Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.71.2.1
      1  1.71.2.1       riz /* $NetBSD: acpi_cpu_md.c,v 1.71.2.1 2012/12/13 23:41:57 riz Exp $ */
      2       1.1    jruoho 
      3       1.1    jruoho /*-
      4      1.41    jruoho  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5       1.1    jruoho  * All rights reserved.
      6       1.1    jruoho  *
      7       1.1    jruoho  * Redistribution and use in source and binary forms, with or without
      8       1.1    jruoho  * modification, are permitted provided that the following conditions
      9       1.1    jruoho  * are met:
     10       1.1    jruoho  *
     11       1.1    jruoho  * 1. Redistributions of source code must retain the above copyright
     12       1.1    jruoho  *    notice, this list of conditions and the following disclaimer.
     13       1.1    jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1    jruoho  *    notice, this list of conditions and the following disclaimer in the
     15       1.1    jruoho  *    documentation and/or other materials provided with the distribution.
     16       1.1    jruoho  *
     17       1.1    jruoho  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18       1.1    jruoho  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19       1.1    jruoho  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20       1.1    jruoho  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21       1.1    jruoho  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22       1.1    jruoho  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23       1.1    jruoho  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24       1.1    jruoho  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25       1.1    jruoho  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26       1.1    jruoho  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27       1.1    jruoho  * SUCH DAMAGE.
     28       1.1    jruoho  */
     29       1.1    jruoho #include <sys/cdefs.h>
     30  1.71.2.1       riz __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.71.2.1 2012/12/13 23:41:57 riz Exp $");
     31       1.1    jruoho 
     32       1.1    jruoho #include <sys/param.h>
     33       1.1    jruoho #include <sys/bus.h>
     34      1.68    jruoho #include <sys/cpufreq.h>
     35      1.48    jruoho #include <sys/device.h>
     36       1.1    jruoho #include <sys/kcore.h>
     37       1.5    jruoho #include <sys/sysctl.h>
     38       1.4    jruoho #include <sys/xcall.h>
     39       1.1    jruoho 
     40       1.1    jruoho #include <x86/cpu.h>
     41       1.5    jruoho #include <x86/cpufunc.h>
     42       1.5    jruoho #include <x86/cputypes.h>
     43       1.1    jruoho #include <x86/cpuvar.h>
     44       1.5    jruoho #include <x86/cpu_msr.h>
     45       1.1    jruoho #include <x86/machdep.h>
     46       1.1    jruoho 
     47       1.1    jruoho #include <dev/acpi/acpica.h>
     48       1.1    jruoho #include <dev/acpi/acpi_cpu.h>
     49       1.1    jruoho 
     50      1.12    jruoho #include <dev/pci/pcivar.h>
     51      1.12    jruoho #include <dev/pci/pcidevs.h>
     52      1.12    jruoho 
     53      1.38    jruoho #include <machine/acpi_machdep.h>
     54      1.38    jruoho 
     55      1.35    jruoho /*
     56      1.55    jruoho  * Intel IA32_MISC_ENABLE.
     57      1.55    jruoho  */
     58      1.55    jruoho #define MSR_MISC_ENABLE_EST	__BIT(16)
     59      1.55    jruoho #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60      1.55    jruoho 
     61      1.55    jruoho /*
     62      1.35    jruoho  * AMD C1E.
     63      1.35    jruoho  */
     64      1.35    jruoho #define MSR_CMPHALT		0xc0010055
     65      1.35    jruoho 
     66      1.35    jruoho #define MSR_CMPHALT_SMI		__BIT(27)
     67      1.35    jruoho #define MSR_CMPHALT_C1E		__BIT(28)
     68      1.35    jruoho #define MSR_CMPHALT_BMSTS	__BIT(29)
     69      1.33    jruoho 
     70      1.32    jruoho /*
     71      1.70    jruoho  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72      1.32    jruoho  */
     73      1.32    jruoho #define MSR_10H_LIMIT		0xc0010061
     74      1.32    jruoho #define MSR_10H_CONTROL		0xc0010062
     75      1.32    jruoho #define MSR_10H_STATUS		0xc0010063
     76      1.32    jruoho #define MSR_10H_CONFIG		0xc0010064
     77      1.22    jruoho 
     78      1.32    jruoho /*
     79      1.32    jruoho  * AMD family 0Fh.
     80      1.32    jruoho  */
     81      1.32    jruoho #define MSR_0FH_CONTROL		0xc0010041
     82      1.17    jruoho #define MSR_0FH_STATUS		0xc0010042
     83      1.17    jruoho 
     84      1.32    jruoho #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85      1.32    jruoho #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86      1.32    jruoho #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87      1.32    jruoho 
     88      1.32    jruoho #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89      1.32    jruoho #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90      1.32    jruoho #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91      1.32    jruoho #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92      1.32    jruoho 
     93      1.32    jruoho #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94      1.32    jruoho #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95      1.32    jruoho 
     96      1.32    jruoho #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97      1.32    jruoho #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98      1.32    jruoho #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99      1.32    jruoho #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100      1.32    jruoho #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101      1.32    jruoho #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102      1.32    jruoho #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103      1.32    jruoho 
    104      1.32    jruoho #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105      1.17    jruoho 
    106       1.5    jruoho static char	  native_idle_text[16];
    107       1.5    jruoho void		(*native_idle)(void) = NULL;
    108       1.1    jruoho 
    109      1.58    dyoung static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110      1.56    jruoho static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111      1.32    jruoho static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112      1.32    jruoho                                               uint32_t *);
    113      1.32    jruoho static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114      1.32    jruoho static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115      1.32    jruoho static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116      1.32    jruoho 					        uint32_t, uint32_t);
    117      1.19    jruoho static int	 acpicpu_md_pstate_sysctl_init(void);
    118       1.5    jruoho static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119       1.5    jruoho static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120       1.5    jruoho static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121       1.5    jruoho 
    122       1.5    jruoho extern struct acpicpu_softc **acpicpu_sc;
    123      1.19    jruoho static struct sysctllog *acpicpu_log = NULL;
    124       1.1    jruoho 
    125      1.48    jruoho struct cpu_info *
    126      1.48    jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127      1.48    jruoho {
    128      1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    129      1.48    jruoho 
    130      1.48    jruoho 	if (strcmp(cfaa->name, "frequency") != 0)
    131      1.48    jruoho 		return NULL;
    132      1.48    jruoho 
    133      1.48    jruoho 	return cfaa->ci;
    134      1.48    jruoho }
    135      1.48    jruoho 
    136      1.48    jruoho struct cpu_info *
    137      1.48    jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138      1.48    jruoho {
    139      1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    140      1.48    jruoho 
    141      1.48    jruoho 	return cfaa->ci;
    142      1.48    jruoho }
    143      1.48    jruoho 
    144       1.1    jruoho uint32_t
    145      1.43    jruoho acpicpu_md_flags(void)
    146       1.1    jruoho {
    147       1.1    jruoho 	struct cpu_info *ci = curcpu();
    148      1.12    jruoho 	struct pci_attach_args pa;
    149      1.18    jruoho 	uint32_t family, val = 0;
    150      1.21    jruoho 	uint32_t regs[4];
    151      1.66    jruoho 	uint64_t msr;
    152       1.1    jruoho 
    153      1.38    jruoho 	if (acpi_md_ncpus() == 1)
    154       1.1    jruoho 		val |= ACPICPU_FLAG_C_BM;
    155       1.1    jruoho 
    156       1.1    jruoho 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157       1.5    jruoho 		val |= ACPICPU_FLAG_C_FFH;
    158       1.1    jruoho 
    159      1.39    jruoho 	/*
    160      1.39    jruoho 	 * By default, assume that the local APIC timer
    161      1.39    jruoho 	 * as well as TSC are stalled during C3 sleep.
    162      1.39    jruoho 	 */
    163      1.25    jruoho 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164      1.22    jruoho 
    165       1.1    jruoho 	switch (cpu_vendor) {
    166       1.1    jruoho 
    167      1.17    jruoho 	case CPUVENDOR_IDT:
    168      1.22    jruoho 
    169      1.22    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    170      1.22    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    171      1.22    jruoho 
    172      1.22    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    173      1.22    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    174      1.22    jruoho 
    175      1.22    jruoho 		break;
    176      1.22    jruoho 
    177       1.1    jruoho 	case CPUVENDOR_INTEL:
    178      1.17    jruoho 
    179      1.39    jruoho 		/*
    180      1.39    jruoho 		 * Bus master control and arbitration should be
    181      1.39    jruoho 		 * available on all supported Intel CPUs (to be
    182      1.39    jruoho 		 * sure, this is double-checked later from the
    183      1.39    jruoho 		 * firmware data). These flags imply that it is
    184      1.39    jruoho 		 * not necessary to flush caches before C3 state.
    185      1.39    jruoho 		 */
    186      1.22    jruoho 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    187      1.22    jruoho 
    188      1.39    jruoho 		/*
    189      1.39    jruoho 		 * Check if we can use "native", MSR-based,
    190      1.39    jruoho 		 * access. If not, we have to resort to I/O.
    191      1.39    jruoho 		 */
    192       1.5    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    193       1.5    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    194       1.5    jruoho 
    195      1.10    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    196      1.10    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    197      1.10    jruoho 
    198      1.22    jruoho 		/*
    199      1.25    jruoho 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    200      1.25    jruoho 		 * Boost are available. Also see if we might have
    201      1.25    jruoho 		 * an invariant local APIC timer ("ARAT").
    202      1.23    jruoho 		 */
    203      1.23    jruoho 		if (cpuid_level >= 0x06) {
    204      1.23    jruoho 
    205      1.44    jruoho 			x86_cpuid(0x00000006, regs);
    206      1.23    jruoho 
    207      1.34    jruoho 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208      1.53    jruoho 				val |= ACPICPU_FLAG_P_HWF;
    209      1.23    jruoho 
    210      1.34    jruoho 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    211      1.24    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    212      1.25    jruoho 
    213      1.34    jruoho 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    214      1.25    jruoho 				val &= ~ACPICPU_FLAG_C_APIC;
    215      1.23    jruoho 		}
    216      1.23    jruoho 
    217      1.23    jruoho 		/*
    218      1.22    jruoho 		 * Detect whether TSC is invariant. If it is not,
    219      1.22    jruoho 		 * we keep the flag to note that TSC will not run
    220      1.22    jruoho 		 * at constant rate. Depending on the CPU, this may
    221      1.22    jruoho 		 * affect P- and T-state changes, but especially
    222      1.22    jruoho 		 * relevant are C-states; with variant TSC, states
    223      1.24    jruoho 		 * larger than C1 may completely stop the counter.
    224      1.22    jruoho 		 */
    225      1.22    jruoho 		x86_cpuid(0x80000000, regs);
    226      1.22    jruoho 
    227      1.22    jruoho 		if (regs[0] >= 0x80000007) {
    228      1.22    jruoho 
    229      1.22    jruoho 			x86_cpuid(0x80000007, regs);
    230      1.22    jruoho 
    231      1.32    jruoho 			if ((regs[3] & __BIT(8)) != 0)
    232      1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    233      1.22    jruoho 		}
    234      1.22    jruoho 
    235      1.17    jruoho 		break;
    236      1.12    jruoho 
    237      1.17    jruoho 	case CPUVENDOR_AMD:
    238      1.17    jruoho 
    239      1.32    jruoho 		x86_cpuid(0x80000000, regs);
    240      1.32    jruoho 
    241      1.32    jruoho 		if (regs[0] < 0x80000007)
    242      1.32    jruoho 			break;
    243      1.32    jruoho 
    244      1.32    jruoho 		x86_cpuid(0x80000007, regs);
    245      1.32    jruoho 
    246      1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    247      1.18    jruoho 
    248      1.18    jruoho 		if (family == 0xf)
    249      1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    250      1.18    jruoho 
    251      1.32    jruoho     		switch (family) {
    252       1.1    jruoho 
    253      1.22    jruoho 		case 0x0f:
    254      1.32    jruoho 
    255      1.45    jruoho 			/*
    256  1.71.2.1       riz 			 * Disable C1E if present.
    257  1.71.2.1       riz 			 */
    258  1.71.2.1       riz 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    259  1.71.2.1       riz 				val |= ACPICPU_FLAG_C_C1E;
    260  1.71.2.1       riz 
    261  1.71.2.1       riz 			/*
    262      1.45    jruoho 			 * Evaluate support for the "FID/VID
    263      1.45    jruoho 			 * algorithm" also used by powernow(4).
    264      1.45    jruoho 			 */
    265      1.32    jruoho 			if ((regs[3] & CPUID_APM_FID) == 0)
    266      1.32    jruoho 				break;
    267      1.32    jruoho 
    268      1.32    jruoho 			if ((regs[3] & CPUID_APM_VID) == 0)
    269      1.32    jruoho 				break;
    270      1.32    jruoho 
    271      1.32    jruoho 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    272      1.32    jruoho 			break;
    273      1.32    jruoho 
    274      1.17    jruoho 		case 0x10:
    275      1.17    jruoho 		case 0x11:
    276      1.66    jruoho 
    277  1.71.2.1       riz 			/*
    278  1.71.2.1       riz 			 * Disable C1E if present.
    279  1.71.2.1       riz 			 */
    280      1.66    jruoho 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    281      1.66    jruoho 				val |= ACPICPU_FLAG_C_C1E;
    282      1.66    jruoho 
    283      1.40  jmcneill 			/* FALLTHROUGH */
    284      1.40  jmcneill 
    285      1.69    jruoho 		case 0x12:
    286      1.40  jmcneill 		case 0x14: /* AMD Fusion */
    287      1.70    jruoho 		case 0x15: /* AMD Bulldozer */
    288       1.1    jruoho 
    289      1.42    jruoho 			/*
    290      1.42    jruoho 			 * Like with Intel, detect invariant TSC,
    291      1.42    jruoho 			 * MSR-based P-states, and AMD's "turbo"
    292      1.42    jruoho 			 * (Core Performance Boost), respectively.
    293      1.42    jruoho 			 */
    294      1.22    jruoho 			if ((regs[3] & CPUID_APM_TSC) != 0)
    295      1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    296      1.22    jruoho 
    297      1.21    jruoho 			if ((regs[3] & CPUID_APM_HWP) != 0)
    298      1.17    jruoho 				val |= ACPICPU_FLAG_P_FFH;
    299      1.21    jruoho 
    300      1.21    jruoho 			if ((regs[3] & CPUID_APM_CPB) != 0)
    301      1.21    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    302      1.35    jruoho 
    303      1.42    jruoho 			/*
    304      1.42    jruoho 			 * Also check for APERF and MPERF,
    305      1.42    jruoho 			 * first available in the family 10h.
    306      1.42    jruoho 			 */
    307      1.42    jruoho 			if (cpuid_level >= 0x06) {
    308      1.42    jruoho 
    309      1.42    jruoho 				x86_cpuid(0x00000006, regs);
    310      1.42    jruoho 
    311      1.44    jruoho 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    312      1.53    jruoho 					val |= ACPICPU_FLAG_P_HWF;
    313      1.42    jruoho 			}
    314      1.42    jruoho 
    315      1.35    jruoho 			break;
    316      1.17    jruoho 		}
    317       1.1    jruoho 
    318       1.1    jruoho 		break;
    319       1.1    jruoho 	}
    320       1.1    jruoho 
    321      1.12    jruoho 	/*
    322      1.12    jruoho 	 * There are several erratums for PIIX4.
    323      1.12    jruoho 	 */
    324      1.43    jruoho 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    325      1.12    jruoho 		val |= ACPICPU_FLAG_PIIX4;
    326      1.12    jruoho 
    327       1.1    jruoho 	return val;
    328       1.1    jruoho }
    329       1.1    jruoho 
    330      1.12    jruoho static int
    331      1.58    dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    332      1.12    jruoho {
    333      1.12    jruoho 
    334      1.12    jruoho 	/*
    335      1.12    jruoho 	 * XXX: The pci_find_device(9) function only
    336      1.12    jruoho 	 *	deals with attached devices. Change this
    337      1.12    jruoho 	 *	to use something like pci_device_foreach().
    338      1.12    jruoho 	 */
    339      1.12    jruoho 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    340      1.12    jruoho 		return 0;
    341      1.12    jruoho 
    342      1.12    jruoho 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    343      1.12    jruoho 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    344      1.12    jruoho 		return 1;
    345      1.12    jruoho 
    346      1.12    jruoho 	return 0;
    347      1.12    jruoho }
    348      1.12    jruoho 
    349      1.35    jruoho void
    350      1.43    jruoho acpicpu_md_quirk_c1e(void)
    351      1.35    jruoho {
    352      1.35    jruoho 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    353      1.35    jruoho 	uint64_t val;
    354      1.35    jruoho 
    355      1.66    jruoho 	val = rdmsr(MSR_CMPHALT);
    356      1.35    jruoho 
    357      1.35    jruoho 	if ((val & c1e) != 0)
    358      1.35    jruoho 		wrmsr(MSR_CMPHALT, val & ~c1e);
    359      1.35    jruoho }
    360      1.35    jruoho 
    361       1.1    jruoho int
    362      1.43    jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    363       1.1    jruoho {
    364       1.1    jruoho 	const size_t size = sizeof(native_idle_text);
    365      1.31    jruoho 	struct acpicpu_cstate *cs;
    366      1.31    jruoho 	bool ipi = false;
    367      1.31    jruoho 	int i;
    368       1.1    jruoho 
    369      1.45    jruoho 	/*
    370      1.45    jruoho 	 * Save the cpu_idle(9) loop used by default.
    371      1.45    jruoho 	 */
    372       1.1    jruoho 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    373      1.31    jruoho 
    374      1.31    jruoho 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    375      1.31    jruoho 
    376      1.31    jruoho 		cs = &sc->sc_cstate[i];
    377      1.31    jruoho 
    378      1.31    jruoho 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    379      1.31    jruoho 			ipi = true;
    380      1.31    jruoho 			break;
    381      1.31    jruoho 		}
    382      1.31    jruoho 	}
    383      1.31    jruoho 
    384      1.31    jruoho 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    385       1.1    jruoho 
    386       1.1    jruoho 	return 0;
    387       1.1    jruoho }
    388       1.1    jruoho 
    389       1.1    jruoho int
    390      1.43    jruoho acpicpu_md_cstate_stop(void)
    391       1.1    jruoho {
    392      1.62    jruoho 	static char text[16];
    393      1.62    jruoho 	void (*func)(void);
    394       1.4    jruoho 	uint64_t xc;
    395      1.31    jruoho 	bool ipi;
    396       1.1    jruoho 
    397      1.62    jruoho 	x86_cpu_idle_get(&func, text, sizeof(text));
    398      1.62    jruoho 
    399      1.62    jruoho 	if (func == native_idle)
    400      1.62    jruoho 		return EALREADY;
    401      1.62    jruoho 
    402      1.31    jruoho 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    403      1.31    jruoho 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    404       1.1    jruoho 
    405       1.4    jruoho 	/*
    406       1.4    jruoho 	 * Run a cross-call to ensure that all CPUs are
    407       1.4    jruoho 	 * out from the ACPI idle-loop before detachment.
    408       1.4    jruoho 	 */
    409       1.4    jruoho 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    410       1.4    jruoho 	xc_wait(xc);
    411       1.1    jruoho 
    412       1.1    jruoho 	return 0;
    413       1.1    jruoho }
    414       1.1    jruoho 
    415       1.3    jruoho /*
    416      1.64    jruoho  * Called with interrupts enabled.
    417       1.3    jruoho  */
    418       1.1    jruoho void
    419      1.43    jruoho acpicpu_md_cstate_enter(int method, int state)
    420       1.1    jruoho {
    421       1.3    jruoho 	struct cpu_info *ci = curcpu();
    422       1.1    jruoho 
    423      1.64    jruoho 	KASSERT(ci->ci_ilevel == IPL_NONE);
    424      1.64    jruoho 
    425       1.1    jruoho 	switch (method) {
    426       1.1    jruoho 
    427       1.1    jruoho 	case ACPICPU_C_STATE_FFH:
    428       1.3    jruoho 
    429       1.3    jruoho 		x86_monitor(&ci->ci_want_resched, 0, 0);
    430       1.3    jruoho 
    431      1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    432       1.3    jruoho 			return;
    433       1.3    jruoho 
    434       1.1    jruoho 		x86_mwait((state - 1) << 4, 0);
    435       1.1    jruoho 		break;
    436       1.1    jruoho 
    437       1.1    jruoho 	case ACPICPU_C_STATE_HALT:
    438       1.3    jruoho 
    439      1.64    jruoho 		x86_disable_intr();
    440      1.64    jruoho 
    441      1.64    jruoho 		if (__predict_false(ci->ci_want_resched != 0)) {
    442      1.64    jruoho 			x86_enable_intr();
    443       1.3    jruoho 			return;
    444      1.64    jruoho 		}
    445       1.3    jruoho 
    446       1.1    jruoho 		x86_stihlt();
    447       1.1    jruoho 		break;
    448       1.1    jruoho 	}
    449       1.1    jruoho }
    450       1.5    jruoho 
    451       1.5    jruoho int
    452      1.41    jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    453       1.5    jruoho {
    454      1.62    jruoho 	uint64_t xc, val;
    455      1.62    jruoho 
    456      1.63    jruoho 	switch (cpu_vendor) {
    457      1.62    jruoho 
    458      1.63    jruoho 	case CPUVENDOR_IDT:
    459      1.63    jruoho 	case CPUVENDOR_INTEL:
    460      1.62    jruoho 
    461      1.63    jruoho 		/*
    462      1.63    jruoho 		 * Make sure EST is enabled.
    463      1.63    jruoho 		 */
    464      1.63    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    465      1.62    jruoho 
    466      1.62    jruoho 			val = rdmsr(MSR_MISC_ENABLE);
    467      1.62    jruoho 
    468      1.63    jruoho 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    469      1.63    jruoho 
    470      1.63    jruoho 				val |= MSR_MISC_ENABLE_EST;
    471      1.63    jruoho 				wrmsr(MSR_MISC_ENABLE, val);
    472      1.63    jruoho 				val = rdmsr(MSR_MISC_ENABLE);
    473      1.63    jruoho 
    474      1.63    jruoho 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    475      1.63    jruoho 					return ENOTTY;
    476      1.63    jruoho 			}
    477      1.62    jruoho 		}
    478      1.62    jruoho 	}
    479      1.57    jruoho 
    480      1.57    jruoho 	/*
    481      1.57    jruoho 	 * Reset the APERF and MPERF counters.
    482      1.57    jruoho 	 */
    483      1.57    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    484      1.57    jruoho 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    485      1.57    jruoho 		xc_wait(xc);
    486      1.57    jruoho 	}
    487      1.57    jruoho 
    488      1.19    jruoho 	return acpicpu_md_pstate_sysctl_init();
    489       1.5    jruoho }
    490       1.5    jruoho 
    491       1.5    jruoho int
    492       1.5    jruoho acpicpu_md_pstate_stop(void)
    493       1.5    jruoho {
    494      1.62    jruoho 
    495      1.62    jruoho 	if (acpicpu_log == NULL)
    496      1.62    jruoho 		return EALREADY;
    497      1.62    jruoho 
    498      1.62    jruoho 	sysctl_teardown(&acpicpu_log);
    499      1.62    jruoho 	acpicpu_log = NULL;
    500       1.5    jruoho 
    501       1.5    jruoho 	return 0;
    502       1.5    jruoho }
    503       1.5    jruoho 
    504       1.5    jruoho int
    505      1.55    jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    506       1.5    jruoho {
    507      1.56    jruoho 	struct cpu_info *ci = sc->sc_ci;
    508      1.15    jruoho 	struct acpicpu_pstate *ps, msr;
    509      1.18    jruoho 	uint32_t family, i = 0;
    510      1.13    jruoho 
    511      1.15    jruoho 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    512      1.13    jruoho 
    513       1.5    jruoho 	switch (cpu_vendor) {
    514       1.5    jruoho 
    515      1.17    jruoho 	case CPUVENDOR_IDT:
    516       1.5    jruoho 	case CPUVENDOR_INTEL:
    517      1.33    jruoho 
    518      1.33    jruoho 		/*
    519      1.33    jruoho 		 * If the so-called Turbo Boost is present,
    520      1.33    jruoho 		 * the P0-state is always the "turbo state".
    521      1.51    jruoho 		 * It is shown as the P1 frequency + 1 MHz.
    522      1.33    jruoho 		 *
    523      1.33    jruoho 		 * For discussion, see:
    524      1.33    jruoho 		 *
    525      1.33    jruoho 		 *	Intel Corporation: Intel Turbo Boost Technology
    526      1.33    jruoho 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    527      1.33    jruoho 		 *	Based Processors. White Paper, November 2008.
    528      1.33    jruoho 		 */
    529      1.55    jruoho 		if (sc->sc_pstate_count >= 2 &&
    530      1.52    jruoho 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    531      1.51    jruoho 
    532      1.51    jruoho 			ps = &sc->sc_pstate[0];
    533      1.51    jruoho 
    534      1.51    jruoho 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    535      1.51    jruoho 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    536      1.51    jruoho 		}
    537      1.33    jruoho 
    538      1.15    jruoho 		msr.ps_control_addr = MSR_PERF_CTL;
    539      1.15    jruoho 		msr.ps_control_mask = __BITS(0, 15);
    540      1.15    jruoho 
    541      1.15    jruoho 		msr.ps_status_addr  = MSR_PERF_STATUS;
    542      1.15    jruoho 		msr.ps_status_mask  = __BITS(0, 15);
    543      1.13    jruoho 		break;
    544      1.13    jruoho 
    545      1.13    jruoho 	case CPUVENDOR_AMD:
    546      1.13    jruoho 
    547      1.33    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    548      1.33    jruoho 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    549      1.33    jruoho 
    550      1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    551      1.18    jruoho 
    552      1.18    jruoho 		if (family == 0xf)
    553      1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    554      1.18    jruoho 
    555      1.18    jruoho 		switch (family) {
    556      1.17    jruoho 
    557      1.32    jruoho 		case 0x0f:
    558      1.32    jruoho 			msr.ps_control_addr = MSR_0FH_CONTROL;
    559      1.32    jruoho 			msr.ps_status_addr  = MSR_0FH_STATUS;
    560      1.32    jruoho 			break;
    561      1.32    jruoho 
    562      1.17    jruoho 		case 0x10:
    563      1.17    jruoho 		case 0x11:
    564      1.69    jruoho 		case 0x12:
    565      1.71    jruoho 		case 0x14:
    566      1.71    jruoho 		case 0x15:
    567      1.17    jruoho 			msr.ps_control_addr = MSR_10H_CONTROL;
    568      1.17    jruoho 			msr.ps_control_mask = __BITS(0, 2);
    569      1.17    jruoho 
    570      1.17    jruoho 			msr.ps_status_addr  = MSR_10H_STATUS;
    571      1.17    jruoho 			msr.ps_status_mask  = __BITS(0, 2);
    572      1.17    jruoho 			break;
    573      1.17    jruoho 
    574      1.17    jruoho 		default:
    575      1.55    jruoho 			/*
    576      1.55    jruoho 			 * If we have an unknown AMD CPU, rely on XPSS.
    577      1.55    jruoho 			 */
    578      1.17    jruoho 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    579      1.17    jruoho 				return EOPNOTSUPP;
    580      1.17    jruoho 		}
    581      1.13    jruoho 
    582      1.13    jruoho 		break;
    583      1.13    jruoho 
    584      1.13    jruoho 	default:
    585      1.13    jruoho 		return ENODEV;
    586      1.13    jruoho 	}
    587       1.5    jruoho 
    588      1.26    jruoho 	/*
    589      1.26    jruoho 	 * Fill the P-state structures with MSR addresses that are
    590      1.27    jruoho 	 * known to be correct. If we do not know the addresses,
    591      1.27    jruoho 	 * leave the values intact. If a vendor uses XPSS, we do
    592      1.39    jruoho 	 * not necessarily need to do anything to support new CPUs.
    593      1.26    jruoho 	 */
    594      1.15    jruoho 	while (i < sc->sc_pstate_count) {
    595      1.15    jruoho 
    596      1.15    jruoho 		ps = &sc->sc_pstate[i];
    597      1.15    jruoho 
    598      1.32    jruoho 		if (msr.ps_flags != 0)
    599      1.32    jruoho 			ps->ps_flags |= msr.ps_flags;
    600      1.32    jruoho 
    601      1.27    jruoho 		if (msr.ps_status_addr != 0)
    602      1.15    jruoho 			ps->ps_status_addr = msr.ps_status_addr;
    603      1.15    jruoho 
    604      1.27    jruoho 		if (msr.ps_status_mask != 0)
    605      1.15    jruoho 			ps->ps_status_mask = msr.ps_status_mask;
    606      1.15    jruoho 
    607      1.27    jruoho 		if (msr.ps_control_addr != 0)
    608      1.15    jruoho 			ps->ps_control_addr = msr.ps_control_addr;
    609      1.15    jruoho 
    610      1.27    jruoho 		if (msr.ps_control_mask != 0)
    611      1.15    jruoho 			ps->ps_control_mask = msr.ps_control_mask;
    612      1.15    jruoho 
    613      1.15    jruoho 		i++;
    614      1.15    jruoho 	}
    615      1.15    jruoho 
    616      1.15    jruoho 	return 0;
    617      1.15    jruoho }
    618      1.15    jruoho 
    619      1.55    jruoho /*
    620      1.55    jruoho  * Read the IA32_APERF and IA32_MPERF counters. The first
    621      1.55    jruoho  * increments at the rate of the fixed maximum frequency
    622      1.55    jruoho  * configured during the boot, whereas APERF counts at the
    623      1.55    jruoho  * rate of the actual frequency. Note that the MSRs must be
    624      1.55    jruoho  * read without delay, and that only the ratio between
    625      1.55    jruoho  * IA32_APERF and IA32_MPERF is architecturally defined.
    626      1.55    jruoho  *
    627      1.55    jruoho  * The function thus returns the percentage of the actual
    628      1.55    jruoho  * frequency in terms of the maximum frequency of the calling
    629      1.55    jruoho  * CPU since the last call. A value zero implies an error.
    630      1.55    jruoho  *
    631      1.55    jruoho  * For further details, refer to:
    632      1.55    jruoho  *
    633      1.55    jruoho  *	Intel Corporation: Intel 64 and IA-32 Architectures
    634      1.55    jruoho  *	Software Developer's Manual. Section 13.2, Volume 3A:
    635      1.55    jruoho  *	System Programming Guide, Part 1. July, 2008.
    636      1.55    jruoho  *
    637      1.55    jruoho  *	Advanced Micro Devices: BIOS and Kernel Developer's
    638      1.55    jruoho  *	Guide (BKDG) for AMD Family 10h Processors. Section
    639      1.55    jruoho  *	2.4.5, Revision 3.48, April 2010.
    640      1.55    jruoho  */
    641      1.41    jruoho uint8_t
    642      1.56    jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
    643      1.41    jruoho {
    644      1.55    jruoho 	struct acpicpu_softc *sc;
    645      1.41    jruoho 	uint64_t aperf, mperf;
    646      1.55    jruoho 	uint8_t rv = 0;
    647      1.55    jruoho 
    648      1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    649      1.41    jruoho 
    650      1.55    jruoho 	if (__predict_false(sc == NULL))
    651      1.50    jruoho 		return 0;
    652      1.50    jruoho 
    653      1.53    jruoho 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    654      1.50    jruoho 		return 0;
    655      1.41    jruoho 
    656      1.41    jruoho 	aperf = sc->sc_pstate_aperf;
    657      1.41    jruoho 	mperf = sc->sc_pstate_mperf;
    658      1.41    jruoho 
    659      1.56    jruoho 	x86_disable_intr();
    660      1.56    jruoho 
    661      1.50    jruoho 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    662      1.50    jruoho 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    663      1.41    jruoho 
    664      1.56    jruoho 	x86_enable_intr();
    665      1.56    jruoho 
    666      1.41    jruoho 	aperf = sc->sc_pstate_aperf - aperf;
    667      1.41    jruoho 	mperf = sc->sc_pstate_mperf - mperf;
    668      1.41    jruoho 
    669      1.41    jruoho 	if (__predict_true(mperf != 0))
    670      1.41    jruoho 		rv = (aperf * 100) / mperf;
    671      1.41    jruoho 
    672      1.41    jruoho 	return rv;
    673      1.41    jruoho }
    674      1.41    jruoho 
    675      1.41    jruoho static void
    676      1.56    jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    677      1.41    jruoho {
    678      1.56    jruoho 	struct cpu_info *ci = curcpu();
    679      1.55    jruoho 	struct acpicpu_softc *sc;
    680      1.41    jruoho 
    681      1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    682      1.41    jruoho 
    683      1.55    jruoho 	if (__predict_false(sc == NULL))
    684      1.55    jruoho 		return;
    685      1.46    jruoho 
    686      1.56    jruoho 	x86_disable_intr();
    687      1.46    jruoho 
    688      1.55    jruoho 	wrmsr(MSR_APERF, 0);
    689      1.55    jruoho 	wrmsr(MSR_MPERF, 0);
    690      1.41    jruoho 
    691      1.56    jruoho 	x86_enable_intr();
    692      1.56    jruoho 
    693      1.41    jruoho 	sc->sc_pstate_aperf = 0;
    694      1.41    jruoho 	sc->sc_pstate_mperf = 0;
    695      1.41    jruoho }
    696      1.41    jruoho 
    697      1.15    jruoho int
    698      1.15    jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    699      1.15    jruoho {
    700      1.15    jruoho 	struct acpicpu_pstate *ps = NULL;
    701      1.15    jruoho 	uint64_t val;
    702      1.15    jruoho 	uint32_t i;
    703      1.15    jruoho 
    704      1.32    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    705      1.32    jruoho 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    706      1.32    jruoho 
    707      1.49    jruoho 	/*
    708      1.49    jruoho 	 * Pick any P-state for the status address.
    709      1.68    jruoho 	 */
    710      1.15    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    711      1.15    jruoho 
    712      1.15    jruoho 		ps = &sc->sc_pstate[i];
    713      1.15    jruoho 
    714      1.32    jruoho 		if (__predict_true(ps->ps_freq != 0))
    715      1.15    jruoho 			break;
    716      1.15    jruoho 	}
    717      1.15    jruoho 
    718      1.15    jruoho 	if (__predict_false(ps == NULL))
    719      1.17    jruoho 		return ENODEV;
    720      1.15    jruoho 
    721      1.28    jruoho 	if (__predict_false(ps->ps_status_addr == 0))
    722      1.13    jruoho 		return EINVAL;
    723       1.5    jruoho 
    724      1.13    jruoho 	val = rdmsr(ps->ps_status_addr);
    725       1.5    jruoho 
    726      1.28    jruoho 	if (__predict_true(ps->ps_status_mask != 0))
    727      1.13    jruoho 		val = val & ps->ps_status_mask;
    728       1.5    jruoho 
    729      1.49    jruoho 	/*
    730      1.49    jruoho 	 * Search for the value from known P-states.
    731      1.49    jruoho 	 */
    732      1.13    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    733       1.5    jruoho 
    734      1.13    jruoho 		ps = &sc->sc_pstate[i];
    735       1.5    jruoho 
    736      1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    737      1.13    jruoho 			continue;
    738       1.5    jruoho 
    739      1.29    jruoho 		if (val == ps->ps_status) {
    740      1.13    jruoho 			*freq = ps->ps_freq;
    741      1.13    jruoho 			return 0;
    742      1.13    jruoho 		}
    743       1.5    jruoho 	}
    744       1.5    jruoho 
    745      1.60    jruoho 	/*
    746      1.60    jruoho 	 * If the value was not found, try APERF/MPERF.
    747      1.60    jruoho 	 * The state is P0 if the return value is 100 %.
    748      1.60    jruoho 	 */
    749      1.60    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    750      1.60    jruoho 
    751      1.68    jruoho 		KASSERT(sc->sc_pstate_count > 0);
    752      1.68    jruoho 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    753      1.68    jruoho 
    754      1.60    jruoho 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    755      1.60    jruoho 			*freq = sc->sc_pstate[0].ps_freq;
    756      1.60    jruoho 			return 0;
    757      1.60    jruoho 		}
    758      1.60    jruoho 	}
    759      1.60    jruoho 
    760      1.13    jruoho 	return EIO;
    761       1.5    jruoho }
    762       1.5    jruoho 
    763       1.5    jruoho int
    764       1.5    jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    765       1.5    jruoho {
    766      1.54    jruoho 	uint64_t val = 0;
    767       1.5    jruoho 
    768      1.37    jruoho 	if (__predict_false(ps->ps_control_addr == 0))
    769      1.37    jruoho 		return EINVAL;
    770      1.37    jruoho 
    771      1.32    jruoho 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    772      1.32    jruoho 		return acpicpu_md_pstate_fidvid_set(ps);
    773      1.32    jruoho 
    774      1.54    jruoho 	/*
    775      1.54    jruoho 	 * If the mask is set, do a read-modify-write.
    776      1.54    jruoho 	 */
    777      1.54    jruoho 	if (__predict_true(ps->ps_control_mask != 0)) {
    778      1.54    jruoho 		val = rdmsr(ps->ps_control_addr);
    779      1.54    jruoho 		val &= ~ps->ps_control_mask;
    780      1.54    jruoho 	}
    781       1.5    jruoho 
    782      1.54    jruoho 	val |= ps->ps_control;
    783      1.13    jruoho 
    784      1.49    jruoho 	wrmsr(ps->ps_control_addr, val);
    785      1.49    jruoho 	DELAY(ps->ps_latency);
    786      1.14    jruoho 
    787      1.49    jruoho 	return 0;
    788       1.5    jruoho }
    789      1.10    jruoho 
    790      1.32    jruoho static int
    791      1.32    jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    792      1.32    jruoho {
    793      1.32    jruoho 	struct acpicpu_pstate *ps;
    794      1.32    jruoho 	uint32_t fid, i, vid;
    795      1.32    jruoho 	uint32_t cfid, cvid;
    796      1.32    jruoho 	int rv;
    797      1.32    jruoho 
    798      1.32    jruoho 	/*
    799      1.32    jruoho 	 * AMD family 0Fh needs special treatment.
    800      1.32    jruoho 	 * While it wants to use ACPI, it does not
    801      1.32    jruoho 	 * comply with the ACPI specifications.
    802      1.32    jruoho 	 */
    803      1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    804      1.32    jruoho 
    805      1.32    jruoho 	if (rv != 0)
    806      1.32    jruoho 		return rv;
    807      1.32    jruoho 
    808      1.32    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    809      1.32    jruoho 
    810      1.32    jruoho 		ps = &sc->sc_pstate[i];
    811      1.32    jruoho 
    812      1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    813      1.32    jruoho 			continue;
    814      1.32    jruoho 
    815      1.32    jruoho 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    816      1.32    jruoho 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    817      1.32    jruoho 
    818      1.32    jruoho 		if (cfid == fid && cvid == vid) {
    819      1.32    jruoho 			*freq = ps->ps_freq;
    820      1.32    jruoho 			return 0;
    821      1.32    jruoho 		}
    822      1.32    jruoho 	}
    823      1.32    jruoho 
    824      1.32    jruoho 	return EIO;
    825      1.32    jruoho }
    826      1.32    jruoho 
    827      1.32    jruoho static int
    828      1.32    jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    829      1.32    jruoho {
    830      1.32    jruoho 	const uint64_t ctrl = ps->ps_control;
    831      1.32    jruoho 	uint32_t cfid, cvid, fid, i, irt;
    832      1.32    jruoho 	uint32_t pll, vco_cfid, vco_fid;
    833      1.32    jruoho 	uint32_t val, vid, vst;
    834      1.32    jruoho 	int rv;
    835      1.32    jruoho 
    836      1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    837      1.32    jruoho 
    838      1.32    jruoho 	if (rv != 0)
    839      1.32    jruoho 		return rv;
    840      1.32    jruoho 
    841      1.32    jruoho 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    842      1.32    jruoho 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    843      1.32    jruoho 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    844      1.32    jruoho 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    845      1.32    jruoho 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    846      1.32    jruoho 
    847      1.32    jruoho 	vst = vst * 20;
    848      1.32    jruoho 	pll = pll * 1000 / 5;
    849      1.32    jruoho 	irt = 10 * __BIT(irt);
    850      1.32    jruoho 
    851      1.32    jruoho 	/*
    852      1.32    jruoho 	 * Phase 1.
    853      1.32    jruoho 	 */
    854      1.32    jruoho 	while (cvid > vid) {
    855      1.32    jruoho 
    856      1.32    jruoho 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    857      1.32    jruoho 		val = (val > cvid) ? 0 : cvid - val;
    858      1.32    jruoho 
    859      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    860      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    861      1.32    jruoho 
    862      1.32    jruoho 		if (rv != 0)
    863      1.32    jruoho 			return rv;
    864      1.32    jruoho 	}
    865      1.32    jruoho 
    866      1.32    jruoho 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    867      1.32    jruoho 
    868      1.32    jruoho 	for (; i > 0 && cvid > 0; --i) {
    869      1.32    jruoho 
    870      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    871      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    872      1.32    jruoho 
    873      1.32    jruoho 		if (rv != 0)
    874      1.32    jruoho 			return rv;
    875      1.32    jruoho 	}
    876      1.32    jruoho 
    877      1.32    jruoho 	/*
    878      1.32    jruoho 	 * Phase 2.
    879      1.32    jruoho 	 */
    880      1.32    jruoho 	if (cfid != fid) {
    881      1.32    jruoho 
    882      1.32    jruoho 		vco_fid  = FID_TO_VCO_FID(fid);
    883      1.32    jruoho 		vco_cfid = FID_TO_VCO_FID(cfid);
    884      1.32    jruoho 
    885      1.32    jruoho 		while (abs(vco_fid - vco_cfid) > 2) {
    886      1.32    jruoho 
    887      1.32    jruoho 			if (fid <= cfid)
    888      1.32    jruoho 				val = cfid - 2;
    889      1.32    jruoho 			else {
    890      1.32    jruoho 				val = (cfid > 6) ? cfid + 2 :
    891      1.32    jruoho 				    FID_TO_VCO_FID(cfid) + 2;
    892      1.32    jruoho 			}
    893      1.32    jruoho 
    894      1.32    jruoho 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    895      1.32    jruoho 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    896      1.32    jruoho 
    897      1.32    jruoho 			if (rv != 0)
    898      1.32    jruoho 				return rv;
    899      1.32    jruoho 
    900      1.32    jruoho 			vco_cfid = FID_TO_VCO_FID(cfid);
    901      1.32    jruoho 		}
    902      1.32    jruoho 
    903      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    904      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    905      1.32    jruoho 
    906      1.32    jruoho 		if (rv != 0)
    907      1.32    jruoho 			return rv;
    908      1.32    jruoho 	}
    909      1.32    jruoho 
    910      1.32    jruoho 	/*
    911      1.32    jruoho 	 * Phase 3.
    912      1.32    jruoho 	 */
    913      1.32    jruoho 	if (cvid != vid) {
    914      1.32    jruoho 
    915      1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    916      1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    917      1.32    jruoho 
    918      1.32    jruoho 		if (rv != 0)
    919      1.32    jruoho 			return rv;
    920      1.32    jruoho 	}
    921      1.32    jruoho 
    922      1.32    jruoho 	return 0;
    923      1.32    jruoho }
    924      1.32    jruoho 
    925      1.32    jruoho static int
    926      1.32    jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    927      1.32    jruoho {
    928      1.32    jruoho 	int i = ACPICPU_P_STATE_RETRY * 100;
    929      1.32    jruoho 	uint64_t val;
    930      1.32    jruoho 
    931      1.32    jruoho 	do {
    932      1.32    jruoho 		val = rdmsr(MSR_0FH_STATUS);
    933      1.32    jruoho 
    934      1.32    jruoho 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    935      1.32    jruoho 
    936      1.32    jruoho 	if (i == 0)
    937      1.32    jruoho 		return EAGAIN;
    938      1.32    jruoho 
    939      1.32    jruoho 	if (cfid != NULL)
    940      1.32    jruoho 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    941      1.32    jruoho 
    942      1.32    jruoho 	if (cvid != NULL)
    943      1.32    jruoho 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    944      1.32    jruoho 
    945      1.32    jruoho 	return 0;
    946      1.32    jruoho }
    947      1.32    jruoho 
    948      1.32    jruoho static void
    949      1.32    jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
    950      1.32    jruoho     uint32_t vid, uint32_t cnt, uint32_t tmo)
    951      1.32    jruoho {
    952      1.49    jruoho 	uint64_t val = 0;
    953      1.32    jruoho 
    954      1.49    jruoho 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    955      1.49    jruoho 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    956      1.49    jruoho 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    957      1.49    jruoho 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    958      1.32    jruoho 
    959      1.49    jruoho 	wrmsr(MSR_0FH_CONTROL, val);
    960      1.32    jruoho 	DELAY(tmo);
    961      1.32    jruoho }
    962      1.32    jruoho 
    963      1.10    jruoho int
    964      1.10    jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    965      1.10    jruoho {
    966      1.10    jruoho 	struct acpicpu_tstate *ts;
    967      1.14    jruoho 	uint64_t val;
    968      1.10    jruoho 	uint32_t i;
    969      1.10    jruoho 
    970      1.14    jruoho 	val = rdmsr(MSR_THERM_CONTROL);
    971      1.10    jruoho 
    972      1.10    jruoho 	for (i = 0; i < sc->sc_tstate_count; i++) {
    973      1.10    jruoho 
    974      1.10    jruoho 		ts = &sc->sc_tstate[i];
    975      1.10    jruoho 
    976      1.10    jruoho 		if (ts->ts_percent == 0)
    977      1.10    jruoho 			continue;
    978      1.10    jruoho 
    979      1.29    jruoho 		if (val == ts->ts_status) {
    980      1.10    jruoho 			*percent = ts->ts_percent;
    981      1.10    jruoho 			return 0;
    982      1.10    jruoho 		}
    983      1.10    jruoho 	}
    984      1.10    jruoho 
    985      1.10    jruoho 	return EIO;
    986      1.10    jruoho }
    987      1.10    jruoho 
    988      1.10    jruoho int
    989      1.10    jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    990      1.10    jruoho {
    991      1.49    jruoho 	uint64_t val;
    992      1.49    jruoho 	uint8_t i;
    993      1.10    jruoho 
    994      1.49    jruoho 	val = ts->ts_control;
    995      1.49    jruoho 	val = val & __BITS(1, 4);
    996      1.10    jruoho 
    997      1.49    jruoho 	wrmsr(MSR_THERM_CONTROL, val);
    998      1.10    jruoho 
    999      1.30    jruoho 	if (ts->ts_status == 0) {
   1000      1.30    jruoho 		DELAY(ts->ts_latency);
   1001      1.10    jruoho 		return 0;
   1002      1.30    jruoho 	}
   1003      1.10    jruoho 
   1004      1.10    jruoho 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1005      1.10    jruoho 
   1006      1.14    jruoho 		val = rdmsr(MSR_THERM_CONTROL);
   1007      1.10    jruoho 
   1008      1.29    jruoho 		if (val == ts->ts_status)
   1009      1.49    jruoho 			return 0;
   1010      1.10    jruoho 
   1011      1.10    jruoho 		DELAY(ts->ts_latency);
   1012      1.10    jruoho 	}
   1013      1.10    jruoho 
   1014      1.49    jruoho 	return EAGAIN;
   1015      1.10    jruoho }
   1016      1.19    jruoho 
   1017      1.19    jruoho /*
   1018      1.19    jruoho  * A kludge for backwards compatibility.
   1019      1.19    jruoho  */
   1020      1.19    jruoho static int
   1021      1.19    jruoho acpicpu_md_pstate_sysctl_init(void)
   1022      1.19    jruoho {
   1023      1.19    jruoho 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1024      1.19    jruoho 	const char *str;
   1025      1.19    jruoho 	int rv;
   1026      1.19    jruoho 
   1027      1.19    jruoho 	switch (cpu_vendor) {
   1028      1.19    jruoho 
   1029      1.19    jruoho 	case CPUVENDOR_IDT:
   1030      1.19    jruoho 	case CPUVENDOR_INTEL:
   1031      1.19    jruoho 		str = "est";
   1032      1.19    jruoho 		break;
   1033      1.19    jruoho 
   1034      1.19    jruoho 	case CPUVENDOR_AMD:
   1035      1.19    jruoho 		str = "powernow";
   1036      1.19    jruoho 		break;
   1037      1.19    jruoho 
   1038      1.19    jruoho 	default:
   1039      1.19    jruoho 		return ENODEV;
   1040      1.19    jruoho 	}
   1041      1.19    jruoho 
   1042      1.19    jruoho 
   1043      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1044      1.19    jruoho 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1045      1.19    jruoho 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1046      1.19    jruoho 
   1047      1.19    jruoho 	if (rv != 0)
   1048      1.19    jruoho 		goto fail;
   1049      1.19    jruoho 
   1050      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1051      1.19    jruoho 	    0, CTLTYPE_NODE, str, NULL,
   1052      1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1053      1.19    jruoho 
   1054      1.19    jruoho 	if (rv != 0)
   1055      1.19    jruoho 		goto fail;
   1056      1.19    jruoho 
   1057      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1058      1.19    jruoho 	    0, CTLTYPE_NODE, "frequency", NULL,
   1059      1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1060      1.19    jruoho 
   1061      1.19    jruoho 	if (rv != 0)
   1062      1.19    jruoho 		goto fail;
   1063      1.19    jruoho 
   1064      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1065      1.19    jruoho 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1066      1.19    jruoho 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1067      1.19    jruoho 
   1068      1.19    jruoho 	if (rv != 0)
   1069      1.19    jruoho 		goto fail;
   1070      1.19    jruoho 
   1071      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1072      1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1073      1.19    jruoho 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1074      1.19    jruoho 
   1075      1.19    jruoho 	if (rv != 0)
   1076      1.19    jruoho 		goto fail;
   1077      1.19    jruoho 
   1078      1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1079      1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1080      1.19    jruoho 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1081      1.19    jruoho 
   1082      1.19    jruoho 	if (rv != 0)
   1083      1.19    jruoho 		goto fail;
   1084      1.19    jruoho 
   1085      1.19    jruoho 	return 0;
   1086      1.19    jruoho 
   1087      1.19    jruoho fail:
   1088      1.19    jruoho 	if (acpicpu_log != NULL) {
   1089      1.19    jruoho 		sysctl_teardown(&acpicpu_log);
   1090      1.19    jruoho 		acpicpu_log = NULL;
   1091      1.19    jruoho 	}
   1092      1.19    jruoho 
   1093      1.19    jruoho 	return rv;
   1094      1.19    jruoho }
   1095      1.19    jruoho 
   1096      1.19    jruoho static int
   1097      1.19    jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1098      1.19    jruoho {
   1099      1.19    jruoho 	struct sysctlnode node;
   1100      1.19    jruoho 	uint32_t freq;
   1101      1.19    jruoho 	int err;
   1102      1.19    jruoho 
   1103      1.68    jruoho 	freq = cpufreq_get(curcpu());
   1104      1.19    jruoho 
   1105      1.68    jruoho 	if (freq == 0)
   1106      1.68    jruoho 		return ENXIO;
   1107      1.19    jruoho 
   1108      1.19    jruoho 	node = *rnode;
   1109      1.19    jruoho 	node.sysctl_data = &freq;
   1110      1.19    jruoho 
   1111      1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1112      1.19    jruoho 
   1113      1.19    jruoho 	if (err != 0 || newp == NULL)
   1114      1.19    jruoho 		return err;
   1115      1.19    jruoho 
   1116      1.19    jruoho 	return 0;
   1117      1.19    jruoho }
   1118      1.19    jruoho 
   1119      1.19    jruoho static int
   1120      1.19    jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1121      1.19    jruoho {
   1122      1.19    jruoho 	struct sysctlnode node;
   1123      1.19    jruoho 	uint32_t freq;
   1124      1.19    jruoho 	int err;
   1125      1.19    jruoho 
   1126      1.68    jruoho 	freq = cpufreq_get(curcpu());
   1127      1.19    jruoho 
   1128      1.68    jruoho 	if (freq == 0)
   1129      1.68    jruoho 		return ENXIO;
   1130      1.19    jruoho 
   1131      1.19    jruoho 	node = *rnode;
   1132      1.19    jruoho 	node.sysctl_data = &freq;
   1133      1.19    jruoho 
   1134      1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1135      1.19    jruoho 
   1136      1.19    jruoho 	if (err != 0 || newp == NULL)
   1137      1.19    jruoho 		return err;
   1138      1.19    jruoho 
   1139      1.68    jruoho 	cpufreq_set_all(freq);
   1140      1.19    jruoho 
   1141      1.19    jruoho 	return 0;
   1142      1.19    jruoho }
   1143      1.19    jruoho 
   1144      1.19    jruoho static int
   1145      1.19    jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1146      1.19    jruoho {
   1147      1.19    jruoho 	struct cpu_info *ci = curcpu();
   1148      1.19    jruoho 	struct acpicpu_softc *sc;
   1149      1.19    jruoho 	struct sysctlnode node;
   1150      1.19    jruoho 	char buf[1024];
   1151      1.19    jruoho 	size_t len;
   1152      1.19    jruoho 	uint32_t i;
   1153      1.19    jruoho 	int err;
   1154      1.19    jruoho 
   1155      1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1156      1.19    jruoho 
   1157      1.19    jruoho 	if (sc == NULL)
   1158      1.19    jruoho 		return ENXIO;
   1159      1.19    jruoho 
   1160      1.19    jruoho 	(void)memset(&buf, 0, sizeof(buf));
   1161      1.19    jruoho 
   1162      1.19    jruoho 	mutex_enter(&sc->sc_mtx);
   1163      1.19    jruoho 
   1164      1.19    jruoho 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1165      1.19    jruoho 
   1166      1.19    jruoho 		if (sc->sc_pstate[i].ps_freq == 0)
   1167      1.19    jruoho 			continue;
   1168      1.19    jruoho 
   1169      1.19    jruoho 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1170      1.19    jruoho 		    sc->sc_pstate[i].ps_freq,
   1171      1.19    jruoho 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1172      1.19    jruoho 	}
   1173      1.19    jruoho 
   1174      1.19    jruoho 	mutex_exit(&sc->sc_mtx);
   1175      1.19    jruoho 
   1176      1.19    jruoho 	node = *rnode;
   1177      1.19    jruoho 	node.sysctl_data = buf;
   1178      1.19    jruoho 
   1179      1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1180      1.19    jruoho 
   1181      1.19    jruoho 	if (err != 0 || newp == NULL)
   1182      1.19    jruoho 		return err;
   1183      1.19    jruoho 
   1184      1.19    jruoho 	return 0;
   1185      1.19    jruoho }
   1186      1.19    jruoho 
   1187