939      1.10    jruoho 			*percent = ts->ts_percent;
    940      1.10    jruoho 			return 0;
    941      1.10    jruoho 		}
    942      1.10    jruoho 	}
    943      1.10    jruoho 
    944      1.10    jruoho 	return EIO;
    945      1.10    jruoho }
    946      1.10    jruoho 
    947      1.10    jruoho int
    948      1.10    jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    949      1.10    jruoho {
    950      1.49    jruoho 	uint64_t val;
    951      1.49    jruoho 	uint8_t i;
    952      1.10    jruoho 
    953      1.49    jruoho 	val = ts->ts_control;
    954      1.49    jruoho 	val = val & __BITS(1, 4);
    955      1.10    jruoho 
    956      1.49    jruoho 	wrmsr(MSR_THERM_CONTROL, val);
    957      1.10    jruoho 
    958      1.30    jruoho 	if (ts->ts_status == 0) {
    959      1.30    jruoho 		DELAY(ts->ts_latency);
    960      1.10    jruoho 		return 0;
    961      1.30    jruoho 	}
    962      1.10    jruoho 
    963      1.10    jruoho 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    964      1.10    jruoho 
    965      1.14    jruoho 		val = rdmsr(MSR_THERM_CONTROL);
    966      1.10    jruoho 
    967      1.29    jruoho 		if (val == ts->ts_status)
    968      1.49    jruoho 			return 0;
    969      1.10    jruoho 
    970      1.10    jruoho 		DELAY(ts->ts_latency);
    971      1.10    jruoho 	}
    972      1.10    jruoho 
    973      1.49    jruoho 	return EAGAIN;
    974      1.10    jruoho }
    975      1.19    jruoho 
    976      1.19    jruoho /*
    977      1.19    jruoho  * A kludge for backwards compatibility.
    978      1.19    jruoho  */
    979      1.19    jruoho static int
    980      1.19    jruoho acpicpu_md_pstate_sysctl_init(void)
    981      1.19    jruoho {
    982      1.19    jruoho 	const struct sysctlnode	*fnode, *mnode, *rnode;
    983      1.19    jruoho 	const char *str;
    984      1.19    jruoho 	int rv;
    985      1.19    jruoho 
    986      1.19    jruoho 	switch (cpu_vendor) {
    987      1.19    jruoho 
    988      1.19    jruoho 	case CPUVENDOR_IDT:
    989      1.19    jruoho 	case CPUVENDOR_INTEL:
    990      1.19    jruoho 		str = "est";
    991      1.19    jruoho 		break;
    992      1.19    jruoho 
    993      1.19    jruoho 	case CPUVENDOR_AMD:
    994      1.19    jruoho 		str = "powernow";
    995      1.19    jruoho 		break;
    996      1.19    jruoho 
    997      1.19    jruoho 	default:
    998      1.19    jruoho 		return ENODEV;
    999      1.19    jruoho 	}
   1000      1.19    jruoho 
   1001      1.19    jruoho 
   1002      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1003      1.19    jruoho 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1004      1.19    jruoho 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1005      1.19    jruoho 
   1006      1.19    jruoho 	if (rv != 0)
   1007      1.19    jruoho 		goto fail;
   1008      1.19    jruoho 
   1009      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1010      1.19    jruoho 	    0, CTLTYPE_NODE, str, NULL,
   1011      1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1012      1.19    jruoho 
   1013      1.19    jruoho 	if (rv != 0)
   1014      1.19    jruoho 		goto fail;
   1015      1.19    jruoho 
   1016      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1017      1.19    jruoho 	    0, CTLTYPE_NODE, "frequency", NULL,
   1018      1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1019      1.19    jruoho 
   1020      1.19    jruoho 	if (rv != 0)
   1021      1.19    jruoho 		goto fail;
   1022      1.19    jruoho 
   1023      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1024      1.19    jruoho 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1025      1.19    jruoho 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1026      1.19    jruoho 
   1027      1.19    jruoho 	if (rv != 0)
   1028      1.19    jruoho 		goto fail;
   1029      1.19    jruoho 
   1030      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1031      1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1032      1.19    jruoho 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1033      1.19    jruoho 
   1034      1.19    jruoho 	if (rv != 0)
   1035      1.19    jruoho 		goto fail;
   1036      1.19    jruoho 
   1037      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1038      1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1039      1.19    jruoho 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1040      1.19    jruoho 
   1041      1.19    jruoho 	if (rv != 0)
   1042      1.19    jruoho 		goto fail;
   1043      1.19    jruoho 
   1044      1.19    jruoho 	return 0;
   1045      1.19    jruoho 
   1046      1.19    jruoho fail:
   1047      1.19    jruoho 	if (acpicpu_log != NULL) {
   1048      1.19    jruoho 		sysctl_teardown(&acpicpu_log);
   1049      1.19    jruoho 		acpicpu_log = NULL;
   1050      1.19    jruoho 	}
   1051      1.19    jruoho 
   1052      1.19    jruoho 	return rv;
   1053      1.19    jruoho }
   1054      1.19    jruoho 
   1055      1.19    jruoho static int
   1056      1.19    jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1057      1.19    jruoho {
   1058      1.19    jruoho 	struct cpu_info *ci = curcpu();
   1059      1.19    jruoho 	struct sysctlnode node;
   1060      1.19    jruoho 	uint32_t freq;
   1061      1.19    jruoho 	int err;
   1062      1.19    jruoho 
   1063      1.49    jruoho 	err = acpicpu_pstate_get(ci, &freq);
   1064      1.19    jruoho 
   1065      1.19    jruoho 	if (err != 0)
   1066      1.19    jruoho 		return err;
   1067      1.19    jruoho 
   1068      1.19    jruoho 	node = *rnode;
   1069      1.19    jruoho 	node.sysctl_data = &freq;
   1070      1.19    jruoho 
   1071      1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1072      1.19    jruoho 
   1073      1.19    jruoho 	if (err != 0 || newp == NULL)
   1074      1.19    jruoho 		return err;
   1075      1.19    jruoho 
   1076      1.19    jruoho 	return 0;
   1077      1.19    jruoho }
   1078      1.19    jruoho 
   1079      1.19    jruoho static int
   1080      1.19    jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1081      1.19    jruoho {
   1082      1.19    jruoho 	struct cpu_info *ci = curcpu();
   1083      1.19    jruoho 	struct sysctlnode node;
   1084      1.19    jruoho 	uint32_t freq;
   1085      1.19    jruoho 	int err;
   1086      1.19    jruoho 
   1087      1.49    jruoho 	err = acpicpu_pstate_get(ci, &freq);
   1088      1.19    jruoho 
   1089      1.19    jruoho 	if (err != 0)
   1090      1.19    jruoho 		return err;
   1091      1.19    jruoho 
   1092      1.19    jruoho 	node = *rnode;
   1093      1.19    jruoho 	node.sysctl_data = &freq;
   1094      1.19    jruoho 
   1095      1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1096      1.19    jruoho 
   1097      1.19    jruoho 	if (err != 0 || newp == NULL)
   1098      1.19    jruoho 		return err;
   1099      1.19    jruoho 
   1100      1.49    jruoho 	acpicpu_pstate_set(ci, freq);
   1101      1.19    jruoho 
   1102      1.19    jruoho 	return 0;
   1103      1.19    jruoho }
   1104      1.19    jruoho 
   1105      1.19    jruoho static int
   1106      1.19    jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1107      1.19    jruoho {
   1108      1.19    jruoho 	struct cpu_info *ci = curcpu();
   1109      1.19    jruoho 	struct acpicpu_softc *sc;
   1110      1.19    jruoho 	struct sysctlnode node;
   1111      1.19    jruoho 	char buf[1024];
   1112      1.19    jruoho 	size_t len;
   1113      1.19    jruoho 	uint32_t i;
   1114      1.19    jruoho 	int err;
   1115      1.19    jruoho 
   1116      1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1117      1.19    jruoho 
   1118      1.19    jruoho 	if (sc == NULL)
   1119      1.19    jruoho 		return ENXIO;
   1120      1.19    jruoho 
   1121      1.19    jruoho 	(void)memset(&buf, 0, sizeof(buf));
   1122      1.19    jruoho 
   1123      1.19    jruoho 	mutex_enter(&sc->sc_mtx);
   1124      1.19    jruoho 
   1125      1.19    jruoho 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1126      1.19    jruoho 
   1127      1.19    jruoho 		if (sc->sc_pstate[i].ps_freq == 0)
   1128      1.19    jruoho 			continue;
   1129      1.19    jruoho 
   1130      1.19    jruoho 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1131      1.19    jruoho 		    sc->sc_pstate[i].ps_freq,
   1132      1.19    jruoho 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1133      1.19    jruoho 	}
   1134      1.19    jruoho 
   1135      1.19    jruoho 	mutex_exit(&sc->sc_mtx);
   1136      1.19    jruoho 
   1137      1.19    jruoho 	node = *rnode;
   1138      1.19    jruoho 	node.sysctl_data = buf;
   1139      1.19    jruoho 
   1140      1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1141      1.19    jruoho 
   1142      1.19    jruoho 	if (err != 0 || newp == NULL)
   1143      1.19    jruoho 		return err;
   1144      1.19    jruoho 
   1145      1.19    jruoho 	return 0;
   1146      1.19    jruoho }
   1147      1.19    jruoho 
   1148