acpi_cpu_md.c revision 1.61 1 1.61 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.61 2011/06/12 10:11:52 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.61 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.61 2011/06/12 10:11:52 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.48 jruoho #include <sys/device.h>
35 1.1 jruoho #include <sys/kcore.h>
36 1.5 jruoho #include <sys/sysctl.h>
37 1.4 jruoho #include <sys/xcall.h>
38 1.1 jruoho
39 1.1 jruoho #include <x86/cpu.h>
40 1.5 jruoho #include <x86/cpufunc.h>
41 1.5 jruoho #include <x86/cputypes.h>
42 1.1 jruoho #include <x86/cpuvar.h>
43 1.5 jruoho #include <x86/cpu_msr.h>
44 1.1 jruoho #include <x86/machdep.h>
45 1.1 jruoho
46 1.1 jruoho #include <dev/acpi/acpica.h>
47 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
48 1.1 jruoho
49 1.12 jruoho #include <dev/pci/pcivar.h>
50 1.12 jruoho #include <dev/pci/pcidevs.h>
51 1.12 jruoho
52 1.38 jruoho #include <machine/acpi_machdep.h>
53 1.38 jruoho
54 1.35 jruoho /*
55 1.55 jruoho * Intel IA32_MISC_ENABLE.
56 1.55 jruoho */
57 1.55 jruoho #define MSR_MISC_ENABLE_EST __BIT(16)
58 1.55 jruoho #define MSR_MISC_ENABLE_TURBO __BIT(38)
59 1.55 jruoho
60 1.55 jruoho /*
61 1.35 jruoho * AMD C1E.
62 1.35 jruoho */
63 1.35 jruoho #define MSR_CMPHALT 0xc0010055
64 1.35 jruoho
65 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
66 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
67 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
68 1.33 jruoho
69 1.32 jruoho /*
70 1.40 jmcneill * AMD families 10h, 11h, and 14h
71 1.32 jruoho */
72 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
73 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
74 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
75 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
76 1.22 jruoho
77 1.32 jruoho /*
78 1.32 jruoho * AMD family 0Fh.
79 1.32 jruoho */
80 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
81 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
82 1.17 jruoho
83 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86 1.32 jruoho
87 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91 1.32 jruoho
92 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94 1.32 jruoho
95 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102 1.32 jruoho
103 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104 1.17 jruoho
105 1.5 jruoho static char native_idle_text[16];
106 1.5 jruoho void (*native_idle)(void) = NULL;
107 1.1 jruoho
108 1.58 dyoung static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
109 1.56 jruoho static void acpicpu_md_pstate_hwf_reset(void *, void *);
110 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
111 1.32 jruoho uint32_t *);
112 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
113 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
114 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
115 1.32 jruoho uint32_t, uint32_t);
116 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
117 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
118 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
119 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
120 1.5 jruoho
121 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
122 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
123 1.1 jruoho
124 1.48 jruoho struct cpu_info *
125 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
126 1.48 jruoho {
127 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
128 1.48 jruoho
129 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
130 1.48 jruoho return NULL;
131 1.48 jruoho
132 1.48 jruoho return cfaa->ci;
133 1.48 jruoho }
134 1.48 jruoho
135 1.48 jruoho struct cpu_info *
136 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
137 1.48 jruoho {
138 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
139 1.48 jruoho
140 1.48 jruoho return cfaa->ci;
141 1.48 jruoho }
142 1.48 jruoho
143 1.1 jruoho uint32_t
144 1.43 jruoho acpicpu_md_flags(void)
145 1.1 jruoho {
146 1.1 jruoho struct cpu_info *ci = curcpu();
147 1.12 jruoho struct pci_attach_args pa;
148 1.18 jruoho uint32_t family, val = 0;
149 1.21 jruoho uint32_t regs[4];
150 1.1 jruoho
151 1.38 jruoho if (acpi_md_ncpus() == 1)
152 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
153 1.1 jruoho
154 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
155 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
156 1.1 jruoho
157 1.39 jruoho /*
158 1.39 jruoho * By default, assume that the local APIC timer
159 1.39 jruoho * as well as TSC are stalled during C3 sleep.
160 1.39 jruoho */
161 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
162 1.22 jruoho
163 1.1 jruoho switch (cpu_vendor) {
164 1.1 jruoho
165 1.17 jruoho case CPUVENDOR_IDT:
166 1.22 jruoho
167 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
168 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
169 1.22 jruoho
170 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
171 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
172 1.22 jruoho
173 1.22 jruoho break;
174 1.22 jruoho
175 1.1 jruoho case CPUVENDOR_INTEL:
176 1.17 jruoho
177 1.39 jruoho /*
178 1.39 jruoho * Bus master control and arbitration should be
179 1.39 jruoho * available on all supported Intel CPUs (to be
180 1.39 jruoho * sure, this is double-checked later from the
181 1.39 jruoho * firmware data). These flags imply that it is
182 1.39 jruoho * not necessary to flush caches before C3 state.
183 1.39 jruoho */
184 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
185 1.22 jruoho
186 1.39 jruoho /*
187 1.39 jruoho * Check if we can use "native", MSR-based,
188 1.39 jruoho * access. If not, we have to resort to I/O.
189 1.39 jruoho */
190 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
191 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
192 1.5 jruoho
193 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
194 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
195 1.10 jruoho
196 1.22 jruoho /*
197 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
198 1.25 jruoho * Boost are available. Also see if we might have
199 1.25 jruoho * an invariant local APIC timer ("ARAT").
200 1.23 jruoho */
201 1.23 jruoho if (cpuid_level >= 0x06) {
202 1.23 jruoho
203 1.44 jruoho x86_cpuid(0x00000006, regs);
204 1.23 jruoho
205 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
206 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
207 1.23 jruoho
208 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
209 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
210 1.25 jruoho
211 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
212 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
213 1.23 jruoho }
214 1.23 jruoho
215 1.23 jruoho /*
216 1.22 jruoho * Detect whether TSC is invariant. If it is not,
217 1.22 jruoho * we keep the flag to note that TSC will not run
218 1.22 jruoho * at constant rate. Depending on the CPU, this may
219 1.22 jruoho * affect P- and T-state changes, but especially
220 1.22 jruoho * relevant are C-states; with variant TSC, states
221 1.24 jruoho * larger than C1 may completely stop the counter.
222 1.22 jruoho */
223 1.22 jruoho x86_cpuid(0x80000000, regs);
224 1.22 jruoho
225 1.22 jruoho if (regs[0] >= 0x80000007) {
226 1.22 jruoho
227 1.22 jruoho x86_cpuid(0x80000007, regs);
228 1.22 jruoho
229 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
230 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
231 1.22 jruoho }
232 1.22 jruoho
233 1.17 jruoho break;
234 1.12 jruoho
235 1.17 jruoho case CPUVENDOR_AMD:
236 1.17 jruoho
237 1.32 jruoho x86_cpuid(0x80000000, regs);
238 1.32 jruoho
239 1.32 jruoho if (regs[0] < 0x80000007)
240 1.32 jruoho break;
241 1.32 jruoho
242 1.32 jruoho x86_cpuid(0x80000007, regs);
243 1.32 jruoho
244 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
245 1.18 jruoho
246 1.18 jruoho if (family == 0xf)
247 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
248 1.18 jruoho
249 1.32 jruoho switch (family) {
250 1.1 jruoho
251 1.22 jruoho case 0x0f:
252 1.32 jruoho
253 1.45 jruoho /*
254 1.45 jruoho * Evaluate support for the "FID/VID
255 1.45 jruoho * algorithm" also used by powernow(4).
256 1.45 jruoho */
257 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
258 1.32 jruoho break;
259 1.32 jruoho
260 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
261 1.32 jruoho break;
262 1.32 jruoho
263 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
264 1.32 jruoho break;
265 1.32 jruoho
266 1.17 jruoho case 0x10:
267 1.17 jruoho case 0x11:
268 1.40 jmcneill val |= ACPICPU_FLAG_C_C1E;
269 1.40 jmcneill /* FALLTHROUGH */
270 1.40 jmcneill
271 1.40 jmcneill case 0x14: /* AMD Fusion */
272 1.1 jruoho
273 1.42 jruoho /*
274 1.42 jruoho * Like with Intel, detect invariant TSC,
275 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
276 1.42 jruoho * (Core Performance Boost), respectively.
277 1.42 jruoho */
278 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
279 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
280 1.22 jruoho
281 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
282 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
283 1.21 jruoho
284 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
285 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
286 1.35 jruoho
287 1.42 jruoho /*
288 1.42 jruoho * Also check for APERF and MPERF,
289 1.42 jruoho * first available in the family 10h.
290 1.42 jruoho */
291 1.42 jruoho if (cpuid_level >= 0x06) {
292 1.42 jruoho
293 1.42 jruoho x86_cpuid(0x00000006, regs);
294 1.42 jruoho
295 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
296 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
297 1.42 jruoho }
298 1.42 jruoho
299 1.35 jruoho break;
300 1.17 jruoho }
301 1.1 jruoho
302 1.1 jruoho break;
303 1.1 jruoho }
304 1.1 jruoho
305 1.12 jruoho /*
306 1.12 jruoho * There are several erratums for PIIX4.
307 1.12 jruoho */
308 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
309 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
310 1.12 jruoho
311 1.1 jruoho return val;
312 1.1 jruoho }
313 1.1 jruoho
314 1.12 jruoho static int
315 1.58 dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
316 1.12 jruoho {
317 1.12 jruoho
318 1.12 jruoho /*
319 1.12 jruoho * XXX: The pci_find_device(9) function only
320 1.12 jruoho * deals with attached devices. Change this
321 1.12 jruoho * to use something like pci_device_foreach().
322 1.12 jruoho */
323 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
324 1.12 jruoho return 0;
325 1.12 jruoho
326 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
327 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
328 1.12 jruoho return 1;
329 1.12 jruoho
330 1.12 jruoho return 0;
331 1.12 jruoho }
332 1.12 jruoho
333 1.35 jruoho void
334 1.43 jruoho acpicpu_md_quirk_c1e(void)
335 1.35 jruoho {
336 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
337 1.35 jruoho uint64_t val;
338 1.35 jruoho
339 1.35 jruoho val = rdmsr(MSR_CMPHALT);
340 1.35 jruoho
341 1.35 jruoho if ((val & c1e) != 0)
342 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
343 1.35 jruoho }
344 1.35 jruoho
345 1.1 jruoho int
346 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
347 1.1 jruoho {
348 1.1 jruoho const size_t size = sizeof(native_idle_text);
349 1.31 jruoho struct acpicpu_cstate *cs;
350 1.31 jruoho bool ipi = false;
351 1.31 jruoho int i;
352 1.1 jruoho
353 1.45 jruoho /*
354 1.45 jruoho * Save the cpu_idle(9) loop used by default.
355 1.45 jruoho */
356 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
357 1.31 jruoho
358 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
359 1.31 jruoho
360 1.31 jruoho cs = &sc->sc_cstate[i];
361 1.31 jruoho
362 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
363 1.31 jruoho ipi = true;
364 1.31 jruoho break;
365 1.31 jruoho }
366 1.31 jruoho }
367 1.31 jruoho
368 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
369 1.1 jruoho
370 1.1 jruoho return 0;
371 1.1 jruoho }
372 1.1 jruoho
373 1.1 jruoho int
374 1.43 jruoho acpicpu_md_cstate_stop(void)
375 1.1 jruoho {
376 1.4 jruoho uint64_t xc;
377 1.31 jruoho bool ipi;
378 1.1 jruoho
379 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
380 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
381 1.1 jruoho
382 1.4 jruoho /*
383 1.4 jruoho * Run a cross-call to ensure that all CPUs are
384 1.4 jruoho * out from the ACPI idle-loop before detachment.
385 1.4 jruoho */
386 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
387 1.4 jruoho xc_wait(xc);
388 1.1 jruoho
389 1.1 jruoho return 0;
390 1.1 jruoho }
391 1.1 jruoho
392 1.3 jruoho /*
393 1.31 jruoho * Called with interrupts disabled.
394 1.31 jruoho * Caller should enable interrupts after return.
395 1.3 jruoho */
396 1.1 jruoho void
397 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
398 1.1 jruoho {
399 1.3 jruoho struct cpu_info *ci = curcpu();
400 1.1 jruoho
401 1.1 jruoho switch (method) {
402 1.1 jruoho
403 1.1 jruoho case ACPICPU_C_STATE_FFH:
404 1.3 jruoho
405 1.3 jruoho x86_enable_intr();
406 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
407 1.3 jruoho
408 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
409 1.3 jruoho return;
410 1.3 jruoho
411 1.1 jruoho x86_mwait((state - 1) << 4, 0);
412 1.1 jruoho break;
413 1.1 jruoho
414 1.1 jruoho case ACPICPU_C_STATE_HALT:
415 1.3 jruoho
416 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
417 1.3 jruoho return;
418 1.3 jruoho
419 1.1 jruoho x86_stihlt();
420 1.1 jruoho break;
421 1.1 jruoho }
422 1.1 jruoho }
423 1.5 jruoho
424 1.5 jruoho int
425 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
426 1.5 jruoho {
427 1.57 jruoho uint64_t xc;
428 1.57 jruoho
429 1.57 jruoho /*
430 1.57 jruoho * Reset the APERF and MPERF counters.
431 1.57 jruoho */
432 1.57 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
433 1.57 jruoho xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
434 1.57 jruoho xc_wait(xc);
435 1.57 jruoho }
436 1.57 jruoho
437 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
438 1.5 jruoho }
439 1.5 jruoho
440 1.5 jruoho int
441 1.5 jruoho acpicpu_md_pstate_stop(void)
442 1.5 jruoho {
443 1.19 jruoho if (acpicpu_log != NULL)
444 1.19 jruoho sysctl_teardown(&acpicpu_log);
445 1.5 jruoho
446 1.5 jruoho return 0;
447 1.5 jruoho }
448 1.5 jruoho
449 1.5 jruoho int
450 1.55 jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
451 1.5 jruoho {
452 1.56 jruoho struct cpu_info *ci = sc->sc_ci;
453 1.15 jruoho struct acpicpu_pstate *ps, msr;
454 1.18 jruoho uint32_t family, i = 0;
455 1.57 jruoho uint64_t val;
456 1.13 jruoho
457 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
458 1.13 jruoho
459 1.5 jruoho switch (cpu_vendor) {
460 1.5 jruoho
461 1.17 jruoho case CPUVENDOR_IDT:
462 1.5 jruoho case CPUVENDOR_INTEL:
463 1.33 jruoho
464 1.33 jruoho /*
465 1.55 jruoho * Make sure EST is enabled.
466 1.55 jruoho */
467 1.55 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
468 1.55 jruoho
469 1.55 jruoho val = rdmsr(MSR_MISC_ENABLE);
470 1.55 jruoho
471 1.55 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0) {
472 1.55 jruoho
473 1.55 jruoho val |= MSR_MISC_ENABLE_EST;
474 1.55 jruoho wrmsr(MSR_MISC_ENABLE, val);
475 1.55 jruoho val = rdmsr(MSR_MISC_ENABLE);
476 1.55 jruoho
477 1.55 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0)
478 1.55 jruoho return ENOTTY;
479 1.55 jruoho }
480 1.55 jruoho }
481 1.55 jruoho
482 1.55 jruoho /*
483 1.33 jruoho * If the so-called Turbo Boost is present,
484 1.33 jruoho * the P0-state is always the "turbo state".
485 1.51 jruoho * It is shown as the P1 frequency + 1 MHz.
486 1.33 jruoho *
487 1.33 jruoho * For discussion, see:
488 1.33 jruoho *
489 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
490 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
491 1.33 jruoho * Based Processors. White Paper, November 2008.
492 1.33 jruoho */
493 1.55 jruoho if (sc->sc_pstate_count >= 2 &&
494 1.52 jruoho (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
495 1.51 jruoho
496 1.51 jruoho ps = &sc->sc_pstate[0];
497 1.51 jruoho
498 1.51 jruoho if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
499 1.51 jruoho ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
500 1.51 jruoho }
501 1.33 jruoho
502 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
503 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
504 1.15 jruoho
505 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
506 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
507 1.13 jruoho break;
508 1.13 jruoho
509 1.13 jruoho case CPUVENDOR_AMD:
510 1.13 jruoho
511 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
512 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
513 1.33 jruoho
514 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
515 1.18 jruoho
516 1.18 jruoho if (family == 0xf)
517 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
518 1.18 jruoho
519 1.18 jruoho switch (family) {
520 1.17 jruoho
521 1.32 jruoho case 0x0f:
522 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
523 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
524 1.32 jruoho break;
525 1.32 jruoho
526 1.17 jruoho case 0x10:
527 1.17 jruoho case 0x11:
528 1.40 jmcneill case 0x14: /* AMD Fusion */
529 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
530 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
531 1.17 jruoho
532 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
533 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
534 1.17 jruoho break;
535 1.17 jruoho
536 1.17 jruoho default:
537 1.55 jruoho /*
538 1.55 jruoho * If we have an unknown AMD CPU, rely on XPSS.
539 1.55 jruoho */
540 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
541 1.17 jruoho return EOPNOTSUPP;
542 1.17 jruoho }
543 1.13 jruoho
544 1.13 jruoho break;
545 1.13 jruoho
546 1.13 jruoho default:
547 1.13 jruoho return ENODEV;
548 1.13 jruoho }
549 1.5 jruoho
550 1.26 jruoho /*
551 1.26 jruoho * Fill the P-state structures with MSR addresses that are
552 1.27 jruoho * known to be correct. If we do not know the addresses,
553 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
554 1.39 jruoho * not necessarily need to do anything to support new CPUs.
555 1.26 jruoho */
556 1.15 jruoho while (i < sc->sc_pstate_count) {
557 1.15 jruoho
558 1.15 jruoho ps = &sc->sc_pstate[i];
559 1.15 jruoho
560 1.32 jruoho if (msr.ps_flags != 0)
561 1.32 jruoho ps->ps_flags |= msr.ps_flags;
562 1.32 jruoho
563 1.27 jruoho if (msr.ps_status_addr != 0)
564 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
565 1.15 jruoho
566 1.27 jruoho if (msr.ps_status_mask != 0)
567 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
568 1.15 jruoho
569 1.27 jruoho if (msr.ps_control_addr != 0)
570 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
571 1.15 jruoho
572 1.27 jruoho if (msr.ps_control_mask != 0)
573 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
574 1.15 jruoho
575 1.15 jruoho i++;
576 1.15 jruoho }
577 1.15 jruoho
578 1.15 jruoho return 0;
579 1.15 jruoho }
580 1.15 jruoho
581 1.55 jruoho /*
582 1.55 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
583 1.55 jruoho * increments at the rate of the fixed maximum frequency
584 1.55 jruoho * configured during the boot, whereas APERF counts at the
585 1.55 jruoho * rate of the actual frequency. Note that the MSRs must be
586 1.55 jruoho * read without delay, and that only the ratio between
587 1.55 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
588 1.55 jruoho *
589 1.55 jruoho * The function thus returns the percentage of the actual
590 1.55 jruoho * frequency in terms of the maximum frequency of the calling
591 1.55 jruoho * CPU since the last call. A value zero implies an error.
592 1.55 jruoho *
593 1.55 jruoho * For further details, refer to:
594 1.55 jruoho *
595 1.55 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
596 1.55 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
597 1.55 jruoho * System Programming Guide, Part 1. July, 2008.
598 1.55 jruoho *
599 1.55 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
600 1.55 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
601 1.55 jruoho * 2.4.5, Revision 3.48, April 2010.
602 1.55 jruoho */
603 1.41 jruoho uint8_t
604 1.56 jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
605 1.41 jruoho {
606 1.55 jruoho struct acpicpu_softc *sc;
607 1.41 jruoho uint64_t aperf, mperf;
608 1.55 jruoho uint8_t rv = 0;
609 1.55 jruoho
610 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
611 1.41 jruoho
612 1.55 jruoho if (__predict_false(sc == NULL))
613 1.50 jruoho return 0;
614 1.50 jruoho
615 1.53 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
616 1.50 jruoho return 0;
617 1.41 jruoho
618 1.41 jruoho aperf = sc->sc_pstate_aperf;
619 1.41 jruoho mperf = sc->sc_pstate_mperf;
620 1.41 jruoho
621 1.56 jruoho x86_disable_intr();
622 1.56 jruoho
623 1.50 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
624 1.50 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
625 1.41 jruoho
626 1.56 jruoho x86_enable_intr();
627 1.56 jruoho
628 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
629 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
630 1.41 jruoho
631 1.41 jruoho if (__predict_true(mperf != 0))
632 1.41 jruoho rv = (aperf * 100) / mperf;
633 1.41 jruoho
634 1.41 jruoho return rv;
635 1.41 jruoho }
636 1.41 jruoho
637 1.41 jruoho static void
638 1.56 jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
639 1.41 jruoho {
640 1.56 jruoho struct cpu_info *ci = curcpu();
641 1.55 jruoho struct acpicpu_softc *sc;
642 1.41 jruoho
643 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
644 1.41 jruoho
645 1.55 jruoho if (__predict_false(sc == NULL))
646 1.55 jruoho return;
647 1.46 jruoho
648 1.56 jruoho x86_disable_intr();
649 1.46 jruoho
650 1.55 jruoho wrmsr(MSR_APERF, 0);
651 1.55 jruoho wrmsr(MSR_MPERF, 0);
652 1.41 jruoho
653 1.56 jruoho x86_enable_intr();
654 1.56 jruoho
655 1.41 jruoho sc->sc_pstate_aperf = 0;
656 1.41 jruoho sc->sc_pstate_mperf = 0;
657 1.41 jruoho }
658 1.41 jruoho
659 1.15 jruoho int
660 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
661 1.15 jruoho {
662 1.15 jruoho struct acpicpu_pstate *ps = NULL;
663 1.15 jruoho uint64_t val;
664 1.15 jruoho uint32_t i;
665 1.15 jruoho
666 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
667 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
668 1.32 jruoho
669 1.49 jruoho /*
670 1.49 jruoho * Pick any P-state for the status address.
671 1.49 jruoho */
672 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
673 1.15 jruoho
674 1.15 jruoho ps = &sc->sc_pstate[i];
675 1.15 jruoho
676 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
677 1.15 jruoho break;
678 1.15 jruoho }
679 1.15 jruoho
680 1.15 jruoho if (__predict_false(ps == NULL))
681 1.17 jruoho return ENODEV;
682 1.15 jruoho
683 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
684 1.13 jruoho return EINVAL;
685 1.5 jruoho
686 1.13 jruoho val = rdmsr(ps->ps_status_addr);
687 1.5 jruoho
688 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
689 1.13 jruoho val = val & ps->ps_status_mask;
690 1.5 jruoho
691 1.49 jruoho /*
692 1.49 jruoho * Search for the value from known P-states.
693 1.49 jruoho */
694 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
695 1.5 jruoho
696 1.13 jruoho ps = &sc->sc_pstate[i];
697 1.5 jruoho
698 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
699 1.13 jruoho continue;
700 1.5 jruoho
701 1.29 jruoho if (val == ps->ps_status) {
702 1.13 jruoho *freq = ps->ps_freq;
703 1.13 jruoho return 0;
704 1.13 jruoho }
705 1.5 jruoho }
706 1.5 jruoho
707 1.60 jruoho /*
708 1.60 jruoho * If the value was not found, try APERF/MPERF.
709 1.60 jruoho * The state is P0 if the return value is 100 %.
710 1.60 jruoho */
711 1.60 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
712 1.60 jruoho
713 1.60 jruoho if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
714 1.60 jruoho *freq = sc->sc_pstate[0].ps_freq;
715 1.60 jruoho return 0;
716 1.60 jruoho }
717 1.60 jruoho }
718 1.60 jruoho
719 1.13 jruoho return EIO;
720 1.5 jruoho }
721 1.5 jruoho
722 1.5 jruoho int
723 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
724 1.5 jruoho {
725 1.54 jruoho uint64_t val = 0;
726 1.5 jruoho
727 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
728 1.37 jruoho return EINVAL;
729 1.37 jruoho
730 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
731 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
732 1.32 jruoho
733 1.54 jruoho /*
734 1.54 jruoho * If the mask is set, do a read-modify-write.
735 1.54 jruoho */
736 1.54 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
737 1.54 jruoho val = rdmsr(ps->ps_control_addr);
738 1.54 jruoho val &= ~ps->ps_control_mask;
739 1.54 jruoho }
740 1.5 jruoho
741 1.54 jruoho val |= ps->ps_control;
742 1.13 jruoho
743 1.49 jruoho wrmsr(ps->ps_control_addr, val);
744 1.49 jruoho DELAY(ps->ps_latency);
745 1.14 jruoho
746 1.49 jruoho return 0;
747 1.5 jruoho }
748 1.10 jruoho
749 1.32 jruoho static int
750 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
751 1.32 jruoho {
752 1.32 jruoho struct acpicpu_pstate *ps;
753 1.32 jruoho uint32_t fid, i, vid;
754 1.32 jruoho uint32_t cfid, cvid;
755 1.32 jruoho int rv;
756 1.32 jruoho
757 1.32 jruoho /*
758 1.32 jruoho * AMD family 0Fh needs special treatment.
759 1.32 jruoho * While it wants to use ACPI, it does not
760 1.32 jruoho * comply with the ACPI specifications.
761 1.32 jruoho */
762 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
763 1.32 jruoho
764 1.32 jruoho if (rv != 0)
765 1.32 jruoho return rv;
766 1.32 jruoho
767 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
768 1.32 jruoho
769 1.32 jruoho ps = &sc->sc_pstate[i];
770 1.32 jruoho
771 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
772 1.32 jruoho continue;
773 1.32 jruoho
774 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
775 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
776 1.32 jruoho
777 1.32 jruoho if (cfid == fid && cvid == vid) {
778 1.32 jruoho *freq = ps->ps_freq;
779 1.32 jruoho return 0;
780 1.32 jruoho }
781 1.32 jruoho }
782 1.32 jruoho
783 1.32 jruoho return EIO;
784 1.32 jruoho }
785 1.32 jruoho
786 1.32 jruoho static int
787 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
788 1.32 jruoho {
789 1.32 jruoho const uint64_t ctrl = ps->ps_control;
790 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
791 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
792 1.32 jruoho uint32_t val, vid, vst;
793 1.32 jruoho int rv;
794 1.32 jruoho
795 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
796 1.32 jruoho
797 1.32 jruoho if (rv != 0)
798 1.32 jruoho return rv;
799 1.32 jruoho
800 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
801 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
802 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
803 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
804 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
805 1.32 jruoho
806 1.32 jruoho vst = vst * 20;
807 1.32 jruoho pll = pll * 1000 / 5;
808 1.32 jruoho irt = 10 * __BIT(irt);
809 1.32 jruoho
810 1.32 jruoho /*
811 1.32 jruoho * Phase 1.
812 1.32 jruoho */
813 1.32 jruoho while (cvid > vid) {
814 1.32 jruoho
815 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
816 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
817 1.32 jruoho
818 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
819 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
820 1.32 jruoho
821 1.32 jruoho if (rv != 0)
822 1.32 jruoho return rv;
823 1.32 jruoho }
824 1.32 jruoho
825 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
826 1.32 jruoho
827 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
828 1.32 jruoho
829 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
830 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
831 1.32 jruoho
832 1.32 jruoho if (rv != 0)
833 1.32 jruoho return rv;
834 1.32 jruoho }
835 1.32 jruoho
836 1.32 jruoho /*
837 1.32 jruoho * Phase 2.
838 1.32 jruoho */
839 1.32 jruoho if (cfid != fid) {
840 1.32 jruoho
841 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
842 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
843 1.32 jruoho
844 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
845 1.32 jruoho
846 1.32 jruoho if (fid <= cfid)
847 1.32 jruoho val = cfid - 2;
848 1.32 jruoho else {
849 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
850 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
851 1.32 jruoho }
852 1.32 jruoho
853 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
854 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
855 1.32 jruoho
856 1.32 jruoho if (rv != 0)
857 1.32 jruoho return rv;
858 1.32 jruoho
859 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
860 1.32 jruoho }
861 1.32 jruoho
862 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
863 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
864 1.32 jruoho
865 1.32 jruoho if (rv != 0)
866 1.32 jruoho return rv;
867 1.32 jruoho }
868 1.32 jruoho
869 1.32 jruoho /*
870 1.32 jruoho * Phase 3.
871 1.32 jruoho */
872 1.32 jruoho if (cvid != vid) {
873 1.32 jruoho
874 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
875 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
876 1.32 jruoho
877 1.32 jruoho if (rv != 0)
878 1.32 jruoho return rv;
879 1.32 jruoho }
880 1.32 jruoho
881 1.32 jruoho return 0;
882 1.32 jruoho }
883 1.32 jruoho
884 1.32 jruoho static int
885 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
886 1.32 jruoho {
887 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
888 1.32 jruoho uint64_t val;
889 1.32 jruoho
890 1.32 jruoho do {
891 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
892 1.32 jruoho
893 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
894 1.32 jruoho
895 1.32 jruoho if (i == 0)
896 1.32 jruoho return EAGAIN;
897 1.32 jruoho
898 1.32 jruoho if (cfid != NULL)
899 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
900 1.32 jruoho
901 1.32 jruoho if (cvid != NULL)
902 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
903 1.32 jruoho
904 1.32 jruoho return 0;
905 1.32 jruoho }
906 1.32 jruoho
907 1.32 jruoho static void
908 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
909 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
910 1.32 jruoho {
911 1.49 jruoho uint64_t val = 0;
912 1.32 jruoho
913 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
914 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
915 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
916 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
917 1.32 jruoho
918 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
919 1.32 jruoho DELAY(tmo);
920 1.32 jruoho }
921 1.32 jruoho
922 1.10 jruoho int
923 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
924 1.10 jruoho {
925 1.10 jruoho struct acpicpu_tstate *ts;
926 1.14 jruoho uint64_t val;
927 1.10 jruoho uint32_t i;
928 1.10 jruoho
929 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
930 1.10 jruoho
931 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
932 1.10 jruoho
933 1.10 jruoho ts = &sc->sc_tstate[i];
934 1.10 jruoho
935 1.10 jruoho if (ts->ts_percent == 0)
936 1.10 jruoho continue;
937 1.10 jruoho
938 1.29 jruoho if (val == ts->ts_status) {
939 1.10 jruoho *percent = ts->ts_percent;
940 1.10 jruoho return 0;
941 1.10 jruoho }
942 1.10 jruoho }
943 1.10 jruoho
944 1.10 jruoho return EIO;
945 1.10 jruoho }
946 1.10 jruoho
947 1.10 jruoho int
948 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
949 1.10 jruoho {
950 1.49 jruoho uint64_t val;
951 1.49 jruoho uint8_t i;
952 1.10 jruoho
953 1.49 jruoho val = ts->ts_control;
954 1.49 jruoho val = val & __BITS(1, 4);
955 1.10 jruoho
956 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
957 1.10 jruoho
958 1.30 jruoho if (ts->ts_status == 0) {
959 1.30 jruoho DELAY(ts->ts_latency);
960 1.10 jruoho return 0;
961 1.30 jruoho }
962 1.10 jruoho
963 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
964 1.10 jruoho
965 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
966 1.10 jruoho
967 1.29 jruoho if (val == ts->ts_status)
968 1.49 jruoho return 0;
969 1.10 jruoho
970 1.10 jruoho DELAY(ts->ts_latency);
971 1.10 jruoho }
972 1.10 jruoho
973 1.49 jruoho return EAGAIN;
974 1.10 jruoho }
975 1.19 jruoho
976 1.19 jruoho /*
977 1.19 jruoho * A kludge for backwards compatibility.
978 1.19 jruoho */
979 1.19 jruoho static int
980 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
981 1.19 jruoho {
982 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
983 1.19 jruoho const char *str;
984 1.19 jruoho int rv;
985 1.19 jruoho
986 1.19 jruoho switch (cpu_vendor) {
987 1.19 jruoho
988 1.19 jruoho case CPUVENDOR_IDT:
989 1.19 jruoho case CPUVENDOR_INTEL:
990 1.19 jruoho str = "est";
991 1.19 jruoho break;
992 1.19 jruoho
993 1.19 jruoho case CPUVENDOR_AMD:
994 1.19 jruoho str = "powernow";
995 1.19 jruoho break;
996 1.19 jruoho
997 1.19 jruoho default:
998 1.19 jruoho return ENODEV;
999 1.19 jruoho }
1000 1.19 jruoho
1001 1.19 jruoho
1002 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1003 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1004 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1005 1.19 jruoho
1006 1.19 jruoho if (rv != 0)
1007 1.19 jruoho goto fail;
1008 1.19 jruoho
1009 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1010 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1011 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1012 1.19 jruoho
1013 1.19 jruoho if (rv != 0)
1014 1.19 jruoho goto fail;
1015 1.19 jruoho
1016 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1017 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1018 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1019 1.19 jruoho
1020 1.19 jruoho if (rv != 0)
1021 1.19 jruoho goto fail;
1022 1.19 jruoho
1023 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1024 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1025 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1026 1.19 jruoho
1027 1.19 jruoho if (rv != 0)
1028 1.19 jruoho goto fail;
1029 1.19 jruoho
1030 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1031 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1032 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1033 1.19 jruoho
1034 1.19 jruoho if (rv != 0)
1035 1.19 jruoho goto fail;
1036 1.19 jruoho
1037 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1038 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1039 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1040 1.19 jruoho
1041 1.19 jruoho if (rv != 0)
1042 1.19 jruoho goto fail;
1043 1.19 jruoho
1044 1.19 jruoho return 0;
1045 1.19 jruoho
1046 1.19 jruoho fail:
1047 1.19 jruoho if (acpicpu_log != NULL) {
1048 1.19 jruoho sysctl_teardown(&acpicpu_log);
1049 1.19 jruoho acpicpu_log = NULL;
1050 1.19 jruoho }
1051 1.19 jruoho
1052 1.19 jruoho return rv;
1053 1.19 jruoho }
1054 1.19 jruoho
1055 1.19 jruoho static int
1056 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1057 1.19 jruoho {
1058 1.19 jruoho struct cpu_info *ci = curcpu();
1059 1.19 jruoho struct sysctlnode node;
1060 1.19 jruoho uint32_t freq;
1061 1.19 jruoho int err;
1062 1.19 jruoho
1063 1.49 jruoho err = acpicpu_pstate_get(ci, &freq);
1064 1.19 jruoho
1065 1.19 jruoho if (err != 0)
1066 1.19 jruoho return err;
1067 1.19 jruoho
1068 1.19 jruoho node = *rnode;
1069 1.19 jruoho node.sysctl_data = &freq;
1070 1.19 jruoho
1071 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1072 1.19 jruoho
1073 1.19 jruoho if (err != 0 || newp == NULL)
1074 1.19 jruoho return err;
1075 1.19 jruoho
1076 1.19 jruoho return 0;
1077 1.19 jruoho }
1078 1.19 jruoho
1079 1.19 jruoho static int
1080 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1081 1.19 jruoho {
1082 1.19 jruoho struct cpu_info *ci = curcpu();
1083 1.19 jruoho struct sysctlnode node;
1084 1.19 jruoho uint32_t freq;
1085 1.19 jruoho int err;
1086 1.19 jruoho
1087 1.49 jruoho err = acpicpu_pstate_get(ci, &freq);
1088 1.19 jruoho
1089 1.19 jruoho if (err != 0)
1090 1.19 jruoho return err;
1091 1.19 jruoho
1092 1.19 jruoho node = *rnode;
1093 1.19 jruoho node.sysctl_data = &freq;
1094 1.19 jruoho
1095 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1096 1.19 jruoho
1097 1.19 jruoho if (err != 0 || newp == NULL)
1098 1.19 jruoho return err;
1099 1.19 jruoho
1100 1.49 jruoho acpicpu_pstate_set(ci, freq);
1101 1.19 jruoho
1102 1.19 jruoho return 0;
1103 1.19 jruoho }
1104 1.19 jruoho
1105 1.19 jruoho static int
1106 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1107 1.19 jruoho {
1108 1.19 jruoho struct cpu_info *ci = curcpu();
1109 1.19 jruoho struct acpicpu_softc *sc;
1110 1.19 jruoho struct sysctlnode node;
1111 1.19 jruoho char buf[1024];
1112 1.19 jruoho size_t len;
1113 1.19 jruoho uint32_t i;
1114 1.19 jruoho int err;
1115 1.19 jruoho
1116 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1117 1.19 jruoho
1118 1.19 jruoho if (sc == NULL)
1119 1.19 jruoho return ENXIO;
1120 1.19 jruoho
1121 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1122 1.19 jruoho
1123 1.19 jruoho mutex_enter(&sc->sc_mtx);
1124 1.19 jruoho
1125 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1126 1.19 jruoho
1127 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1128 1.19 jruoho continue;
1129 1.19 jruoho
1130 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1131 1.19 jruoho sc->sc_pstate[i].ps_freq,
1132 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1133 1.19 jruoho }
1134 1.19 jruoho
1135 1.19 jruoho mutex_exit(&sc->sc_mtx);
1136 1.19 jruoho
1137 1.19 jruoho node = *rnode;
1138 1.19 jruoho node.sysctl_data = buf;
1139 1.19 jruoho
1140 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1141 1.19 jruoho
1142 1.19 jruoho if (err != 0 || newp == NULL)
1143 1.19 jruoho return err;
1144 1.19 jruoho
1145 1.19 jruoho return 0;
1146 1.19 jruoho }
1147 1.19 jruoho
1148