acpi_cpu_md.c revision 1.68.2.1 1 1.68.2.1 yamt /* $NetBSD: acpi_cpu_md.c,v 1.68.2.1 2012/04/17 00:07:05 yamt Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.68.2.1 yamt __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.68.2.1 2012/04/17 00:07:05 yamt Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.68 jruoho #include <sys/cpufreq.h>
35 1.48 jruoho #include <sys/device.h>
36 1.1 jruoho #include <sys/kcore.h>
37 1.5 jruoho #include <sys/sysctl.h>
38 1.4 jruoho #include <sys/xcall.h>
39 1.1 jruoho
40 1.1 jruoho #include <x86/cpu.h>
41 1.5 jruoho #include <x86/cpufunc.h>
42 1.5 jruoho #include <x86/cputypes.h>
43 1.1 jruoho #include <x86/cpuvar.h>
44 1.5 jruoho #include <x86/cpu_msr.h>
45 1.1 jruoho #include <x86/machdep.h>
46 1.1 jruoho
47 1.1 jruoho #include <dev/acpi/acpica.h>
48 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
49 1.1 jruoho
50 1.12 jruoho #include <dev/pci/pcivar.h>
51 1.12 jruoho #include <dev/pci/pcidevs.h>
52 1.12 jruoho
53 1.38 jruoho #include <machine/acpi_machdep.h>
54 1.38 jruoho
55 1.35 jruoho /*
56 1.55 jruoho * Intel IA32_MISC_ENABLE.
57 1.55 jruoho */
58 1.55 jruoho #define MSR_MISC_ENABLE_EST __BIT(16)
59 1.55 jruoho #define MSR_MISC_ENABLE_TURBO __BIT(38)
60 1.55 jruoho
61 1.55 jruoho /*
62 1.35 jruoho * AMD C1E.
63 1.35 jruoho */
64 1.35 jruoho #define MSR_CMPHALT 0xc0010055
65 1.35 jruoho
66 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
67 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
68 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
69 1.33 jruoho
70 1.32 jruoho /*
71 1.68.2.1 yamt * AMD families 10h, 11h, 12h, 14h, and 15h.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
74 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
75 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
76 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
77 1.22 jruoho
78 1.32 jruoho /*
79 1.32 jruoho * AMD family 0Fh.
80 1.32 jruoho */
81 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
82 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
83 1.17 jruoho
84 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87 1.32 jruoho
88 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92 1.32 jruoho
93 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95 1.32 jruoho
96 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103 1.32 jruoho
104 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105 1.17 jruoho
106 1.5 jruoho static char native_idle_text[16];
107 1.5 jruoho void (*native_idle)(void) = NULL;
108 1.1 jruoho
109 1.58 dyoung static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
110 1.56 jruoho static void acpicpu_md_pstate_hwf_reset(void *, void *);
111 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
112 1.32 jruoho uint32_t *);
113 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
114 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
115 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
116 1.32 jruoho uint32_t, uint32_t);
117 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
118 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
119 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
120 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
121 1.5 jruoho
122 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
123 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
124 1.1 jruoho
125 1.48 jruoho struct cpu_info *
126 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
127 1.48 jruoho {
128 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
129 1.48 jruoho
130 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
131 1.48 jruoho return NULL;
132 1.48 jruoho
133 1.48 jruoho return cfaa->ci;
134 1.48 jruoho }
135 1.48 jruoho
136 1.48 jruoho struct cpu_info *
137 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
138 1.48 jruoho {
139 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
140 1.48 jruoho
141 1.48 jruoho return cfaa->ci;
142 1.48 jruoho }
143 1.48 jruoho
144 1.1 jruoho uint32_t
145 1.43 jruoho acpicpu_md_flags(void)
146 1.1 jruoho {
147 1.1 jruoho struct cpu_info *ci = curcpu();
148 1.12 jruoho struct pci_attach_args pa;
149 1.18 jruoho uint32_t family, val = 0;
150 1.21 jruoho uint32_t regs[4];
151 1.66 jruoho uint64_t msr;
152 1.1 jruoho
153 1.38 jruoho if (acpi_md_ncpus() == 1)
154 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
155 1.1 jruoho
156 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
157 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
158 1.1 jruoho
159 1.39 jruoho /*
160 1.39 jruoho * By default, assume that the local APIC timer
161 1.39 jruoho * as well as TSC are stalled during C3 sleep.
162 1.39 jruoho */
163 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
164 1.22 jruoho
165 1.1 jruoho switch (cpu_vendor) {
166 1.1 jruoho
167 1.17 jruoho case CPUVENDOR_IDT:
168 1.22 jruoho
169 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
171 1.22 jruoho
172 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
174 1.22 jruoho
175 1.22 jruoho break;
176 1.22 jruoho
177 1.1 jruoho case CPUVENDOR_INTEL:
178 1.17 jruoho
179 1.39 jruoho /*
180 1.39 jruoho * Bus master control and arbitration should be
181 1.39 jruoho * available on all supported Intel CPUs (to be
182 1.39 jruoho * sure, this is double-checked later from the
183 1.39 jruoho * firmware data). These flags imply that it is
184 1.39 jruoho * not necessary to flush caches before C3 state.
185 1.39 jruoho */
186 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
187 1.22 jruoho
188 1.39 jruoho /*
189 1.39 jruoho * Check if we can use "native", MSR-based,
190 1.39 jruoho * access. If not, we have to resort to I/O.
191 1.39 jruoho */
192 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
193 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
194 1.5 jruoho
195 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
196 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
197 1.10 jruoho
198 1.22 jruoho /*
199 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
200 1.25 jruoho * Boost are available. Also see if we might have
201 1.25 jruoho * an invariant local APIC timer ("ARAT").
202 1.23 jruoho */
203 1.23 jruoho if (cpuid_level >= 0x06) {
204 1.23 jruoho
205 1.44 jruoho x86_cpuid(0x00000006, regs);
206 1.23 jruoho
207 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
209 1.23 jruoho
210 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
211 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
212 1.25 jruoho
213 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
214 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
215 1.23 jruoho }
216 1.23 jruoho
217 1.23 jruoho /*
218 1.22 jruoho * Detect whether TSC is invariant. If it is not,
219 1.22 jruoho * we keep the flag to note that TSC will not run
220 1.22 jruoho * at constant rate. Depending on the CPU, this may
221 1.22 jruoho * affect P- and T-state changes, but especially
222 1.22 jruoho * relevant are C-states; with variant TSC, states
223 1.24 jruoho * larger than C1 may completely stop the counter.
224 1.22 jruoho */
225 1.22 jruoho x86_cpuid(0x80000000, regs);
226 1.22 jruoho
227 1.22 jruoho if (regs[0] >= 0x80000007) {
228 1.22 jruoho
229 1.22 jruoho x86_cpuid(0x80000007, regs);
230 1.22 jruoho
231 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
232 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
233 1.22 jruoho }
234 1.22 jruoho
235 1.17 jruoho break;
236 1.12 jruoho
237 1.17 jruoho case CPUVENDOR_AMD:
238 1.17 jruoho
239 1.32 jruoho x86_cpuid(0x80000000, regs);
240 1.32 jruoho
241 1.32 jruoho if (regs[0] < 0x80000007)
242 1.32 jruoho break;
243 1.32 jruoho
244 1.32 jruoho x86_cpuid(0x80000007, regs);
245 1.32 jruoho
246 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
247 1.18 jruoho
248 1.18 jruoho if (family == 0xf)
249 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
250 1.18 jruoho
251 1.32 jruoho switch (family) {
252 1.1 jruoho
253 1.22 jruoho case 0x0f:
254 1.32 jruoho
255 1.45 jruoho /*
256 1.45 jruoho * Evaluate support for the "FID/VID
257 1.45 jruoho * algorithm" also used by powernow(4).
258 1.45 jruoho */
259 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
260 1.32 jruoho break;
261 1.32 jruoho
262 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
263 1.32 jruoho break;
264 1.32 jruoho
265 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
266 1.32 jruoho break;
267 1.32 jruoho
268 1.17 jruoho case 0x10:
269 1.17 jruoho case 0x11:
270 1.66 jruoho
271 1.66 jruoho if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
272 1.66 jruoho val |= ACPICPU_FLAG_C_C1E;
273 1.66 jruoho
274 1.40 jmcneill /* FALLTHROUGH */
275 1.40 jmcneill
276 1.68.2.1 yamt case 0x12:
277 1.40 jmcneill case 0x14: /* AMD Fusion */
278 1.68.2.1 yamt case 0x15: /* AMD Bulldozer */
279 1.1 jruoho
280 1.42 jruoho /*
281 1.42 jruoho * Like with Intel, detect invariant TSC,
282 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
283 1.42 jruoho * (Core Performance Boost), respectively.
284 1.42 jruoho */
285 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
286 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
287 1.22 jruoho
288 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
289 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
290 1.21 jruoho
291 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
292 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
293 1.35 jruoho
294 1.42 jruoho /*
295 1.42 jruoho * Also check for APERF and MPERF,
296 1.42 jruoho * first available in the family 10h.
297 1.42 jruoho */
298 1.42 jruoho if (cpuid_level >= 0x06) {
299 1.42 jruoho
300 1.42 jruoho x86_cpuid(0x00000006, regs);
301 1.42 jruoho
302 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
303 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
304 1.42 jruoho }
305 1.42 jruoho
306 1.35 jruoho break;
307 1.17 jruoho }
308 1.1 jruoho
309 1.1 jruoho break;
310 1.1 jruoho }
311 1.1 jruoho
312 1.12 jruoho /*
313 1.12 jruoho * There are several erratums for PIIX4.
314 1.12 jruoho */
315 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
316 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
317 1.12 jruoho
318 1.1 jruoho return val;
319 1.1 jruoho }
320 1.1 jruoho
321 1.12 jruoho static int
322 1.58 dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
323 1.12 jruoho {
324 1.12 jruoho
325 1.12 jruoho /*
326 1.12 jruoho * XXX: The pci_find_device(9) function only
327 1.12 jruoho * deals with attached devices. Change this
328 1.12 jruoho * to use something like pci_device_foreach().
329 1.12 jruoho */
330 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
331 1.12 jruoho return 0;
332 1.12 jruoho
333 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
334 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
335 1.12 jruoho return 1;
336 1.12 jruoho
337 1.12 jruoho return 0;
338 1.12 jruoho }
339 1.12 jruoho
340 1.35 jruoho void
341 1.43 jruoho acpicpu_md_quirk_c1e(void)
342 1.35 jruoho {
343 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
344 1.35 jruoho uint64_t val;
345 1.35 jruoho
346 1.66 jruoho val = rdmsr(MSR_CMPHALT);
347 1.35 jruoho
348 1.35 jruoho if ((val & c1e) != 0)
349 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
350 1.35 jruoho }
351 1.35 jruoho
352 1.1 jruoho int
353 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
354 1.1 jruoho {
355 1.1 jruoho const size_t size = sizeof(native_idle_text);
356 1.31 jruoho struct acpicpu_cstate *cs;
357 1.31 jruoho bool ipi = false;
358 1.31 jruoho int i;
359 1.1 jruoho
360 1.45 jruoho /*
361 1.45 jruoho * Save the cpu_idle(9) loop used by default.
362 1.45 jruoho */
363 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
364 1.31 jruoho
365 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
366 1.31 jruoho
367 1.31 jruoho cs = &sc->sc_cstate[i];
368 1.31 jruoho
369 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
370 1.31 jruoho ipi = true;
371 1.31 jruoho break;
372 1.31 jruoho }
373 1.31 jruoho }
374 1.31 jruoho
375 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
376 1.1 jruoho
377 1.1 jruoho return 0;
378 1.1 jruoho }
379 1.1 jruoho
380 1.1 jruoho int
381 1.43 jruoho acpicpu_md_cstate_stop(void)
382 1.1 jruoho {
383 1.62 jruoho static char text[16];
384 1.62 jruoho void (*func)(void);
385 1.4 jruoho uint64_t xc;
386 1.31 jruoho bool ipi;
387 1.1 jruoho
388 1.62 jruoho x86_cpu_idle_get(&func, text, sizeof(text));
389 1.62 jruoho
390 1.62 jruoho if (func == native_idle)
391 1.62 jruoho return EALREADY;
392 1.62 jruoho
393 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
394 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
395 1.1 jruoho
396 1.4 jruoho /*
397 1.4 jruoho * Run a cross-call to ensure that all CPUs are
398 1.4 jruoho * out from the ACPI idle-loop before detachment.
399 1.4 jruoho */
400 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
401 1.4 jruoho xc_wait(xc);
402 1.1 jruoho
403 1.1 jruoho return 0;
404 1.1 jruoho }
405 1.1 jruoho
406 1.3 jruoho /*
407 1.64 jruoho * Called with interrupts enabled.
408 1.3 jruoho */
409 1.1 jruoho void
410 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
411 1.1 jruoho {
412 1.3 jruoho struct cpu_info *ci = curcpu();
413 1.1 jruoho
414 1.64 jruoho KASSERT(ci->ci_ilevel == IPL_NONE);
415 1.64 jruoho
416 1.1 jruoho switch (method) {
417 1.1 jruoho
418 1.1 jruoho case ACPICPU_C_STATE_FFH:
419 1.3 jruoho
420 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
421 1.3 jruoho
422 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
423 1.3 jruoho return;
424 1.3 jruoho
425 1.1 jruoho x86_mwait((state - 1) << 4, 0);
426 1.1 jruoho break;
427 1.1 jruoho
428 1.1 jruoho case ACPICPU_C_STATE_HALT:
429 1.3 jruoho
430 1.64 jruoho x86_disable_intr();
431 1.64 jruoho
432 1.64 jruoho if (__predict_false(ci->ci_want_resched != 0)) {
433 1.64 jruoho x86_enable_intr();
434 1.3 jruoho return;
435 1.64 jruoho }
436 1.3 jruoho
437 1.1 jruoho x86_stihlt();
438 1.1 jruoho break;
439 1.1 jruoho }
440 1.1 jruoho }
441 1.5 jruoho
442 1.5 jruoho int
443 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
444 1.5 jruoho {
445 1.62 jruoho uint64_t xc, val;
446 1.62 jruoho
447 1.63 jruoho switch (cpu_vendor) {
448 1.62 jruoho
449 1.63 jruoho case CPUVENDOR_IDT:
450 1.63 jruoho case CPUVENDOR_INTEL:
451 1.62 jruoho
452 1.63 jruoho /*
453 1.63 jruoho * Make sure EST is enabled.
454 1.63 jruoho */
455 1.63 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
456 1.62 jruoho
457 1.62 jruoho val = rdmsr(MSR_MISC_ENABLE);
458 1.62 jruoho
459 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0) {
460 1.63 jruoho
461 1.63 jruoho val |= MSR_MISC_ENABLE_EST;
462 1.63 jruoho wrmsr(MSR_MISC_ENABLE, val);
463 1.63 jruoho val = rdmsr(MSR_MISC_ENABLE);
464 1.63 jruoho
465 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0)
466 1.63 jruoho return ENOTTY;
467 1.63 jruoho }
468 1.62 jruoho }
469 1.62 jruoho }
470 1.57 jruoho
471 1.57 jruoho /*
472 1.57 jruoho * Reset the APERF and MPERF counters.
473 1.57 jruoho */
474 1.57 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
475 1.57 jruoho xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
476 1.57 jruoho xc_wait(xc);
477 1.57 jruoho }
478 1.57 jruoho
479 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
480 1.5 jruoho }
481 1.5 jruoho
482 1.5 jruoho int
483 1.5 jruoho acpicpu_md_pstate_stop(void)
484 1.5 jruoho {
485 1.62 jruoho
486 1.62 jruoho if (acpicpu_log == NULL)
487 1.62 jruoho return EALREADY;
488 1.62 jruoho
489 1.62 jruoho sysctl_teardown(&acpicpu_log);
490 1.62 jruoho acpicpu_log = NULL;
491 1.5 jruoho
492 1.5 jruoho return 0;
493 1.5 jruoho }
494 1.5 jruoho
495 1.5 jruoho int
496 1.55 jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
497 1.5 jruoho {
498 1.56 jruoho struct cpu_info *ci = sc->sc_ci;
499 1.15 jruoho struct acpicpu_pstate *ps, msr;
500 1.18 jruoho uint32_t family, i = 0;
501 1.13 jruoho
502 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
503 1.13 jruoho
504 1.5 jruoho switch (cpu_vendor) {
505 1.5 jruoho
506 1.17 jruoho case CPUVENDOR_IDT:
507 1.5 jruoho case CPUVENDOR_INTEL:
508 1.33 jruoho
509 1.33 jruoho /*
510 1.33 jruoho * If the so-called Turbo Boost is present,
511 1.33 jruoho * the P0-state is always the "turbo state".
512 1.51 jruoho * It is shown as the P1 frequency + 1 MHz.
513 1.33 jruoho *
514 1.33 jruoho * For discussion, see:
515 1.33 jruoho *
516 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
517 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
518 1.33 jruoho * Based Processors. White Paper, November 2008.
519 1.33 jruoho */
520 1.55 jruoho if (sc->sc_pstate_count >= 2 &&
521 1.52 jruoho (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
522 1.51 jruoho
523 1.51 jruoho ps = &sc->sc_pstate[0];
524 1.51 jruoho
525 1.51 jruoho if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
526 1.51 jruoho ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
527 1.51 jruoho }
528 1.33 jruoho
529 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
530 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
531 1.15 jruoho
532 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
533 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
534 1.13 jruoho break;
535 1.13 jruoho
536 1.13 jruoho case CPUVENDOR_AMD:
537 1.13 jruoho
538 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
539 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
540 1.33 jruoho
541 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
542 1.18 jruoho
543 1.18 jruoho if (family == 0xf)
544 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
545 1.18 jruoho
546 1.18 jruoho switch (family) {
547 1.17 jruoho
548 1.32 jruoho case 0x0f:
549 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
550 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
551 1.32 jruoho break;
552 1.32 jruoho
553 1.17 jruoho case 0x10:
554 1.17 jruoho case 0x11:
555 1.68.2.1 yamt case 0x12:
556 1.68.2.1 yamt case 0x14:
557 1.68.2.1 yamt case 0x15:
558 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
559 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
560 1.17 jruoho
561 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
562 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
563 1.17 jruoho break;
564 1.17 jruoho
565 1.17 jruoho default:
566 1.55 jruoho /*
567 1.55 jruoho * If we have an unknown AMD CPU, rely on XPSS.
568 1.55 jruoho */
569 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
570 1.17 jruoho return EOPNOTSUPP;
571 1.17 jruoho }
572 1.13 jruoho
573 1.13 jruoho break;
574 1.13 jruoho
575 1.13 jruoho default:
576 1.13 jruoho return ENODEV;
577 1.13 jruoho }
578 1.5 jruoho
579 1.26 jruoho /*
580 1.26 jruoho * Fill the P-state structures with MSR addresses that are
581 1.27 jruoho * known to be correct. If we do not know the addresses,
582 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
583 1.39 jruoho * not necessarily need to do anything to support new CPUs.
584 1.26 jruoho */
585 1.15 jruoho while (i < sc->sc_pstate_count) {
586 1.15 jruoho
587 1.15 jruoho ps = &sc->sc_pstate[i];
588 1.15 jruoho
589 1.32 jruoho if (msr.ps_flags != 0)
590 1.32 jruoho ps->ps_flags |= msr.ps_flags;
591 1.32 jruoho
592 1.27 jruoho if (msr.ps_status_addr != 0)
593 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
594 1.15 jruoho
595 1.27 jruoho if (msr.ps_status_mask != 0)
596 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
597 1.15 jruoho
598 1.27 jruoho if (msr.ps_control_addr != 0)
599 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
600 1.15 jruoho
601 1.27 jruoho if (msr.ps_control_mask != 0)
602 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
603 1.15 jruoho
604 1.15 jruoho i++;
605 1.15 jruoho }
606 1.15 jruoho
607 1.15 jruoho return 0;
608 1.15 jruoho }
609 1.15 jruoho
610 1.55 jruoho /*
611 1.55 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
612 1.55 jruoho * increments at the rate of the fixed maximum frequency
613 1.55 jruoho * configured during the boot, whereas APERF counts at the
614 1.55 jruoho * rate of the actual frequency. Note that the MSRs must be
615 1.55 jruoho * read without delay, and that only the ratio between
616 1.55 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
617 1.55 jruoho *
618 1.55 jruoho * The function thus returns the percentage of the actual
619 1.55 jruoho * frequency in terms of the maximum frequency of the calling
620 1.55 jruoho * CPU since the last call. A value zero implies an error.
621 1.55 jruoho *
622 1.55 jruoho * For further details, refer to:
623 1.55 jruoho *
624 1.55 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
625 1.55 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
626 1.55 jruoho * System Programming Guide, Part 1. July, 2008.
627 1.55 jruoho *
628 1.55 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
629 1.55 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
630 1.55 jruoho * 2.4.5, Revision 3.48, April 2010.
631 1.55 jruoho */
632 1.41 jruoho uint8_t
633 1.56 jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
634 1.41 jruoho {
635 1.55 jruoho struct acpicpu_softc *sc;
636 1.41 jruoho uint64_t aperf, mperf;
637 1.55 jruoho uint8_t rv = 0;
638 1.55 jruoho
639 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
640 1.41 jruoho
641 1.55 jruoho if (__predict_false(sc == NULL))
642 1.50 jruoho return 0;
643 1.50 jruoho
644 1.53 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
645 1.50 jruoho return 0;
646 1.41 jruoho
647 1.41 jruoho aperf = sc->sc_pstate_aperf;
648 1.41 jruoho mperf = sc->sc_pstate_mperf;
649 1.41 jruoho
650 1.56 jruoho x86_disable_intr();
651 1.56 jruoho
652 1.50 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
653 1.50 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
654 1.41 jruoho
655 1.56 jruoho x86_enable_intr();
656 1.56 jruoho
657 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
658 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
659 1.41 jruoho
660 1.41 jruoho if (__predict_true(mperf != 0))
661 1.41 jruoho rv = (aperf * 100) / mperf;
662 1.41 jruoho
663 1.41 jruoho return rv;
664 1.41 jruoho }
665 1.41 jruoho
666 1.41 jruoho static void
667 1.56 jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
668 1.41 jruoho {
669 1.56 jruoho struct cpu_info *ci = curcpu();
670 1.55 jruoho struct acpicpu_softc *sc;
671 1.41 jruoho
672 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
673 1.41 jruoho
674 1.55 jruoho if (__predict_false(sc == NULL))
675 1.55 jruoho return;
676 1.46 jruoho
677 1.56 jruoho x86_disable_intr();
678 1.46 jruoho
679 1.55 jruoho wrmsr(MSR_APERF, 0);
680 1.55 jruoho wrmsr(MSR_MPERF, 0);
681 1.41 jruoho
682 1.56 jruoho x86_enable_intr();
683 1.56 jruoho
684 1.41 jruoho sc->sc_pstate_aperf = 0;
685 1.41 jruoho sc->sc_pstate_mperf = 0;
686 1.41 jruoho }
687 1.41 jruoho
688 1.15 jruoho int
689 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
690 1.15 jruoho {
691 1.15 jruoho struct acpicpu_pstate *ps = NULL;
692 1.15 jruoho uint64_t val;
693 1.15 jruoho uint32_t i;
694 1.15 jruoho
695 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
696 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
697 1.32 jruoho
698 1.49 jruoho /*
699 1.49 jruoho * Pick any P-state for the status address.
700 1.68 jruoho */
701 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
702 1.15 jruoho
703 1.15 jruoho ps = &sc->sc_pstate[i];
704 1.15 jruoho
705 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
706 1.15 jruoho break;
707 1.15 jruoho }
708 1.15 jruoho
709 1.15 jruoho if (__predict_false(ps == NULL))
710 1.17 jruoho return ENODEV;
711 1.15 jruoho
712 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
713 1.13 jruoho return EINVAL;
714 1.5 jruoho
715 1.13 jruoho val = rdmsr(ps->ps_status_addr);
716 1.5 jruoho
717 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
718 1.13 jruoho val = val & ps->ps_status_mask;
719 1.5 jruoho
720 1.49 jruoho /*
721 1.49 jruoho * Search for the value from known P-states.
722 1.49 jruoho */
723 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
724 1.5 jruoho
725 1.13 jruoho ps = &sc->sc_pstate[i];
726 1.5 jruoho
727 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
728 1.13 jruoho continue;
729 1.5 jruoho
730 1.29 jruoho if (val == ps->ps_status) {
731 1.13 jruoho *freq = ps->ps_freq;
732 1.13 jruoho return 0;
733 1.13 jruoho }
734 1.5 jruoho }
735 1.5 jruoho
736 1.60 jruoho /*
737 1.60 jruoho * If the value was not found, try APERF/MPERF.
738 1.60 jruoho * The state is P0 if the return value is 100 %.
739 1.60 jruoho */
740 1.60 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
741 1.60 jruoho
742 1.68 jruoho KASSERT(sc->sc_pstate_count > 0);
743 1.68 jruoho KASSERT(sc->sc_pstate[0].ps_freq != 0);
744 1.68 jruoho
745 1.60 jruoho if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
746 1.60 jruoho *freq = sc->sc_pstate[0].ps_freq;
747 1.60 jruoho return 0;
748 1.60 jruoho }
749 1.60 jruoho }
750 1.60 jruoho
751 1.13 jruoho return EIO;
752 1.5 jruoho }
753 1.5 jruoho
754 1.5 jruoho int
755 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
756 1.5 jruoho {
757 1.54 jruoho uint64_t val = 0;
758 1.5 jruoho
759 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
760 1.37 jruoho return EINVAL;
761 1.37 jruoho
762 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
763 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
764 1.32 jruoho
765 1.54 jruoho /*
766 1.54 jruoho * If the mask is set, do a read-modify-write.
767 1.54 jruoho */
768 1.54 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
769 1.54 jruoho val = rdmsr(ps->ps_control_addr);
770 1.54 jruoho val &= ~ps->ps_control_mask;
771 1.54 jruoho }
772 1.5 jruoho
773 1.54 jruoho val |= ps->ps_control;
774 1.13 jruoho
775 1.49 jruoho wrmsr(ps->ps_control_addr, val);
776 1.49 jruoho DELAY(ps->ps_latency);
777 1.14 jruoho
778 1.49 jruoho return 0;
779 1.5 jruoho }
780 1.10 jruoho
781 1.32 jruoho static int
782 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
783 1.32 jruoho {
784 1.32 jruoho struct acpicpu_pstate *ps;
785 1.32 jruoho uint32_t fid, i, vid;
786 1.32 jruoho uint32_t cfid, cvid;
787 1.32 jruoho int rv;
788 1.32 jruoho
789 1.32 jruoho /*
790 1.32 jruoho * AMD family 0Fh needs special treatment.
791 1.32 jruoho * While it wants to use ACPI, it does not
792 1.32 jruoho * comply with the ACPI specifications.
793 1.32 jruoho */
794 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
795 1.32 jruoho
796 1.32 jruoho if (rv != 0)
797 1.32 jruoho return rv;
798 1.32 jruoho
799 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
800 1.32 jruoho
801 1.32 jruoho ps = &sc->sc_pstate[i];
802 1.32 jruoho
803 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
804 1.32 jruoho continue;
805 1.32 jruoho
806 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
807 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
808 1.32 jruoho
809 1.32 jruoho if (cfid == fid && cvid == vid) {
810 1.32 jruoho *freq = ps->ps_freq;
811 1.32 jruoho return 0;
812 1.32 jruoho }
813 1.32 jruoho }
814 1.32 jruoho
815 1.32 jruoho return EIO;
816 1.32 jruoho }
817 1.32 jruoho
818 1.32 jruoho static int
819 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
820 1.32 jruoho {
821 1.32 jruoho const uint64_t ctrl = ps->ps_control;
822 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
823 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
824 1.32 jruoho uint32_t val, vid, vst;
825 1.32 jruoho int rv;
826 1.32 jruoho
827 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
828 1.32 jruoho
829 1.32 jruoho if (rv != 0)
830 1.32 jruoho return rv;
831 1.32 jruoho
832 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
833 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
834 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
835 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
836 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
837 1.32 jruoho
838 1.32 jruoho vst = vst * 20;
839 1.32 jruoho pll = pll * 1000 / 5;
840 1.32 jruoho irt = 10 * __BIT(irt);
841 1.32 jruoho
842 1.32 jruoho /*
843 1.32 jruoho * Phase 1.
844 1.32 jruoho */
845 1.32 jruoho while (cvid > vid) {
846 1.32 jruoho
847 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
848 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
849 1.32 jruoho
850 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
851 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
852 1.32 jruoho
853 1.32 jruoho if (rv != 0)
854 1.32 jruoho return rv;
855 1.32 jruoho }
856 1.32 jruoho
857 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
858 1.32 jruoho
859 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
860 1.32 jruoho
861 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
862 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
863 1.32 jruoho
864 1.32 jruoho if (rv != 0)
865 1.32 jruoho return rv;
866 1.32 jruoho }
867 1.32 jruoho
868 1.32 jruoho /*
869 1.32 jruoho * Phase 2.
870 1.32 jruoho */
871 1.32 jruoho if (cfid != fid) {
872 1.32 jruoho
873 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
874 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
875 1.32 jruoho
876 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
877 1.32 jruoho
878 1.32 jruoho if (fid <= cfid)
879 1.32 jruoho val = cfid - 2;
880 1.32 jruoho else {
881 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
882 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
883 1.32 jruoho }
884 1.32 jruoho
885 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
886 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
887 1.32 jruoho
888 1.32 jruoho if (rv != 0)
889 1.32 jruoho return rv;
890 1.32 jruoho
891 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
892 1.32 jruoho }
893 1.32 jruoho
894 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
895 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
896 1.32 jruoho
897 1.32 jruoho if (rv != 0)
898 1.32 jruoho return rv;
899 1.32 jruoho }
900 1.32 jruoho
901 1.32 jruoho /*
902 1.32 jruoho * Phase 3.
903 1.32 jruoho */
904 1.32 jruoho if (cvid != vid) {
905 1.32 jruoho
906 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
907 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
908 1.32 jruoho
909 1.32 jruoho if (rv != 0)
910 1.32 jruoho return rv;
911 1.32 jruoho }
912 1.32 jruoho
913 1.32 jruoho return 0;
914 1.32 jruoho }
915 1.32 jruoho
916 1.32 jruoho static int
917 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
918 1.32 jruoho {
919 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
920 1.32 jruoho uint64_t val;
921 1.32 jruoho
922 1.32 jruoho do {
923 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
924 1.32 jruoho
925 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
926 1.32 jruoho
927 1.32 jruoho if (i == 0)
928 1.32 jruoho return EAGAIN;
929 1.32 jruoho
930 1.32 jruoho if (cfid != NULL)
931 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
932 1.32 jruoho
933 1.32 jruoho if (cvid != NULL)
934 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
935 1.32 jruoho
936 1.32 jruoho return 0;
937 1.32 jruoho }
938 1.32 jruoho
939 1.32 jruoho static void
940 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
941 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
942 1.32 jruoho {
943 1.49 jruoho uint64_t val = 0;
944 1.32 jruoho
945 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
946 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
947 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
948 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
949 1.32 jruoho
950 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
951 1.32 jruoho DELAY(tmo);
952 1.32 jruoho }
953 1.32 jruoho
954 1.10 jruoho int
955 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
956 1.10 jruoho {
957 1.10 jruoho struct acpicpu_tstate *ts;
958 1.14 jruoho uint64_t val;
959 1.10 jruoho uint32_t i;
960 1.10 jruoho
961 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
962 1.10 jruoho
963 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
964 1.10 jruoho
965 1.10 jruoho ts = &sc->sc_tstate[i];
966 1.10 jruoho
967 1.10 jruoho if (ts->ts_percent == 0)
968 1.10 jruoho continue;
969 1.10 jruoho
970 1.29 jruoho if (val == ts->ts_status) {
971 1.10 jruoho *percent = ts->ts_percent;
972 1.10 jruoho return 0;
973 1.10 jruoho }
974 1.10 jruoho }
975 1.10 jruoho
976 1.10 jruoho return EIO;
977 1.10 jruoho }
978 1.10 jruoho
979 1.10 jruoho int
980 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
981 1.10 jruoho {
982 1.49 jruoho uint64_t val;
983 1.49 jruoho uint8_t i;
984 1.10 jruoho
985 1.49 jruoho val = ts->ts_control;
986 1.49 jruoho val = val & __BITS(1, 4);
987 1.10 jruoho
988 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
989 1.10 jruoho
990 1.30 jruoho if (ts->ts_status == 0) {
991 1.30 jruoho DELAY(ts->ts_latency);
992 1.10 jruoho return 0;
993 1.30 jruoho }
994 1.10 jruoho
995 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
996 1.10 jruoho
997 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
998 1.10 jruoho
999 1.29 jruoho if (val == ts->ts_status)
1000 1.49 jruoho return 0;
1001 1.10 jruoho
1002 1.10 jruoho DELAY(ts->ts_latency);
1003 1.10 jruoho }
1004 1.10 jruoho
1005 1.49 jruoho return EAGAIN;
1006 1.10 jruoho }
1007 1.19 jruoho
1008 1.19 jruoho /*
1009 1.19 jruoho * A kludge for backwards compatibility.
1010 1.19 jruoho */
1011 1.19 jruoho static int
1012 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1013 1.19 jruoho {
1014 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1015 1.19 jruoho const char *str;
1016 1.19 jruoho int rv;
1017 1.19 jruoho
1018 1.19 jruoho switch (cpu_vendor) {
1019 1.19 jruoho
1020 1.19 jruoho case CPUVENDOR_IDT:
1021 1.19 jruoho case CPUVENDOR_INTEL:
1022 1.19 jruoho str = "est";
1023 1.19 jruoho break;
1024 1.19 jruoho
1025 1.19 jruoho case CPUVENDOR_AMD:
1026 1.19 jruoho str = "powernow";
1027 1.19 jruoho break;
1028 1.19 jruoho
1029 1.19 jruoho default:
1030 1.19 jruoho return ENODEV;
1031 1.19 jruoho }
1032 1.19 jruoho
1033 1.19 jruoho
1034 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1035 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1036 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1037 1.19 jruoho
1038 1.19 jruoho if (rv != 0)
1039 1.19 jruoho goto fail;
1040 1.19 jruoho
1041 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1042 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1043 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1044 1.19 jruoho
1045 1.19 jruoho if (rv != 0)
1046 1.19 jruoho goto fail;
1047 1.19 jruoho
1048 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1049 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1050 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1051 1.19 jruoho
1052 1.19 jruoho if (rv != 0)
1053 1.19 jruoho goto fail;
1054 1.19 jruoho
1055 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1056 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1057 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1058 1.19 jruoho
1059 1.19 jruoho if (rv != 0)
1060 1.19 jruoho goto fail;
1061 1.19 jruoho
1062 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1063 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1064 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1065 1.19 jruoho
1066 1.19 jruoho if (rv != 0)
1067 1.19 jruoho goto fail;
1068 1.19 jruoho
1069 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1070 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1071 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1072 1.19 jruoho
1073 1.19 jruoho if (rv != 0)
1074 1.19 jruoho goto fail;
1075 1.19 jruoho
1076 1.19 jruoho return 0;
1077 1.19 jruoho
1078 1.19 jruoho fail:
1079 1.19 jruoho if (acpicpu_log != NULL) {
1080 1.19 jruoho sysctl_teardown(&acpicpu_log);
1081 1.19 jruoho acpicpu_log = NULL;
1082 1.19 jruoho }
1083 1.19 jruoho
1084 1.19 jruoho return rv;
1085 1.19 jruoho }
1086 1.19 jruoho
1087 1.19 jruoho static int
1088 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1089 1.19 jruoho {
1090 1.19 jruoho struct sysctlnode node;
1091 1.19 jruoho uint32_t freq;
1092 1.19 jruoho int err;
1093 1.19 jruoho
1094 1.68 jruoho freq = cpufreq_get(curcpu());
1095 1.19 jruoho
1096 1.68 jruoho if (freq == 0)
1097 1.68 jruoho return ENXIO;
1098 1.19 jruoho
1099 1.19 jruoho node = *rnode;
1100 1.19 jruoho node.sysctl_data = &freq;
1101 1.19 jruoho
1102 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1103 1.19 jruoho
1104 1.19 jruoho if (err != 0 || newp == NULL)
1105 1.19 jruoho return err;
1106 1.19 jruoho
1107 1.19 jruoho return 0;
1108 1.19 jruoho }
1109 1.19 jruoho
1110 1.19 jruoho static int
1111 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1112 1.19 jruoho {
1113 1.19 jruoho struct sysctlnode node;
1114 1.19 jruoho uint32_t freq;
1115 1.19 jruoho int err;
1116 1.19 jruoho
1117 1.68 jruoho freq = cpufreq_get(curcpu());
1118 1.19 jruoho
1119 1.68 jruoho if (freq == 0)
1120 1.68 jruoho return ENXIO;
1121 1.19 jruoho
1122 1.19 jruoho node = *rnode;
1123 1.19 jruoho node.sysctl_data = &freq;
1124 1.19 jruoho
1125 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1126 1.19 jruoho
1127 1.19 jruoho if (err != 0 || newp == NULL)
1128 1.19 jruoho return err;
1129 1.19 jruoho
1130 1.68 jruoho cpufreq_set_all(freq);
1131 1.19 jruoho
1132 1.19 jruoho return 0;
1133 1.19 jruoho }
1134 1.19 jruoho
1135 1.19 jruoho static int
1136 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1137 1.19 jruoho {
1138 1.19 jruoho struct cpu_info *ci = curcpu();
1139 1.19 jruoho struct acpicpu_softc *sc;
1140 1.19 jruoho struct sysctlnode node;
1141 1.19 jruoho char buf[1024];
1142 1.19 jruoho size_t len;
1143 1.19 jruoho uint32_t i;
1144 1.19 jruoho int err;
1145 1.19 jruoho
1146 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1147 1.19 jruoho
1148 1.19 jruoho if (sc == NULL)
1149 1.19 jruoho return ENXIO;
1150 1.19 jruoho
1151 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1152 1.19 jruoho
1153 1.19 jruoho mutex_enter(&sc->sc_mtx);
1154 1.19 jruoho
1155 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1156 1.19 jruoho
1157 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1158 1.19 jruoho continue;
1159 1.19 jruoho
1160 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1161 1.19 jruoho sc->sc_pstate[i].ps_freq,
1162 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1163 1.19 jruoho }
1164 1.19 jruoho
1165 1.19 jruoho mutex_exit(&sc->sc_mtx);
1166 1.19 jruoho
1167 1.19 jruoho node = *rnode;
1168 1.19 jruoho node.sysctl_data = buf;
1169 1.19 jruoho
1170 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1171 1.19 jruoho
1172 1.19 jruoho if (err != 0 || newp == NULL)
1173 1.19 jruoho return err;
1174 1.19 jruoho
1175 1.19 jruoho return 0;
1176 1.19 jruoho }
1177 1.19 jruoho
1178