acpi_cpu_md.c revision 1.68 1 1.68 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.68 2011/10/18 05:08:24 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.68 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.68 2011/10/18 05:08:24 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.68 jruoho #include <sys/cpufreq.h>
35 1.48 jruoho #include <sys/device.h>
36 1.1 jruoho #include <sys/kcore.h>
37 1.5 jruoho #include <sys/sysctl.h>
38 1.4 jruoho #include <sys/xcall.h>
39 1.1 jruoho
40 1.1 jruoho #include <x86/cpu.h>
41 1.5 jruoho #include <x86/cpufunc.h>
42 1.5 jruoho #include <x86/cputypes.h>
43 1.1 jruoho #include <x86/cpuvar.h>
44 1.5 jruoho #include <x86/cpu_msr.h>
45 1.1 jruoho #include <x86/machdep.h>
46 1.1 jruoho
47 1.1 jruoho #include <dev/acpi/acpica.h>
48 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
49 1.1 jruoho
50 1.12 jruoho #include <dev/pci/pcivar.h>
51 1.12 jruoho #include <dev/pci/pcidevs.h>
52 1.12 jruoho
53 1.38 jruoho #include <machine/acpi_machdep.h>
54 1.38 jruoho
55 1.35 jruoho /*
56 1.55 jruoho * Intel IA32_MISC_ENABLE.
57 1.55 jruoho */
58 1.55 jruoho #define MSR_MISC_ENABLE_EST __BIT(16)
59 1.55 jruoho #define MSR_MISC_ENABLE_TURBO __BIT(38)
60 1.55 jruoho
61 1.55 jruoho /*
62 1.35 jruoho * AMD C1E.
63 1.35 jruoho */
64 1.35 jruoho #define MSR_CMPHALT 0xc0010055
65 1.35 jruoho
66 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
67 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
68 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
69 1.33 jruoho
70 1.32 jruoho /*
71 1.40 jmcneill * AMD families 10h, 11h, and 14h
72 1.32 jruoho */
73 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
74 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
75 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
76 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
77 1.22 jruoho
78 1.32 jruoho /*
79 1.32 jruoho * AMD family 0Fh.
80 1.32 jruoho */
81 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
82 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
83 1.17 jruoho
84 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87 1.32 jruoho
88 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92 1.32 jruoho
93 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95 1.32 jruoho
96 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103 1.32 jruoho
104 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105 1.17 jruoho
106 1.5 jruoho static char native_idle_text[16];
107 1.5 jruoho void (*native_idle)(void) = NULL;
108 1.1 jruoho
109 1.58 dyoung static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
110 1.67 jruoho static void acpicpu_md_quirk_amd(struct acpicpu_pstate *, uint32_t);
111 1.56 jruoho static void acpicpu_md_pstate_hwf_reset(void *, void *);
112 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
113 1.32 jruoho uint32_t *);
114 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
115 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
116 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
117 1.32 jruoho uint32_t, uint32_t);
118 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
119 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
120 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
121 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
122 1.5 jruoho
123 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
124 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
125 1.1 jruoho
126 1.48 jruoho struct cpu_info *
127 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
128 1.48 jruoho {
129 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
130 1.48 jruoho
131 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
132 1.48 jruoho return NULL;
133 1.48 jruoho
134 1.48 jruoho return cfaa->ci;
135 1.48 jruoho }
136 1.48 jruoho
137 1.48 jruoho struct cpu_info *
138 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
139 1.48 jruoho {
140 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
141 1.48 jruoho
142 1.48 jruoho return cfaa->ci;
143 1.48 jruoho }
144 1.48 jruoho
145 1.1 jruoho uint32_t
146 1.43 jruoho acpicpu_md_flags(void)
147 1.1 jruoho {
148 1.1 jruoho struct cpu_info *ci = curcpu();
149 1.12 jruoho struct pci_attach_args pa;
150 1.18 jruoho uint32_t family, val = 0;
151 1.21 jruoho uint32_t regs[4];
152 1.66 jruoho uint64_t msr;
153 1.1 jruoho
154 1.38 jruoho if (acpi_md_ncpus() == 1)
155 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
156 1.1 jruoho
157 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
158 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
159 1.1 jruoho
160 1.39 jruoho /*
161 1.39 jruoho * By default, assume that the local APIC timer
162 1.39 jruoho * as well as TSC are stalled during C3 sleep.
163 1.39 jruoho */
164 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
165 1.22 jruoho
166 1.1 jruoho switch (cpu_vendor) {
167 1.1 jruoho
168 1.17 jruoho case CPUVENDOR_IDT:
169 1.22 jruoho
170 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
171 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
172 1.22 jruoho
173 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
174 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
175 1.22 jruoho
176 1.22 jruoho break;
177 1.22 jruoho
178 1.1 jruoho case CPUVENDOR_INTEL:
179 1.17 jruoho
180 1.39 jruoho /*
181 1.39 jruoho * Bus master control and arbitration should be
182 1.39 jruoho * available on all supported Intel CPUs (to be
183 1.39 jruoho * sure, this is double-checked later from the
184 1.39 jruoho * firmware data). These flags imply that it is
185 1.39 jruoho * not necessary to flush caches before C3 state.
186 1.39 jruoho */
187 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
188 1.22 jruoho
189 1.39 jruoho /*
190 1.39 jruoho * Check if we can use "native", MSR-based,
191 1.39 jruoho * access. If not, we have to resort to I/O.
192 1.39 jruoho */
193 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
194 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
195 1.5 jruoho
196 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
197 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
198 1.10 jruoho
199 1.22 jruoho /*
200 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
201 1.25 jruoho * Boost are available. Also see if we might have
202 1.25 jruoho * an invariant local APIC timer ("ARAT").
203 1.23 jruoho */
204 1.23 jruoho if (cpuid_level >= 0x06) {
205 1.23 jruoho
206 1.44 jruoho x86_cpuid(0x00000006, regs);
207 1.23 jruoho
208 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
209 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
210 1.23 jruoho
211 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
212 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
213 1.25 jruoho
214 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
215 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
216 1.23 jruoho }
217 1.23 jruoho
218 1.23 jruoho /*
219 1.22 jruoho * Detect whether TSC is invariant. If it is not,
220 1.22 jruoho * we keep the flag to note that TSC will not run
221 1.22 jruoho * at constant rate. Depending on the CPU, this may
222 1.22 jruoho * affect P- and T-state changes, but especially
223 1.22 jruoho * relevant are C-states; with variant TSC, states
224 1.24 jruoho * larger than C1 may completely stop the counter.
225 1.22 jruoho */
226 1.22 jruoho x86_cpuid(0x80000000, regs);
227 1.22 jruoho
228 1.22 jruoho if (regs[0] >= 0x80000007) {
229 1.22 jruoho
230 1.22 jruoho x86_cpuid(0x80000007, regs);
231 1.22 jruoho
232 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
233 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
234 1.22 jruoho }
235 1.22 jruoho
236 1.17 jruoho break;
237 1.12 jruoho
238 1.17 jruoho case CPUVENDOR_AMD:
239 1.17 jruoho
240 1.32 jruoho x86_cpuid(0x80000000, regs);
241 1.32 jruoho
242 1.32 jruoho if (regs[0] < 0x80000007)
243 1.32 jruoho break;
244 1.32 jruoho
245 1.32 jruoho x86_cpuid(0x80000007, regs);
246 1.32 jruoho
247 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
248 1.18 jruoho
249 1.18 jruoho if (family == 0xf)
250 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
251 1.18 jruoho
252 1.32 jruoho switch (family) {
253 1.1 jruoho
254 1.22 jruoho case 0x0f:
255 1.32 jruoho
256 1.45 jruoho /*
257 1.45 jruoho * Evaluate support for the "FID/VID
258 1.45 jruoho * algorithm" also used by powernow(4).
259 1.45 jruoho */
260 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
261 1.32 jruoho break;
262 1.32 jruoho
263 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
264 1.32 jruoho break;
265 1.32 jruoho
266 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
267 1.32 jruoho break;
268 1.32 jruoho
269 1.17 jruoho case 0x10:
270 1.17 jruoho case 0x11:
271 1.66 jruoho
272 1.66 jruoho if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
273 1.66 jruoho val |= ACPICPU_FLAG_C_C1E;
274 1.66 jruoho
275 1.40 jmcneill /* FALLTHROUGH */
276 1.40 jmcneill
277 1.40 jmcneill case 0x14: /* AMD Fusion */
278 1.1 jruoho
279 1.42 jruoho /*
280 1.42 jruoho * Like with Intel, detect invariant TSC,
281 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
282 1.42 jruoho * (Core Performance Boost), respectively.
283 1.42 jruoho */
284 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
285 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
286 1.22 jruoho
287 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
288 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
289 1.21 jruoho
290 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
291 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
292 1.35 jruoho
293 1.42 jruoho /*
294 1.42 jruoho * Also check for APERF and MPERF,
295 1.42 jruoho * first available in the family 10h.
296 1.42 jruoho */
297 1.42 jruoho if (cpuid_level >= 0x06) {
298 1.42 jruoho
299 1.42 jruoho x86_cpuid(0x00000006, regs);
300 1.42 jruoho
301 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
302 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
303 1.42 jruoho }
304 1.42 jruoho
305 1.35 jruoho break;
306 1.17 jruoho }
307 1.1 jruoho
308 1.1 jruoho break;
309 1.1 jruoho }
310 1.1 jruoho
311 1.12 jruoho /*
312 1.12 jruoho * There are several erratums for PIIX4.
313 1.12 jruoho */
314 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
315 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
316 1.12 jruoho
317 1.1 jruoho return val;
318 1.1 jruoho }
319 1.1 jruoho
320 1.12 jruoho static int
321 1.58 dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
322 1.12 jruoho {
323 1.12 jruoho
324 1.12 jruoho /*
325 1.12 jruoho * XXX: The pci_find_device(9) function only
326 1.12 jruoho * deals with attached devices. Change this
327 1.12 jruoho * to use something like pci_device_foreach().
328 1.12 jruoho */
329 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
330 1.12 jruoho return 0;
331 1.12 jruoho
332 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
333 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
334 1.12 jruoho return 1;
335 1.12 jruoho
336 1.12 jruoho return 0;
337 1.12 jruoho }
338 1.12 jruoho
339 1.67 jruoho static void
340 1.67 jruoho acpicpu_md_quirk_amd(struct acpicpu_pstate *ps, uint32_t i)
341 1.67 jruoho {
342 1.67 jruoho struct cpu_info *ci = &cpu_info_primary;
343 1.67 jruoho uint32_t family, fid, freq, did, zeta;
344 1.67 jruoho uint64_t val;
345 1.67 jruoho
346 1.67 jruoho if (i > 7 || cpu_vendor != CPUVENDOR_AMD)
347 1.67 jruoho return;
348 1.67 jruoho
349 1.67 jruoho family = CPUID2FAMILY(ci->ci_signature);
350 1.67 jruoho
351 1.67 jruoho if (family == 0xf)
352 1.67 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
353 1.67 jruoho
354 1.67 jruoho switch (family) {
355 1.67 jruoho
356 1.67 jruoho case 0x10:
357 1.67 jruoho zeta = 0x10;
358 1.67 jruoho break;
359 1.67 jruoho
360 1.67 jruoho case 0x11:
361 1.67 jruoho zeta = 0x08;
362 1.67 jruoho break;
363 1.67 jruoho
364 1.67 jruoho default:
365 1.67 jruoho return;
366 1.67 jruoho }
367 1.67 jruoho
368 1.67 jruoho /*
369 1.67 jruoho * The following eight P-state control MSRs define
370 1.67 jruoho * the static per-core values; the MSB indicates
371 1.67 jruoho * whether the state is enabled, and the first eight
372 1.67 jruoho * bits define the frequency divisor and multiplier.
373 1.67 jruoho */
374 1.67 jruoho val = rdmsr(MSR_10H_CONFIG + i);
375 1.67 jruoho
376 1.67 jruoho if ((val & __BIT(63)) == 0)
377 1.67 jruoho return;
378 1.67 jruoho
379 1.67 jruoho fid = __SHIFTOUT(val, __BITS(0, 5));
380 1.67 jruoho did = __SHIFTOUT(val, __BITS(6, 8));
381 1.67 jruoho
382 1.67 jruoho freq = 100 * (fid + zeta) >> did;
383 1.67 jruoho
384 1.67 jruoho if (freq != 0 && ps->ps_freq != freq)
385 1.67 jruoho ps->ps_freq = freq;
386 1.67 jruoho }
387 1.67 jruoho
388 1.35 jruoho void
389 1.43 jruoho acpicpu_md_quirk_c1e(void)
390 1.35 jruoho {
391 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
392 1.35 jruoho uint64_t val;
393 1.35 jruoho
394 1.66 jruoho val = rdmsr(MSR_CMPHALT);
395 1.35 jruoho
396 1.35 jruoho if ((val & c1e) != 0)
397 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
398 1.35 jruoho }
399 1.35 jruoho
400 1.1 jruoho int
401 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
402 1.1 jruoho {
403 1.1 jruoho const size_t size = sizeof(native_idle_text);
404 1.31 jruoho struct acpicpu_cstate *cs;
405 1.31 jruoho bool ipi = false;
406 1.31 jruoho int i;
407 1.1 jruoho
408 1.45 jruoho /*
409 1.45 jruoho * Save the cpu_idle(9) loop used by default.
410 1.45 jruoho */
411 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
412 1.31 jruoho
413 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
414 1.31 jruoho
415 1.31 jruoho cs = &sc->sc_cstate[i];
416 1.31 jruoho
417 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
418 1.31 jruoho ipi = true;
419 1.31 jruoho break;
420 1.31 jruoho }
421 1.31 jruoho }
422 1.31 jruoho
423 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
424 1.1 jruoho
425 1.1 jruoho return 0;
426 1.1 jruoho }
427 1.1 jruoho
428 1.1 jruoho int
429 1.43 jruoho acpicpu_md_cstate_stop(void)
430 1.1 jruoho {
431 1.62 jruoho static char text[16];
432 1.62 jruoho void (*func)(void);
433 1.4 jruoho uint64_t xc;
434 1.31 jruoho bool ipi;
435 1.1 jruoho
436 1.62 jruoho x86_cpu_idle_get(&func, text, sizeof(text));
437 1.62 jruoho
438 1.62 jruoho if (func == native_idle)
439 1.62 jruoho return EALREADY;
440 1.62 jruoho
441 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
442 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
443 1.1 jruoho
444 1.4 jruoho /*
445 1.4 jruoho * Run a cross-call to ensure that all CPUs are
446 1.4 jruoho * out from the ACPI idle-loop before detachment.
447 1.4 jruoho */
448 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
449 1.4 jruoho xc_wait(xc);
450 1.1 jruoho
451 1.1 jruoho return 0;
452 1.1 jruoho }
453 1.1 jruoho
454 1.3 jruoho /*
455 1.64 jruoho * Called with interrupts enabled.
456 1.3 jruoho */
457 1.1 jruoho void
458 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
459 1.1 jruoho {
460 1.3 jruoho struct cpu_info *ci = curcpu();
461 1.1 jruoho
462 1.64 jruoho KASSERT(ci->ci_ilevel == IPL_NONE);
463 1.64 jruoho
464 1.1 jruoho switch (method) {
465 1.1 jruoho
466 1.1 jruoho case ACPICPU_C_STATE_FFH:
467 1.3 jruoho
468 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
469 1.3 jruoho
470 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
471 1.3 jruoho return;
472 1.3 jruoho
473 1.1 jruoho x86_mwait((state - 1) << 4, 0);
474 1.1 jruoho break;
475 1.1 jruoho
476 1.1 jruoho case ACPICPU_C_STATE_HALT:
477 1.3 jruoho
478 1.64 jruoho x86_disable_intr();
479 1.64 jruoho
480 1.64 jruoho if (__predict_false(ci->ci_want_resched != 0)) {
481 1.64 jruoho x86_enable_intr();
482 1.3 jruoho return;
483 1.64 jruoho }
484 1.3 jruoho
485 1.1 jruoho x86_stihlt();
486 1.1 jruoho break;
487 1.1 jruoho }
488 1.1 jruoho }
489 1.5 jruoho
490 1.5 jruoho int
491 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
492 1.5 jruoho {
493 1.62 jruoho uint64_t xc, val;
494 1.62 jruoho
495 1.63 jruoho switch (cpu_vendor) {
496 1.62 jruoho
497 1.63 jruoho case CPUVENDOR_IDT:
498 1.63 jruoho case CPUVENDOR_INTEL:
499 1.62 jruoho
500 1.63 jruoho /*
501 1.63 jruoho * Make sure EST is enabled.
502 1.63 jruoho */
503 1.63 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
504 1.62 jruoho
505 1.62 jruoho val = rdmsr(MSR_MISC_ENABLE);
506 1.62 jruoho
507 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0) {
508 1.63 jruoho
509 1.63 jruoho val |= MSR_MISC_ENABLE_EST;
510 1.63 jruoho wrmsr(MSR_MISC_ENABLE, val);
511 1.63 jruoho val = rdmsr(MSR_MISC_ENABLE);
512 1.63 jruoho
513 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0)
514 1.63 jruoho return ENOTTY;
515 1.63 jruoho }
516 1.62 jruoho }
517 1.62 jruoho }
518 1.57 jruoho
519 1.57 jruoho /*
520 1.57 jruoho * Reset the APERF and MPERF counters.
521 1.57 jruoho */
522 1.57 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
523 1.57 jruoho xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
524 1.57 jruoho xc_wait(xc);
525 1.57 jruoho }
526 1.57 jruoho
527 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
528 1.5 jruoho }
529 1.5 jruoho
530 1.5 jruoho int
531 1.5 jruoho acpicpu_md_pstate_stop(void)
532 1.5 jruoho {
533 1.62 jruoho
534 1.62 jruoho if (acpicpu_log == NULL)
535 1.62 jruoho return EALREADY;
536 1.62 jruoho
537 1.62 jruoho sysctl_teardown(&acpicpu_log);
538 1.62 jruoho acpicpu_log = NULL;
539 1.5 jruoho
540 1.5 jruoho return 0;
541 1.5 jruoho }
542 1.5 jruoho
543 1.5 jruoho int
544 1.55 jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
545 1.5 jruoho {
546 1.56 jruoho struct cpu_info *ci = sc->sc_ci;
547 1.15 jruoho struct acpicpu_pstate *ps, msr;
548 1.18 jruoho uint32_t family, i = 0;
549 1.13 jruoho
550 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
551 1.13 jruoho
552 1.5 jruoho switch (cpu_vendor) {
553 1.5 jruoho
554 1.17 jruoho case CPUVENDOR_IDT:
555 1.5 jruoho case CPUVENDOR_INTEL:
556 1.33 jruoho
557 1.33 jruoho /*
558 1.33 jruoho * If the so-called Turbo Boost is present,
559 1.33 jruoho * the P0-state is always the "turbo state".
560 1.51 jruoho * It is shown as the P1 frequency + 1 MHz.
561 1.33 jruoho *
562 1.33 jruoho * For discussion, see:
563 1.33 jruoho *
564 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
565 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
566 1.33 jruoho * Based Processors. White Paper, November 2008.
567 1.33 jruoho */
568 1.55 jruoho if (sc->sc_pstate_count >= 2 &&
569 1.52 jruoho (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
570 1.51 jruoho
571 1.51 jruoho ps = &sc->sc_pstate[0];
572 1.51 jruoho
573 1.51 jruoho if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
574 1.51 jruoho ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
575 1.51 jruoho }
576 1.33 jruoho
577 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
578 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
579 1.15 jruoho
580 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
581 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
582 1.13 jruoho break;
583 1.13 jruoho
584 1.13 jruoho case CPUVENDOR_AMD:
585 1.13 jruoho
586 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
587 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
588 1.33 jruoho
589 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
590 1.18 jruoho
591 1.18 jruoho if (family == 0xf)
592 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
593 1.18 jruoho
594 1.18 jruoho switch (family) {
595 1.17 jruoho
596 1.32 jruoho case 0x0f:
597 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
598 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
599 1.32 jruoho break;
600 1.32 jruoho
601 1.17 jruoho case 0x10:
602 1.17 jruoho case 0x11:
603 1.40 jmcneill case 0x14: /* AMD Fusion */
604 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
605 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
606 1.17 jruoho
607 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
608 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
609 1.17 jruoho break;
610 1.17 jruoho
611 1.17 jruoho default:
612 1.55 jruoho /*
613 1.55 jruoho * If we have an unknown AMD CPU, rely on XPSS.
614 1.55 jruoho */
615 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
616 1.17 jruoho return EOPNOTSUPP;
617 1.17 jruoho }
618 1.13 jruoho
619 1.13 jruoho break;
620 1.13 jruoho
621 1.13 jruoho default:
622 1.13 jruoho return ENODEV;
623 1.13 jruoho }
624 1.5 jruoho
625 1.26 jruoho /*
626 1.26 jruoho * Fill the P-state structures with MSR addresses that are
627 1.27 jruoho * known to be correct. If we do not know the addresses,
628 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
629 1.39 jruoho * not necessarily need to do anything to support new CPUs.
630 1.26 jruoho */
631 1.15 jruoho while (i < sc->sc_pstate_count) {
632 1.15 jruoho
633 1.15 jruoho ps = &sc->sc_pstate[i];
634 1.15 jruoho
635 1.32 jruoho if (msr.ps_flags != 0)
636 1.32 jruoho ps->ps_flags |= msr.ps_flags;
637 1.32 jruoho
638 1.27 jruoho if (msr.ps_status_addr != 0)
639 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
640 1.15 jruoho
641 1.27 jruoho if (msr.ps_status_mask != 0)
642 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
643 1.15 jruoho
644 1.27 jruoho if (msr.ps_control_addr != 0)
645 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
646 1.15 jruoho
647 1.27 jruoho if (msr.ps_control_mask != 0)
648 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
649 1.15 jruoho
650 1.67 jruoho /*
651 1.67 jruoho * Some AMD systems may round the frequencies
652 1.67 jruoho * reported in the tables. Try to fix these.
653 1.67 jruoho */
654 1.67 jruoho if (cpu_vendor == CPUVENDOR_AMD)
655 1.67 jruoho acpicpu_md_quirk_amd(ps, i);
656 1.67 jruoho
657 1.15 jruoho i++;
658 1.15 jruoho }
659 1.15 jruoho
660 1.15 jruoho return 0;
661 1.15 jruoho }
662 1.15 jruoho
663 1.55 jruoho /*
664 1.55 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
665 1.55 jruoho * increments at the rate of the fixed maximum frequency
666 1.55 jruoho * configured during the boot, whereas APERF counts at the
667 1.55 jruoho * rate of the actual frequency. Note that the MSRs must be
668 1.55 jruoho * read without delay, and that only the ratio between
669 1.55 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
670 1.55 jruoho *
671 1.55 jruoho * The function thus returns the percentage of the actual
672 1.55 jruoho * frequency in terms of the maximum frequency of the calling
673 1.55 jruoho * CPU since the last call. A value zero implies an error.
674 1.55 jruoho *
675 1.55 jruoho * For further details, refer to:
676 1.55 jruoho *
677 1.55 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
678 1.55 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
679 1.55 jruoho * System Programming Guide, Part 1. July, 2008.
680 1.55 jruoho *
681 1.55 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
682 1.55 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
683 1.55 jruoho * 2.4.5, Revision 3.48, April 2010.
684 1.55 jruoho */
685 1.41 jruoho uint8_t
686 1.56 jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
687 1.41 jruoho {
688 1.55 jruoho struct acpicpu_softc *sc;
689 1.41 jruoho uint64_t aperf, mperf;
690 1.55 jruoho uint8_t rv = 0;
691 1.55 jruoho
692 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
693 1.41 jruoho
694 1.55 jruoho if (__predict_false(sc == NULL))
695 1.50 jruoho return 0;
696 1.50 jruoho
697 1.53 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
698 1.50 jruoho return 0;
699 1.41 jruoho
700 1.41 jruoho aperf = sc->sc_pstate_aperf;
701 1.41 jruoho mperf = sc->sc_pstate_mperf;
702 1.41 jruoho
703 1.56 jruoho x86_disable_intr();
704 1.56 jruoho
705 1.50 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
706 1.50 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
707 1.41 jruoho
708 1.56 jruoho x86_enable_intr();
709 1.56 jruoho
710 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
711 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
712 1.41 jruoho
713 1.41 jruoho if (__predict_true(mperf != 0))
714 1.41 jruoho rv = (aperf * 100) / mperf;
715 1.41 jruoho
716 1.41 jruoho return rv;
717 1.41 jruoho }
718 1.41 jruoho
719 1.41 jruoho static void
720 1.56 jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
721 1.41 jruoho {
722 1.56 jruoho struct cpu_info *ci = curcpu();
723 1.55 jruoho struct acpicpu_softc *sc;
724 1.41 jruoho
725 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
726 1.41 jruoho
727 1.55 jruoho if (__predict_false(sc == NULL))
728 1.55 jruoho return;
729 1.46 jruoho
730 1.56 jruoho x86_disable_intr();
731 1.46 jruoho
732 1.55 jruoho wrmsr(MSR_APERF, 0);
733 1.55 jruoho wrmsr(MSR_MPERF, 0);
734 1.41 jruoho
735 1.56 jruoho x86_enable_intr();
736 1.56 jruoho
737 1.41 jruoho sc->sc_pstate_aperf = 0;
738 1.41 jruoho sc->sc_pstate_mperf = 0;
739 1.41 jruoho }
740 1.41 jruoho
741 1.15 jruoho int
742 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
743 1.15 jruoho {
744 1.15 jruoho struct acpicpu_pstate *ps = NULL;
745 1.15 jruoho uint64_t val;
746 1.15 jruoho uint32_t i;
747 1.15 jruoho
748 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
749 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
750 1.32 jruoho
751 1.49 jruoho /*
752 1.49 jruoho * Pick any P-state for the status address.
753 1.68 jruoho */
754 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
755 1.15 jruoho
756 1.15 jruoho ps = &sc->sc_pstate[i];
757 1.15 jruoho
758 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
759 1.15 jruoho break;
760 1.15 jruoho }
761 1.15 jruoho
762 1.15 jruoho if (__predict_false(ps == NULL))
763 1.17 jruoho return ENODEV;
764 1.15 jruoho
765 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
766 1.13 jruoho return EINVAL;
767 1.5 jruoho
768 1.13 jruoho val = rdmsr(ps->ps_status_addr);
769 1.5 jruoho
770 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
771 1.13 jruoho val = val & ps->ps_status_mask;
772 1.5 jruoho
773 1.49 jruoho /*
774 1.49 jruoho * Search for the value from known P-states.
775 1.49 jruoho */
776 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
777 1.5 jruoho
778 1.13 jruoho ps = &sc->sc_pstate[i];
779 1.5 jruoho
780 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
781 1.13 jruoho continue;
782 1.5 jruoho
783 1.29 jruoho if (val == ps->ps_status) {
784 1.13 jruoho *freq = ps->ps_freq;
785 1.13 jruoho return 0;
786 1.13 jruoho }
787 1.5 jruoho }
788 1.5 jruoho
789 1.60 jruoho /*
790 1.60 jruoho * If the value was not found, try APERF/MPERF.
791 1.60 jruoho * The state is P0 if the return value is 100 %.
792 1.60 jruoho */
793 1.60 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
794 1.60 jruoho
795 1.68 jruoho KASSERT(sc->sc_pstate_count > 0);
796 1.68 jruoho KASSERT(sc->sc_pstate[0].ps_freq != 0);
797 1.68 jruoho
798 1.60 jruoho if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
799 1.60 jruoho *freq = sc->sc_pstate[0].ps_freq;
800 1.60 jruoho return 0;
801 1.60 jruoho }
802 1.60 jruoho }
803 1.60 jruoho
804 1.13 jruoho return EIO;
805 1.5 jruoho }
806 1.5 jruoho
807 1.5 jruoho int
808 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
809 1.5 jruoho {
810 1.54 jruoho uint64_t val = 0;
811 1.5 jruoho
812 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
813 1.37 jruoho return EINVAL;
814 1.37 jruoho
815 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
816 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
817 1.32 jruoho
818 1.54 jruoho /*
819 1.54 jruoho * If the mask is set, do a read-modify-write.
820 1.54 jruoho */
821 1.54 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
822 1.54 jruoho val = rdmsr(ps->ps_control_addr);
823 1.54 jruoho val &= ~ps->ps_control_mask;
824 1.54 jruoho }
825 1.5 jruoho
826 1.54 jruoho val |= ps->ps_control;
827 1.13 jruoho
828 1.49 jruoho wrmsr(ps->ps_control_addr, val);
829 1.49 jruoho DELAY(ps->ps_latency);
830 1.14 jruoho
831 1.49 jruoho return 0;
832 1.5 jruoho }
833 1.10 jruoho
834 1.32 jruoho static int
835 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
836 1.32 jruoho {
837 1.32 jruoho struct acpicpu_pstate *ps;
838 1.32 jruoho uint32_t fid, i, vid;
839 1.32 jruoho uint32_t cfid, cvid;
840 1.32 jruoho int rv;
841 1.32 jruoho
842 1.32 jruoho /*
843 1.32 jruoho * AMD family 0Fh needs special treatment.
844 1.32 jruoho * While it wants to use ACPI, it does not
845 1.32 jruoho * comply with the ACPI specifications.
846 1.32 jruoho */
847 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
848 1.32 jruoho
849 1.32 jruoho if (rv != 0)
850 1.32 jruoho return rv;
851 1.32 jruoho
852 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
853 1.32 jruoho
854 1.32 jruoho ps = &sc->sc_pstate[i];
855 1.32 jruoho
856 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
857 1.32 jruoho continue;
858 1.32 jruoho
859 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
860 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
861 1.32 jruoho
862 1.32 jruoho if (cfid == fid && cvid == vid) {
863 1.32 jruoho *freq = ps->ps_freq;
864 1.32 jruoho return 0;
865 1.32 jruoho }
866 1.32 jruoho }
867 1.32 jruoho
868 1.32 jruoho return EIO;
869 1.32 jruoho }
870 1.32 jruoho
871 1.32 jruoho static int
872 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
873 1.32 jruoho {
874 1.32 jruoho const uint64_t ctrl = ps->ps_control;
875 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
876 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
877 1.32 jruoho uint32_t val, vid, vst;
878 1.32 jruoho int rv;
879 1.32 jruoho
880 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
881 1.32 jruoho
882 1.32 jruoho if (rv != 0)
883 1.32 jruoho return rv;
884 1.32 jruoho
885 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
886 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
887 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
888 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
889 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
890 1.32 jruoho
891 1.32 jruoho vst = vst * 20;
892 1.32 jruoho pll = pll * 1000 / 5;
893 1.32 jruoho irt = 10 * __BIT(irt);
894 1.32 jruoho
895 1.32 jruoho /*
896 1.32 jruoho * Phase 1.
897 1.32 jruoho */
898 1.32 jruoho while (cvid > vid) {
899 1.32 jruoho
900 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
901 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
902 1.32 jruoho
903 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
904 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
905 1.32 jruoho
906 1.32 jruoho if (rv != 0)
907 1.32 jruoho return rv;
908 1.32 jruoho }
909 1.32 jruoho
910 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
911 1.32 jruoho
912 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
913 1.32 jruoho
914 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
915 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
916 1.32 jruoho
917 1.32 jruoho if (rv != 0)
918 1.32 jruoho return rv;
919 1.32 jruoho }
920 1.32 jruoho
921 1.32 jruoho /*
922 1.32 jruoho * Phase 2.
923 1.32 jruoho */
924 1.32 jruoho if (cfid != fid) {
925 1.32 jruoho
926 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
927 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
928 1.32 jruoho
929 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
930 1.32 jruoho
931 1.32 jruoho if (fid <= cfid)
932 1.32 jruoho val = cfid - 2;
933 1.32 jruoho else {
934 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
935 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
936 1.32 jruoho }
937 1.32 jruoho
938 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
939 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
940 1.32 jruoho
941 1.32 jruoho if (rv != 0)
942 1.32 jruoho return rv;
943 1.32 jruoho
944 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
945 1.32 jruoho }
946 1.32 jruoho
947 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
948 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
949 1.32 jruoho
950 1.32 jruoho if (rv != 0)
951 1.32 jruoho return rv;
952 1.32 jruoho }
953 1.32 jruoho
954 1.32 jruoho /*
955 1.32 jruoho * Phase 3.
956 1.32 jruoho */
957 1.32 jruoho if (cvid != vid) {
958 1.32 jruoho
959 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
960 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
961 1.32 jruoho
962 1.32 jruoho if (rv != 0)
963 1.32 jruoho return rv;
964 1.32 jruoho }
965 1.32 jruoho
966 1.32 jruoho return 0;
967 1.32 jruoho }
968 1.32 jruoho
969 1.32 jruoho static int
970 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
971 1.32 jruoho {
972 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
973 1.32 jruoho uint64_t val;
974 1.32 jruoho
975 1.32 jruoho do {
976 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
977 1.32 jruoho
978 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
979 1.32 jruoho
980 1.32 jruoho if (i == 0)
981 1.32 jruoho return EAGAIN;
982 1.32 jruoho
983 1.32 jruoho if (cfid != NULL)
984 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
985 1.32 jruoho
986 1.32 jruoho if (cvid != NULL)
987 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
988 1.32 jruoho
989 1.32 jruoho return 0;
990 1.32 jruoho }
991 1.32 jruoho
992 1.32 jruoho static void
993 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
994 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
995 1.32 jruoho {
996 1.49 jruoho uint64_t val = 0;
997 1.32 jruoho
998 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
999 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
1000 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
1001 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
1002 1.32 jruoho
1003 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
1004 1.32 jruoho DELAY(tmo);
1005 1.32 jruoho }
1006 1.32 jruoho
1007 1.10 jruoho int
1008 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
1009 1.10 jruoho {
1010 1.10 jruoho struct acpicpu_tstate *ts;
1011 1.14 jruoho uint64_t val;
1012 1.10 jruoho uint32_t i;
1013 1.10 jruoho
1014 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1015 1.10 jruoho
1016 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
1017 1.10 jruoho
1018 1.10 jruoho ts = &sc->sc_tstate[i];
1019 1.10 jruoho
1020 1.10 jruoho if (ts->ts_percent == 0)
1021 1.10 jruoho continue;
1022 1.10 jruoho
1023 1.29 jruoho if (val == ts->ts_status) {
1024 1.10 jruoho *percent = ts->ts_percent;
1025 1.10 jruoho return 0;
1026 1.10 jruoho }
1027 1.10 jruoho }
1028 1.10 jruoho
1029 1.10 jruoho return EIO;
1030 1.10 jruoho }
1031 1.10 jruoho
1032 1.10 jruoho int
1033 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1034 1.10 jruoho {
1035 1.49 jruoho uint64_t val;
1036 1.49 jruoho uint8_t i;
1037 1.10 jruoho
1038 1.49 jruoho val = ts->ts_control;
1039 1.49 jruoho val = val & __BITS(1, 4);
1040 1.10 jruoho
1041 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
1042 1.10 jruoho
1043 1.30 jruoho if (ts->ts_status == 0) {
1044 1.30 jruoho DELAY(ts->ts_latency);
1045 1.10 jruoho return 0;
1046 1.30 jruoho }
1047 1.10 jruoho
1048 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1049 1.10 jruoho
1050 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1051 1.10 jruoho
1052 1.29 jruoho if (val == ts->ts_status)
1053 1.49 jruoho return 0;
1054 1.10 jruoho
1055 1.10 jruoho DELAY(ts->ts_latency);
1056 1.10 jruoho }
1057 1.10 jruoho
1058 1.49 jruoho return EAGAIN;
1059 1.10 jruoho }
1060 1.19 jruoho
1061 1.19 jruoho /*
1062 1.19 jruoho * A kludge for backwards compatibility.
1063 1.19 jruoho */
1064 1.19 jruoho static int
1065 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1066 1.19 jruoho {
1067 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1068 1.19 jruoho const char *str;
1069 1.19 jruoho int rv;
1070 1.19 jruoho
1071 1.19 jruoho switch (cpu_vendor) {
1072 1.19 jruoho
1073 1.19 jruoho case CPUVENDOR_IDT:
1074 1.19 jruoho case CPUVENDOR_INTEL:
1075 1.19 jruoho str = "est";
1076 1.19 jruoho break;
1077 1.19 jruoho
1078 1.19 jruoho case CPUVENDOR_AMD:
1079 1.19 jruoho str = "powernow";
1080 1.19 jruoho break;
1081 1.19 jruoho
1082 1.19 jruoho default:
1083 1.19 jruoho return ENODEV;
1084 1.19 jruoho }
1085 1.19 jruoho
1086 1.19 jruoho
1087 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1088 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1089 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1090 1.19 jruoho
1091 1.19 jruoho if (rv != 0)
1092 1.19 jruoho goto fail;
1093 1.19 jruoho
1094 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1095 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1096 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1097 1.19 jruoho
1098 1.19 jruoho if (rv != 0)
1099 1.19 jruoho goto fail;
1100 1.19 jruoho
1101 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1102 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1103 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1104 1.19 jruoho
1105 1.19 jruoho if (rv != 0)
1106 1.19 jruoho goto fail;
1107 1.19 jruoho
1108 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1109 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1110 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1111 1.19 jruoho
1112 1.19 jruoho if (rv != 0)
1113 1.19 jruoho goto fail;
1114 1.19 jruoho
1115 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1116 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1117 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1118 1.19 jruoho
1119 1.19 jruoho if (rv != 0)
1120 1.19 jruoho goto fail;
1121 1.19 jruoho
1122 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1123 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1124 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1125 1.19 jruoho
1126 1.19 jruoho if (rv != 0)
1127 1.19 jruoho goto fail;
1128 1.19 jruoho
1129 1.19 jruoho return 0;
1130 1.19 jruoho
1131 1.19 jruoho fail:
1132 1.19 jruoho if (acpicpu_log != NULL) {
1133 1.19 jruoho sysctl_teardown(&acpicpu_log);
1134 1.19 jruoho acpicpu_log = NULL;
1135 1.19 jruoho }
1136 1.19 jruoho
1137 1.19 jruoho return rv;
1138 1.19 jruoho }
1139 1.19 jruoho
1140 1.19 jruoho static int
1141 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1142 1.19 jruoho {
1143 1.19 jruoho struct sysctlnode node;
1144 1.19 jruoho uint32_t freq;
1145 1.19 jruoho int err;
1146 1.19 jruoho
1147 1.68 jruoho freq = cpufreq_get(curcpu());
1148 1.19 jruoho
1149 1.68 jruoho if (freq == 0)
1150 1.68 jruoho return ENXIO;
1151 1.19 jruoho
1152 1.19 jruoho node = *rnode;
1153 1.19 jruoho node.sysctl_data = &freq;
1154 1.19 jruoho
1155 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1156 1.19 jruoho
1157 1.19 jruoho if (err != 0 || newp == NULL)
1158 1.19 jruoho return err;
1159 1.19 jruoho
1160 1.19 jruoho return 0;
1161 1.19 jruoho }
1162 1.19 jruoho
1163 1.19 jruoho static int
1164 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1165 1.19 jruoho {
1166 1.19 jruoho struct sysctlnode node;
1167 1.19 jruoho uint32_t freq;
1168 1.19 jruoho int err;
1169 1.19 jruoho
1170 1.68 jruoho freq = cpufreq_get(curcpu());
1171 1.19 jruoho
1172 1.68 jruoho if (freq == 0)
1173 1.68 jruoho return ENXIO;
1174 1.19 jruoho
1175 1.19 jruoho node = *rnode;
1176 1.19 jruoho node.sysctl_data = &freq;
1177 1.19 jruoho
1178 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1179 1.19 jruoho
1180 1.19 jruoho if (err != 0 || newp == NULL)
1181 1.19 jruoho return err;
1182 1.19 jruoho
1183 1.68 jruoho cpufreq_set_all(freq);
1184 1.19 jruoho
1185 1.19 jruoho return 0;
1186 1.19 jruoho }
1187 1.19 jruoho
1188 1.19 jruoho static int
1189 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1190 1.19 jruoho {
1191 1.19 jruoho struct cpu_info *ci = curcpu();
1192 1.19 jruoho struct acpicpu_softc *sc;
1193 1.19 jruoho struct sysctlnode node;
1194 1.19 jruoho char buf[1024];
1195 1.19 jruoho size_t len;
1196 1.19 jruoho uint32_t i;
1197 1.19 jruoho int err;
1198 1.19 jruoho
1199 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1200 1.19 jruoho
1201 1.19 jruoho if (sc == NULL)
1202 1.19 jruoho return ENXIO;
1203 1.19 jruoho
1204 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1205 1.19 jruoho
1206 1.19 jruoho mutex_enter(&sc->sc_mtx);
1207 1.19 jruoho
1208 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1209 1.19 jruoho
1210 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1211 1.19 jruoho continue;
1212 1.19 jruoho
1213 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1214 1.19 jruoho sc->sc_pstate[i].ps_freq,
1215 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1216 1.19 jruoho }
1217 1.19 jruoho
1218 1.19 jruoho mutex_exit(&sc->sc_mtx);
1219 1.19 jruoho
1220 1.19 jruoho node = *rnode;
1221 1.19 jruoho node.sysctl_data = buf;
1222 1.19 jruoho
1223 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1224 1.19 jruoho
1225 1.19 jruoho if (err != 0 || newp == NULL)
1226 1.19 jruoho return err;
1227 1.19 jruoho
1228 1.19 jruoho return 0;
1229 1.19 jruoho }
1230 1.19 jruoho
1231