acpi_cpu_md.c revision 1.68.2.2 1 1.68.2.2 yamt /* $NetBSD: acpi_cpu_md.c,v 1.68.2.2 2013/01/16 05:33:09 yamt Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.68.2.2 yamt __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.68.2.2 2013/01/16 05:33:09 yamt Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.68 jruoho #include <sys/cpufreq.h>
35 1.48 jruoho #include <sys/device.h>
36 1.1 jruoho #include <sys/kcore.h>
37 1.5 jruoho #include <sys/sysctl.h>
38 1.4 jruoho #include <sys/xcall.h>
39 1.1 jruoho
40 1.1 jruoho #include <x86/cpu.h>
41 1.5 jruoho #include <x86/cpufunc.h>
42 1.5 jruoho #include <x86/cputypes.h>
43 1.1 jruoho #include <x86/cpuvar.h>
44 1.5 jruoho #include <x86/cpu_msr.h>
45 1.1 jruoho #include <x86/machdep.h>
46 1.1 jruoho
47 1.1 jruoho #include <dev/acpi/acpica.h>
48 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
49 1.1 jruoho
50 1.12 jruoho #include <dev/pci/pcivar.h>
51 1.12 jruoho #include <dev/pci/pcidevs.h>
52 1.12 jruoho
53 1.38 jruoho #include <machine/acpi_machdep.h>
54 1.38 jruoho
55 1.35 jruoho /*
56 1.55 jruoho * Intel IA32_MISC_ENABLE.
57 1.55 jruoho */
58 1.55 jruoho #define MSR_MISC_ENABLE_EST __BIT(16)
59 1.55 jruoho #define MSR_MISC_ENABLE_TURBO __BIT(38)
60 1.55 jruoho
61 1.55 jruoho /*
62 1.35 jruoho * AMD C1E.
63 1.35 jruoho */
64 1.35 jruoho #define MSR_CMPHALT 0xc0010055
65 1.35 jruoho
66 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
67 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
68 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
69 1.33 jruoho
70 1.32 jruoho /*
71 1.68.2.1 yamt * AMD families 10h, 11h, 12h, 14h, and 15h.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
74 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
75 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
76 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
77 1.22 jruoho
78 1.32 jruoho /*
79 1.32 jruoho * AMD family 0Fh.
80 1.32 jruoho */
81 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
82 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
83 1.17 jruoho
84 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87 1.32 jruoho
88 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92 1.32 jruoho
93 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95 1.32 jruoho
96 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103 1.32 jruoho
104 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105 1.17 jruoho
106 1.5 jruoho static char native_idle_text[16];
107 1.5 jruoho void (*native_idle)(void) = NULL;
108 1.1 jruoho
109 1.58 dyoung static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
110 1.56 jruoho static void acpicpu_md_pstate_hwf_reset(void *, void *);
111 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
112 1.32 jruoho uint32_t *);
113 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
114 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
115 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
116 1.32 jruoho uint32_t, uint32_t);
117 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
118 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
119 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
120 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
121 1.5 jruoho
122 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
123 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
124 1.1 jruoho
125 1.48 jruoho struct cpu_info *
126 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
127 1.48 jruoho {
128 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
129 1.48 jruoho
130 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
131 1.48 jruoho return NULL;
132 1.48 jruoho
133 1.48 jruoho return cfaa->ci;
134 1.48 jruoho }
135 1.48 jruoho
136 1.48 jruoho struct cpu_info *
137 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
138 1.48 jruoho {
139 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
140 1.48 jruoho
141 1.48 jruoho return cfaa->ci;
142 1.48 jruoho }
143 1.48 jruoho
144 1.1 jruoho uint32_t
145 1.43 jruoho acpicpu_md_flags(void)
146 1.1 jruoho {
147 1.1 jruoho struct cpu_info *ci = curcpu();
148 1.12 jruoho struct pci_attach_args pa;
149 1.18 jruoho uint32_t family, val = 0;
150 1.21 jruoho uint32_t regs[4];
151 1.66 jruoho uint64_t msr;
152 1.1 jruoho
153 1.38 jruoho if (acpi_md_ncpus() == 1)
154 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
155 1.1 jruoho
156 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
157 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
158 1.1 jruoho
159 1.39 jruoho /*
160 1.39 jruoho * By default, assume that the local APIC timer
161 1.39 jruoho * as well as TSC are stalled during C3 sleep.
162 1.39 jruoho */
163 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
164 1.22 jruoho
165 1.1 jruoho switch (cpu_vendor) {
166 1.1 jruoho
167 1.17 jruoho case CPUVENDOR_IDT:
168 1.22 jruoho
169 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
171 1.22 jruoho
172 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
174 1.22 jruoho
175 1.22 jruoho break;
176 1.22 jruoho
177 1.1 jruoho case CPUVENDOR_INTEL:
178 1.17 jruoho
179 1.39 jruoho /*
180 1.39 jruoho * Bus master control and arbitration should be
181 1.39 jruoho * available on all supported Intel CPUs (to be
182 1.39 jruoho * sure, this is double-checked later from the
183 1.39 jruoho * firmware data). These flags imply that it is
184 1.39 jruoho * not necessary to flush caches before C3 state.
185 1.39 jruoho */
186 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
187 1.22 jruoho
188 1.39 jruoho /*
189 1.39 jruoho * Check if we can use "native", MSR-based,
190 1.39 jruoho * access. If not, we have to resort to I/O.
191 1.39 jruoho */
192 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
193 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
194 1.5 jruoho
195 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
196 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
197 1.10 jruoho
198 1.22 jruoho /*
199 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
200 1.25 jruoho * Boost are available. Also see if we might have
201 1.25 jruoho * an invariant local APIC timer ("ARAT").
202 1.23 jruoho */
203 1.23 jruoho if (cpuid_level >= 0x06) {
204 1.23 jruoho
205 1.44 jruoho x86_cpuid(0x00000006, regs);
206 1.23 jruoho
207 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
209 1.23 jruoho
210 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
211 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
212 1.25 jruoho
213 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
214 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
215 1.23 jruoho }
216 1.23 jruoho
217 1.23 jruoho /*
218 1.22 jruoho * Detect whether TSC is invariant. If it is not,
219 1.22 jruoho * we keep the flag to note that TSC will not run
220 1.22 jruoho * at constant rate. Depending on the CPU, this may
221 1.22 jruoho * affect P- and T-state changes, but especially
222 1.22 jruoho * relevant are C-states; with variant TSC, states
223 1.24 jruoho * larger than C1 may completely stop the counter.
224 1.22 jruoho */
225 1.22 jruoho x86_cpuid(0x80000000, regs);
226 1.22 jruoho
227 1.22 jruoho if (regs[0] >= 0x80000007) {
228 1.22 jruoho
229 1.22 jruoho x86_cpuid(0x80000007, regs);
230 1.22 jruoho
231 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
232 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
233 1.22 jruoho }
234 1.22 jruoho
235 1.17 jruoho break;
236 1.12 jruoho
237 1.17 jruoho case CPUVENDOR_AMD:
238 1.17 jruoho
239 1.32 jruoho x86_cpuid(0x80000000, regs);
240 1.32 jruoho
241 1.32 jruoho if (regs[0] < 0x80000007)
242 1.32 jruoho break;
243 1.32 jruoho
244 1.32 jruoho x86_cpuid(0x80000007, regs);
245 1.32 jruoho
246 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
247 1.18 jruoho
248 1.18 jruoho if (family == 0xf)
249 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
250 1.18 jruoho
251 1.32 jruoho switch (family) {
252 1.1 jruoho
253 1.22 jruoho case 0x0f:
254 1.32 jruoho
255 1.45 jruoho /*
256 1.68.2.2 yamt * Disable C1E if present.
257 1.68.2.2 yamt */
258 1.68.2.2 yamt if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
259 1.68.2.2 yamt val |= ACPICPU_FLAG_C_C1E;
260 1.68.2.2 yamt
261 1.68.2.2 yamt /*
262 1.45 jruoho * Evaluate support for the "FID/VID
263 1.45 jruoho * algorithm" also used by powernow(4).
264 1.45 jruoho */
265 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
266 1.32 jruoho break;
267 1.32 jruoho
268 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
269 1.32 jruoho break;
270 1.32 jruoho
271 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
272 1.32 jruoho break;
273 1.32 jruoho
274 1.17 jruoho case 0x10:
275 1.17 jruoho case 0x11:
276 1.66 jruoho
277 1.68.2.2 yamt /*
278 1.68.2.2 yamt * Disable C1E if present.
279 1.68.2.2 yamt */
280 1.66 jruoho if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
281 1.66 jruoho val |= ACPICPU_FLAG_C_C1E;
282 1.66 jruoho
283 1.40 jmcneill /* FALLTHROUGH */
284 1.40 jmcneill
285 1.68.2.1 yamt case 0x12:
286 1.40 jmcneill case 0x14: /* AMD Fusion */
287 1.68.2.1 yamt case 0x15: /* AMD Bulldozer */
288 1.1 jruoho
289 1.42 jruoho /*
290 1.42 jruoho * Like with Intel, detect invariant TSC,
291 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
292 1.42 jruoho * (Core Performance Boost), respectively.
293 1.42 jruoho */
294 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
295 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
296 1.22 jruoho
297 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
298 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
299 1.21 jruoho
300 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
301 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
302 1.35 jruoho
303 1.42 jruoho /*
304 1.42 jruoho * Also check for APERF and MPERF,
305 1.42 jruoho * first available in the family 10h.
306 1.42 jruoho */
307 1.42 jruoho if (cpuid_level >= 0x06) {
308 1.42 jruoho
309 1.42 jruoho x86_cpuid(0x00000006, regs);
310 1.42 jruoho
311 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
312 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
313 1.42 jruoho }
314 1.42 jruoho
315 1.35 jruoho break;
316 1.17 jruoho }
317 1.1 jruoho
318 1.1 jruoho break;
319 1.1 jruoho }
320 1.1 jruoho
321 1.12 jruoho /*
322 1.12 jruoho * There are several erratums for PIIX4.
323 1.12 jruoho */
324 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
325 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
326 1.12 jruoho
327 1.1 jruoho return val;
328 1.1 jruoho }
329 1.1 jruoho
330 1.12 jruoho static int
331 1.58 dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
332 1.12 jruoho {
333 1.12 jruoho
334 1.12 jruoho /*
335 1.12 jruoho * XXX: The pci_find_device(9) function only
336 1.12 jruoho * deals with attached devices. Change this
337 1.12 jruoho * to use something like pci_device_foreach().
338 1.12 jruoho */
339 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
340 1.12 jruoho return 0;
341 1.12 jruoho
342 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
343 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
344 1.12 jruoho return 1;
345 1.12 jruoho
346 1.12 jruoho return 0;
347 1.12 jruoho }
348 1.12 jruoho
349 1.35 jruoho void
350 1.43 jruoho acpicpu_md_quirk_c1e(void)
351 1.35 jruoho {
352 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
353 1.35 jruoho uint64_t val;
354 1.35 jruoho
355 1.66 jruoho val = rdmsr(MSR_CMPHALT);
356 1.35 jruoho
357 1.35 jruoho if ((val & c1e) != 0)
358 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
359 1.35 jruoho }
360 1.35 jruoho
361 1.1 jruoho int
362 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
363 1.1 jruoho {
364 1.1 jruoho const size_t size = sizeof(native_idle_text);
365 1.31 jruoho struct acpicpu_cstate *cs;
366 1.31 jruoho bool ipi = false;
367 1.31 jruoho int i;
368 1.1 jruoho
369 1.45 jruoho /*
370 1.45 jruoho * Save the cpu_idle(9) loop used by default.
371 1.45 jruoho */
372 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
373 1.31 jruoho
374 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
375 1.31 jruoho
376 1.31 jruoho cs = &sc->sc_cstate[i];
377 1.31 jruoho
378 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
379 1.31 jruoho ipi = true;
380 1.31 jruoho break;
381 1.31 jruoho }
382 1.31 jruoho }
383 1.31 jruoho
384 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
385 1.1 jruoho
386 1.1 jruoho return 0;
387 1.1 jruoho }
388 1.1 jruoho
389 1.1 jruoho int
390 1.43 jruoho acpicpu_md_cstate_stop(void)
391 1.1 jruoho {
392 1.62 jruoho static char text[16];
393 1.62 jruoho void (*func)(void);
394 1.4 jruoho uint64_t xc;
395 1.31 jruoho bool ipi;
396 1.1 jruoho
397 1.62 jruoho x86_cpu_idle_get(&func, text, sizeof(text));
398 1.62 jruoho
399 1.62 jruoho if (func == native_idle)
400 1.62 jruoho return EALREADY;
401 1.62 jruoho
402 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
403 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
404 1.1 jruoho
405 1.4 jruoho /*
406 1.4 jruoho * Run a cross-call to ensure that all CPUs are
407 1.4 jruoho * out from the ACPI idle-loop before detachment.
408 1.4 jruoho */
409 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
410 1.4 jruoho xc_wait(xc);
411 1.1 jruoho
412 1.1 jruoho return 0;
413 1.1 jruoho }
414 1.1 jruoho
415 1.3 jruoho /*
416 1.64 jruoho * Called with interrupts enabled.
417 1.3 jruoho */
418 1.1 jruoho void
419 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
420 1.1 jruoho {
421 1.3 jruoho struct cpu_info *ci = curcpu();
422 1.1 jruoho
423 1.64 jruoho KASSERT(ci->ci_ilevel == IPL_NONE);
424 1.64 jruoho
425 1.1 jruoho switch (method) {
426 1.1 jruoho
427 1.1 jruoho case ACPICPU_C_STATE_FFH:
428 1.3 jruoho
429 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
430 1.3 jruoho
431 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
432 1.3 jruoho return;
433 1.3 jruoho
434 1.1 jruoho x86_mwait((state - 1) << 4, 0);
435 1.1 jruoho break;
436 1.1 jruoho
437 1.1 jruoho case ACPICPU_C_STATE_HALT:
438 1.3 jruoho
439 1.64 jruoho x86_disable_intr();
440 1.64 jruoho
441 1.64 jruoho if (__predict_false(ci->ci_want_resched != 0)) {
442 1.64 jruoho x86_enable_intr();
443 1.3 jruoho return;
444 1.64 jruoho }
445 1.3 jruoho
446 1.1 jruoho x86_stihlt();
447 1.1 jruoho break;
448 1.1 jruoho }
449 1.1 jruoho }
450 1.5 jruoho
451 1.5 jruoho int
452 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
453 1.5 jruoho {
454 1.62 jruoho uint64_t xc, val;
455 1.62 jruoho
456 1.63 jruoho switch (cpu_vendor) {
457 1.62 jruoho
458 1.63 jruoho case CPUVENDOR_IDT:
459 1.63 jruoho case CPUVENDOR_INTEL:
460 1.62 jruoho
461 1.63 jruoho /*
462 1.63 jruoho * Make sure EST is enabled.
463 1.63 jruoho */
464 1.63 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
465 1.62 jruoho
466 1.62 jruoho val = rdmsr(MSR_MISC_ENABLE);
467 1.62 jruoho
468 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0) {
469 1.63 jruoho
470 1.63 jruoho val |= MSR_MISC_ENABLE_EST;
471 1.63 jruoho wrmsr(MSR_MISC_ENABLE, val);
472 1.63 jruoho val = rdmsr(MSR_MISC_ENABLE);
473 1.63 jruoho
474 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0)
475 1.63 jruoho return ENOTTY;
476 1.63 jruoho }
477 1.62 jruoho }
478 1.62 jruoho }
479 1.57 jruoho
480 1.57 jruoho /*
481 1.57 jruoho * Reset the APERF and MPERF counters.
482 1.57 jruoho */
483 1.57 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
484 1.57 jruoho xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
485 1.57 jruoho xc_wait(xc);
486 1.57 jruoho }
487 1.57 jruoho
488 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
489 1.5 jruoho }
490 1.5 jruoho
491 1.5 jruoho int
492 1.5 jruoho acpicpu_md_pstate_stop(void)
493 1.5 jruoho {
494 1.62 jruoho
495 1.62 jruoho if (acpicpu_log == NULL)
496 1.62 jruoho return EALREADY;
497 1.62 jruoho
498 1.62 jruoho sysctl_teardown(&acpicpu_log);
499 1.62 jruoho acpicpu_log = NULL;
500 1.5 jruoho
501 1.5 jruoho return 0;
502 1.5 jruoho }
503 1.5 jruoho
504 1.5 jruoho int
505 1.55 jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
506 1.5 jruoho {
507 1.56 jruoho struct cpu_info *ci = sc->sc_ci;
508 1.15 jruoho struct acpicpu_pstate *ps, msr;
509 1.18 jruoho uint32_t family, i = 0;
510 1.13 jruoho
511 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
512 1.13 jruoho
513 1.5 jruoho switch (cpu_vendor) {
514 1.5 jruoho
515 1.17 jruoho case CPUVENDOR_IDT:
516 1.5 jruoho case CPUVENDOR_INTEL:
517 1.33 jruoho
518 1.33 jruoho /*
519 1.33 jruoho * If the so-called Turbo Boost is present,
520 1.33 jruoho * the P0-state is always the "turbo state".
521 1.51 jruoho * It is shown as the P1 frequency + 1 MHz.
522 1.33 jruoho *
523 1.33 jruoho * For discussion, see:
524 1.33 jruoho *
525 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
526 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
527 1.33 jruoho * Based Processors. White Paper, November 2008.
528 1.33 jruoho */
529 1.55 jruoho if (sc->sc_pstate_count >= 2 &&
530 1.52 jruoho (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
531 1.51 jruoho
532 1.51 jruoho ps = &sc->sc_pstate[0];
533 1.51 jruoho
534 1.51 jruoho if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
535 1.51 jruoho ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
536 1.51 jruoho }
537 1.33 jruoho
538 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
539 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
540 1.15 jruoho
541 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
542 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
543 1.13 jruoho break;
544 1.13 jruoho
545 1.13 jruoho case CPUVENDOR_AMD:
546 1.13 jruoho
547 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
548 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
549 1.33 jruoho
550 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
551 1.18 jruoho
552 1.18 jruoho if (family == 0xf)
553 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
554 1.18 jruoho
555 1.18 jruoho switch (family) {
556 1.17 jruoho
557 1.32 jruoho case 0x0f:
558 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
559 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
560 1.32 jruoho break;
561 1.32 jruoho
562 1.17 jruoho case 0x10:
563 1.17 jruoho case 0x11:
564 1.68.2.1 yamt case 0x12:
565 1.68.2.1 yamt case 0x14:
566 1.68.2.1 yamt case 0x15:
567 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
568 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
569 1.17 jruoho
570 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
571 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
572 1.17 jruoho break;
573 1.17 jruoho
574 1.17 jruoho default:
575 1.55 jruoho /*
576 1.55 jruoho * If we have an unknown AMD CPU, rely on XPSS.
577 1.55 jruoho */
578 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
579 1.17 jruoho return EOPNOTSUPP;
580 1.17 jruoho }
581 1.13 jruoho
582 1.13 jruoho break;
583 1.13 jruoho
584 1.13 jruoho default:
585 1.13 jruoho return ENODEV;
586 1.13 jruoho }
587 1.5 jruoho
588 1.26 jruoho /*
589 1.26 jruoho * Fill the P-state structures with MSR addresses that are
590 1.27 jruoho * known to be correct. If we do not know the addresses,
591 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
592 1.39 jruoho * not necessarily need to do anything to support new CPUs.
593 1.26 jruoho */
594 1.15 jruoho while (i < sc->sc_pstate_count) {
595 1.15 jruoho
596 1.15 jruoho ps = &sc->sc_pstate[i];
597 1.15 jruoho
598 1.32 jruoho if (msr.ps_flags != 0)
599 1.32 jruoho ps->ps_flags |= msr.ps_flags;
600 1.32 jruoho
601 1.27 jruoho if (msr.ps_status_addr != 0)
602 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
603 1.15 jruoho
604 1.27 jruoho if (msr.ps_status_mask != 0)
605 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
606 1.15 jruoho
607 1.27 jruoho if (msr.ps_control_addr != 0)
608 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
609 1.15 jruoho
610 1.27 jruoho if (msr.ps_control_mask != 0)
611 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
612 1.15 jruoho
613 1.15 jruoho i++;
614 1.15 jruoho }
615 1.15 jruoho
616 1.15 jruoho return 0;
617 1.15 jruoho }
618 1.15 jruoho
619 1.55 jruoho /*
620 1.55 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
621 1.55 jruoho * increments at the rate of the fixed maximum frequency
622 1.55 jruoho * configured during the boot, whereas APERF counts at the
623 1.55 jruoho * rate of the actual frequency. Note that the MSRs must be
624 1.55 jruoho * read without delay, and that only the ratio between
625 1.55 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
626 1.55 jruoho *
627 1.55 jruoho * The function thus returns the percentage of the actual
628 1.55 jruoho * frequency in terms of the maximum frequency of the calling
629 1.55 jruoho * CPU since the last call. A value zero implies an error.
630 1.55 jruoho *
631 1.55 jruoho * For further details, refer to:
632 1.55 jruoho *
633 1.55 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
634 1.55 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
635 1.55 jruoho * System Programming Guide, Part 1. July, 2008.
636 1.55 jruoho *
637 1.55 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
638 1.55 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
639 1.55 jruoho * 2.4.5, Revision 3.48, April 2010.
640 1.55 jruoho */
641 1.41 jruoho uint8_t
642 1.56 jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
643 1.41 jruoho {
644 1.55 jruoho struct acpicpu_softc *sc;
645 1.41 jruoho uint64_t aperf, mperf;
646 1.55 jruoho uint8_t rv = 0;
647 1.55 jruoho
648 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
649 1.41 jruoho
650 1.55 jruoho if (__predict_false(sc == NULL))
651 1.50 jruoho return 0;
652 1.50 jruoho
653 1.53 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
654 1.50 jruoho return 0;
655 1.41 jruoho
656 1.41 jruoho aperf = sc->sc_pstate_aperf;
657 1.41 jruoho mperf = sc->sc_pstate_mperf;
658 1.41 jruoho
659 1.56 jruoho x86_disable_intr();
660 1.56 jruoho
661 1.50 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
662 1.50 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
663 1.41 jruoho
664 1.56 jruoho x86_enable_intr();
665 1.56 jruoho
666 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
667 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
668 1.41 jruoho
669 1.41 jruoho if (__predict_true(mperf != 0))
670 1.41 jruoho rv = (aperf * 100) / mperf;
671 1.41 jruoho
672 1.41 jruoho return rv;
673 1.41 jruoho }
674 1.41 jruoho
675 1.41 jruoho static void
676 1.56 jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
677 1.41 jruoho {
678 1.56 jruoho struct cpu_info *ci = curcpu();
679 1.55 jruoho struct acpicpu_softc *sc;
680 1.41 jruoho
681 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
682 1.41 jruoho
683 1.55 jruoho if (__predict_false(sc == NULL))
684 1.55 jruoho return;
685 1.46 jruoho
686 1.56 jruoho x86_disable_intr();
687 1.46 jruoho
688 1.55 jruoho wrmsr(MSR_APERF, 0);
689 1.55 jruoho wrmsr(MSR_MPERF, 0);
690 1.41 jruoho
691 1.56 jruoho x86_enable_intr();
692 1.56 jruoho
693 1.41 jruoho sc->sc_pstate_aperf = 0;
694 1.41 jruoho sc->sc_pstate_mperf = 0;
695 1.41 jruoho }
696 1.41 jruoho
697 1.15 jruoho int
698 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
699 1.15 jruoho {
700 1.15 jruoho struct acpicpu_pstate *ps = NULL;
701 1.15 jruoho uint64_t val;
702 1.15 jruoho uint32_t i;
703 1.15 jruoho
704 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
705 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
706 1.32 jruoho
707 1.49 jruoho /*
708 1.49 jruoho * Pick any P-state for the status address.
709 1.68 jruoho */
710 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
711 1.15 jruoho
712 1.15 jruoho ps = &sc->sc_pstate[i];
713 1.15 jruoho
714 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
715 1.15 jruoho break;
716 1.15 jruoho }
717 1.15 jruoho
718 1.15 jruoho if (__predict_false(ps == NULL))
719 1.17 jruoho return ENODEV;
720 1.15 jruoho
721 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
722 1.13 jruoho return EINVAL;
723 1.5 jruoho
724 1.13 jruoho val = rdmsr(ps->ps_status_addr);
725 1.5 jruoho
726 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
727 1.13 jruoho val = val & ps->ps_status_mask;
728 1.5 jruoho
729 1.49 jruoho /*
730 1.49 jruoho * Search for the value from known P-states.
731 1.49 jruoho */
732 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
733 1.5 jruoho
734 1.13 jruoho ps = &sc->sc_pstate[i];
735 1.5 jruoho
736 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
737 1.13 jruoho continue;
738 1.5 jruoho
739 1.29 jruoho if (val == ps->ps_status) {
740 1.13 jruoho *freq = ps->ps_freq;
741 1.13 jruoho return 0;
742 1.13 jruoho }
743 1.5 jruoho }
744 1.5 jruoho
745 1.60 jruoho /*
746 1.60 jruoho * If the value was not found, try APERF/MPERF.
747 1.60 jruoho * The state is P0 if the return value is 100 %.
748 1.60 jruoho */
749 1.60 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
750 1.60 jruoho
751 1.68 jruoho KASSERT(sc->sc_pstate_count > 0);
752 1.68 jruoho KASSERT(sc->sc_pstate[0].ps_freq != 0);
753 1.68 jruoho
754 1.60 jruoho if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
755 1.60 jruoho *freq = sc->sc_pstate[0].ps_freq;
756 1.60 jruoho return 0;
757 1.60 jruoho }
758 1.60 jruoho }
759 1.60 jruoho
760 1.13 jruoho return EIO;
761 1.5 jruoho }
762 1.5 jruoho
763 1.5 jruoho int
764 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
765 1.5 jruoho {
766 1.54 jruoho uint64_t val = 0;
767 1.5 jruoho
768 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
769 1.37 jruoho return EINVAL;
770 1.37 jruoho
771 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
772 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
773 1.32 jruoho
774 1.54 jruoho /*
775 1.54 jruoho * If the mask is set, do a read-modify-write.
776 1.54 jruoho */
777 1.54 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
778 1.54 jruoho val = rdmsr(ps->ps_control_addr);
779 1.54 jruoho val &= ~ps->ps_control_mask;
780 1.54 jruoho }
781 1.5 jruoho
782 1.54 jruoho val |= ps->ps_control;
783 1.13 jruoho
784 1.49 jruoho wrmsr(ps->ps_control_addr, val);
785 1.49 jruoho DELAY(ps->ps_latency);
786 1.14 jruoho
787 1.49 jruoho return 0;
788 1.5 jruoho }
789 1.10 jruoho
790 1.32 jruoho static int
791 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
792 1.32 jruoho {
793 1.32 jruoho struct acpicpu_pstate *ps;
794 1.32 jruoho uint32_t fid, i, vid;
795 1.32 jruoho uint32_t cfid, cvid;
796 1.32 jruoho int rv;
797 1.32 jruoho
798 1.32 jruoho /*
799 1.32 jruoho * AMD family 0Fh needs special treatment.
800 1.32 jruoho * While it wants to use ACPI, it does not
801 1.32 jruoho * comply with the ACPI specifications.
802 1.32 jruoho */
803 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
804 1.32 jruoho
805 1.32 jruoho if (rv != 0)
806 1.32 jruoho return rv;
807 1.32 jruoho
808 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
809 1.32 jruoho
810 1.32 jruoho ps = &sc->sc_pstate[i];
811 1.32 jruoho
812 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
813 1.32 jruoho continue;
814 1.32 jruoho
815 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
816 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
817 1.32 jruoho
818 1.32 jruoho if (cfid == fid && cvid == vid) {
819 1.32 jruoho *freq = ps->ps_freq;
820 1.32 jruoho return 0;
821 1.32 jruoho }
822 1.32 jruoho }
823 1.32 jruoho
824 1.32 jruoho return EIO;
825 1.32 jruoho }
826 1.32 jruoho
827 1.32 jruoho static int
828 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
829 1.32 jruoho {
830 1.32 jruoho const uint64_t ctrl = ps->ps_control;
831 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
832 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
833 1.32 jruoho uint32_t val, vid, vst;
834 1.32 jruoho int rv;
835 1.32 jruoho
836 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
837 1.32 jruoho
838 1.32 jruoho if (rv != 0)
839 1.32 jruoho return rv;
840 1.32 jruoho
841 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
842 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
843 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
844 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
845 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
846 1.32 jruoho
847 1.32 jruoho vst = vst * 20;
848 1.32 jruoho pll = pll * 1000 / 5;
849 1.32 jruoho irt = 10 * __BIT(irt);
850 1.32 jruoho
851 1.32 jruoho /*
852 1.32 jruoho * Phase 1.
853 1.32 jruoho */
854 1.32 jruoho while (cvid > vid) {
855 1.32 jruoho
856 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
857 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
858 1.32 jruoho
859 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
860 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
861 1.32 jruoho
862 1.32 jruoho if (rv != 0)
863 1.32 jruoho return rv;
864 1.32 jruoho }
865 1.32 jruoho
866 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
867 1.32 jruoho
868 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
869 1.32 jruoho
870 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
871 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
872 1.32 jruoho
873 1.32 jruoho if (rv != 0)
874 1.32 jruoho return rv;
875 1.32 jruoho }
876 1.32 jruoho
877 1.32 jruoho /*
878 1.32 jruoho * Phase 2.
879 1.32 jruoho */
880 1.32 jruoho if (cfid != fid) {
881 1.32 jruoho
882 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
883 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
884 1.32 jruoho
885 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
886 1.32 jruoho
887 1.32 jruoho if (fid <= cfid)
888 1.32 jruoho val = cfid - 2;
889 1.32 jruoho else {
890 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
891 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
892 1.32 jruoho }
893 1.32 jruoho
894 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
895 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
896 1.32 jruoho
897 1.32 jruoho if (rv != 0)
898 1.32 jruoho return rv;
899 1.32 jruoho
900 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
901 1.32 jruoho }
902 1.32 jruoho
903 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
904 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
905 1.32 jruoho
906 1.32 jruoho if (rv != 0)
907 1.32 jruoho return rv;
908 1.32 jruoho }
909 1.32 jruoho
910 1.32 jruoho /*
911 1.32 jruoho * Phase 3.
912 1.32 jruoho */
913 1.32 jruoho if (cvid != vid) {
914 1.32 jruoho
915 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
916 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
917 1.32 jruoho
918 1.32 jruoho if (rv != 0)
919 1.32 jruoho return rv;
920 1.32 jruoho }
921 1.32 jruoho
922 1.32 jruoho return 0;
923 1.32 jruoho }
924 1.32 jruoho
925 1.32 jruoho static int
926 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
927 1.32 jruoho {
928 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
929 1.32 jruoho uint64_t val;
930 1.32 jruoho
931 1.32 jruoho do {
932 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
933 1.32 jruoho
934 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
935 1.32 jruoho
936 1.32 jruoho if (i == 0)
937 1.32 jruoho return EAGAIN;
938 1.32 jruoho
939 1.32 jruoho if (cfid != NULL)
940 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
941 1.32 jruoho
942 1.32 jruoho if (cvid != NULL)
943 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
944 1.32 jruoho
945 1.32 jruoho return 0;
946 1.32 jruoho }
947 1.32 jruoho
948 1.32 jruoho static void
949 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
950 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
951 1.32 jruoho {
952 1.49 jruoho uint64_t val = 0;
953 1.32 jruoho
954 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
955 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
956 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
957 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
958 1.32 jruoho
959 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
960 1.32 jruoho DELAY(tmo);
961 1.32 jruoho }
962 1.32 jruoho
963 1.10 jruoho int
964 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
965 1.10 jruoho {
966 1.10 jruoho struct acpicpu_tstate *ts;
967 1.14 jruoho uint64_t val;
968 1.10 jruoho uint32_t i;
969 1.10 jruoho
970 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
971 1.10 jruoho
972 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
973 1.10 jruoho
974 1.10 jruoho ts = &sc->sc_tstate[i];
975 1.10 jruoho
976 1.10 jruoho if (ts->ts_percent == 0)
977 1.10 jruoho continue;
978 1.10 jruoho
979 1.29 jruoho if (val == ts->ts_status) {
980 1.10 jruoho *percent = ts->ts_percent;
981 1.10 jruoho return 0;
982 1.10 jruoho }
983 1.10 jruoho }
984 1.10 jruoho
985 1.10 jruoho return EIO;
986 1.10 jruoho }
987 1.10 jruoho
988 1.10 jruoho int
989 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
990 1.10 jruoho {
991 1.49 jruoho uint64_t val;
992 1.49 jruoho uint8_t i;
993 1.10 jruoho
994 1.49 jruoho val = ts->ts_control;
995 1.49 jruoho val = val & __BITS(1, 4);
996 1.10 jruoho
997 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
998 1.10 jruoho
999 1.30 jruoho if (ts->ts_status == 0) {
1000 1.30 jruoho DELAY(ts->ts_latency);
1001 1.10 jruoho return 0;
1002 1.30 jruoho }
1003 1.10 jruoho
1004 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1005 1.10 jruoho
1006 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1007 1.10 jruoho
1008 1.29 jruoho if (val == ts->ts_status)
1009 1.49 jruoho return 0;
1010 1.10 jruoho
1011 1.10 jruoho DELAY(ts->ts_latency);
1012 1.10 jruoho }
1013 1.10 jruoho
1014 1.49 jruoho return EAGAIN;
1015 1.10 jruoho }
1016 1.19 jruoho
1017 1.19 jruoho /*
1018 1.19 jruoho * A kludge for backwards compatibility.
1019 1.19 jruoho */
1020 1.19 jruoho static int
1021 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1022 1.19 jruoho {
1023 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1024 1.19 jruoho const char *str;
1025 1.19 jruoho int rv;
1026 1.19 jruoho
1027 1.19 jruoho switch (cpu_vendor) {
1028 1.19 jruoho
1029 1.19 jruoho case CPUVENDOR_IDT:
1030 1.19 jruoho case CPUVENDOR_INTEL:
1031 1.19 jruoho str = "est";
1032 1.19 jruoho break;
1033 1.19 jruoho
1034 1.19 jruoho case CPUVENDOR_AMD:
1035 1.19 jruoho str = "powernow";
1036 1.19 jruoho break;
1037 1.19 jruoho
1038 1.19 jruoho default:
1039 1.19 jruoho return ENODEV;
1040 1.19 jruoho }
1041 1.19 jruoho
1042 1.19 jruoho
1043 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1044 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1045 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1046 1.19 jruoho
1047 1.19 jruoho if (rv != 0)
1048 1.19 jruoho goto fail;
1049 1.19 jruoho
1050 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1051 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1052 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1053 1.19 jruoho
1054 1.19 jruoho if (rv != 0)
1055 1.19 jruoho goto fail;
1056 1.19 jruoho
1057 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1058 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1059 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1060 1.19 jruoho
1061 1.19 jruoho if (rv != 0)
1062 1.19 jruoho goto fail;
1063 1.19 jruoho
1064 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1065 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1066 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1067 1.19 jruoho
1068 1.19 jruoho if (rv != 0)
1069 1.19 jruoho goto fail;
1070 1.19 jruoho
1071 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1072 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1073 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1074 1.19 jruoho
1075 1.19 jruoho if (rv != 0)
1076 1.19 jruoho goto fail;
1077 1.19 jruoho
1078 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1079 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1080 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1081 1.19 jruoho
1082 1.19 jruoho if (rv != 0)
1083 1.19 jruoho goto fail;
1084 1.19 jruoho
1085 1.19 jruoho return 0;
1086 1.19 jruoho
1087 1.19 jruoho fail:
1088 1.19 jruoho if (acpicpu_log != NULL) {
1089 1.19 jruoho sysctl_teardown(&acpicpu_log);
1090 1.19 jruoho acpicpu_log = NULL;
1091 1.19 jruoho }
1092 1.19 jruoho
1093 1.19 jruoho return rv;
1094 1.19 jruoho }
1095 1.19 jruoho
1096 1.19 jruoho static int
1097 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1098 1.19 jruoho {
1099 1.19 jruoho struct sysctlnode node;
1100 1.19 jruoho uint32_t freq;
1101 1.19 jruoho int err;
1102 1.19 jruoho
1103 1.68 jruoho freq = cpufreq_get(curcpu());
1104 1.19 jruoho
1105 1.68 jruoho if (freq == 0)
1106 1.68 jruoho return ENXIO;
1107 1.19 jruoho
1108 1.19 jruoho node = *rnode;
1109 1.19 jruoho node.sysctl_data = &freq;
1110 1.19 jruoho
1111 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1112 1.19 jruoho
1113 1.19 jruoho if (err != 0 || newp == NULL)
1114 1.19 jruoho return err;
1115 1.19 jruoho
1116 1.19 jruoho return 0;
1117 1.19 jruoho }
1118 1.19 jruoho
1119 1.19 jruoho static int
1120 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1121 1.19 jruoho {
1122 1.19 jruoho struct sysctlnode node;
1123 1.19 jruoho uint32_t freq;
1124 1.19 jruoho int err;
1125 1.19 jruoho
1126 1.68 jruoho freq = cpufreq_get(curcpu());
1127 1.19 jruoho
1128 1.68 jruoho if (freq == 0)
1129 1.68 jruoho return ENXIO;
1130 1.19 jruoho
1131 1.19 jruoho node = *rnode;
1132 1.19 jruoho node.sysctl_data = &freq;
1133 1.19 jruoho
1134 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1135 1.19 jruoho
1136 1.19 jruoho if (err != 0 || newp == NULL)
1137 1.19 jruoho return err;
1138 1.19 jruoho
1139 1.68 jruoho cpufreq_set_all(freq);
1140 1.19 jruoho
1141 1.19 jruoho return 0;
1142 1.19 jruoho }
1143 1.19 jruoho
1144 1.19 jruoho static int
1145 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1146 1.19 jruoho {
1147 1.19 jruoho struct cpu_info *ci = curcpu();
1148 1.19 jruoho struct acpicpu_softc *sc;
1149 1.19 jruoho struct sysctlnode node;
1150 1.19 jruoho char buf[1024];
1151 1.19 jruoho size_t len;
1152 1.19 jruoho uint32_t i;
1153 1.19 jruoho int err;
1154 1.19 jruoho
1155 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1156 1.19 jruoho
1157 1.19 jruoho if (sc == NULL)
1158 1.19 jruoho return ENXIO;
1159 1.19 jruoho
1160 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1161 1.19 jruoho
1162 1.19 jruoho mutex_enter(&sc->sc_mtx);
1163 1.19 jruoho
1164 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1165 1.19 jruoho
1166 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1167 1.19 jruoho continue;
1168 1.19 jruoho
1169 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1170 1.19 jruoho sc->sc_pstate[i].ps_freq,
1171 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1172 1.19 jruoho }
1173 1.19 jruoho
1174 1.19 jruoho mutex_exit(&sc->sc_mtx);
1175 1.19 jruoho
1176 1.19 jruoho node = *rnode;
1177 1.19 jruoho node.sysctl_data = buf;
1178 1.19 jruoho
1179 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1180 1.19 jruoho
1181 1.19 jruoho if (err != 0 || newp == NULL)
1182 1.19 jruoho return err;
1183 1.19 jruoho
1184 1.19 jruoho return 0;
1185 1.19 jruoho }
1186 1.19 jruoho
1187