acpi_cpu_md.c revision 1.71.6.3 1 1.71.6.2 tls /* $NetBSD: acpi_cpu_md.c,v 1.71.6.3 2017/12/03 11:36:50 jdolecek Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.71.6.2 tls __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.71.6.3 2017/12/03 11:36:50 jdolecek Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.68 jruoho #include <sys/cpufreq.h>
35 1.48 jruoho #include <sys/device.h>
36 1.1 jruoho #include <sys/kcore.h>
37 1.5 jruoho #include <sys/sysctl.h>
38 1.4 jruoho #include <sys/xcall.h>
39 1.1 jruoho
40 1.1 jruoho #include <x86/cpu.h>
41 1.5 jruoho #include <x86/cpufunc.h>
42 1.5 jruoho #include <x86/cputypes.h>
43 1.1 jruoho #include <x86/cpuvar.h>
44 1.5 jruoho #include <x86/cpu_msr.h>
45 1.1 jruoho #include <x86/machdep.h>
46 1.71.6.2 tls #include <x86/x86/tsc.h>
47 1.1 jruoho
48 1.1 jruoho #include <dev/acpi/acpica.h>
49 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
50 1.1 jruoho
51 1.12 jruoho #include <dev/pci/pcivar.h>
52 1.12 jruoho #include <dev/pci/pcidevs.h>
53 1.12 jruoho
54 1.38 jruoho #include <machine/acpi_machdep.h>
55 1.38 jruoho
56 1.35 jruoho /*
57 1.55 jruoho * Intel IA32_MISC_ENABLE.
58 1.55 jruoho */
59 1.55 jruoho #define MSR_MISC_ENABLE_EST __BIT(16)
60 1.55 jruoho #define MSR_MISC_ENABLE_TURBO __BIT(38)
61 1.55 jruoho
62 1.55 jruoho /*
63 1.35 jruoho * AMD C1E.
64 1.35 jruoho */
65 1.35 jruoho #define MSR_CMPHALT 0xc0010055
66 1.35 jruoho
67 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
68 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
69 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
70 1.33 jruoho
71 1.32 jruoho /*
72 1.70 jruoho * AMD families 10h, 11h, 12h, 14h, and 15h.
73 1.32 jruoho */
74 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
75 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
76 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
77 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
78 1.22 jruoho
79 1.32 jruoho /*
80 1.32 jruoho * AMD family 0Fh.
81 1.32 jruoho */
82 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
83 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
84 1.17 jruoho
85 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
86 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
87 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
88 1.32 jruoho
89 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
90 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
91 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
92 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
93 1.32 jruoho
94 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
95 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
96 1.32 jruoho
97 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
98 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
99 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
100 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
101 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
102 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
103 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
104 1.32 jruoho
105 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
106 1.17 jruoho
107 1.5 jruoho static char native_idle_text[16];
108 1.5 jruoho void (*native_idle)(void) = NULL;
109 1.1 jruoho
110 1.58 dyoung static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
111 1.56 jruoho static void acpicpu_md_pstate_hwf_reset(void *, void *);
112 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
113 1.32 jruoho uint32_t *);
114 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
115 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
116 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
117 1.32 jruoho uint32_t, uint32_t);
118 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
119 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
120 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
121 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
122 1.5 jruoho
123 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
124 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
125 1.1 jruoho
126 1.48 jruoho struct cpu_info *
127 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
128 1.48 jruoho {
129 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
130 1.48 jruoho
131 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
132 1.48 jruoho return NULL;
133 1.48 jruoho
134 1.48 jruoho return cfaa->ci;
135 1.48 jruoho }
136 1.48 jruoho
137 1.48 jruoho struct cpu_info *
138 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
139 1.48 jruoho {
140 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
141 1.48 jruoho
142 1.48 jruoho return cfaa->ci;
143 1.48 jruoho }
144 1.48 jruoho
145 1.1 jruoho uint32_t
146 1.43 jruoho acpicpu_md_flags(void)
147 1.1 jruoho {
148 1.1 jruoho struct cpu_info *ci = curcpu();
149 1.12 jruoho struct pci_attach_args pa;
150 1.18 jruoho uint32_t family, val = 0;
151 1.21 jruoho uint32_t regs[4];
152 1.66 jruoho uint64_t msr;
153 1.1 jruoho
154 1.38 jruoho if (acpi_md_ncpus() == 1)
155 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
156 1.1 jruoho
157 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
158 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
159 1.1 jruoho
160 1.39 jruoho /*
161 1.39 jruoho * By default, assume that the local APIC timer
162 1.39 jruoho * as well as TSC are stalled during C3 sleep.
163 1.39 jruoho */
164 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
165 1.22 jruoho
166 1.71.6.2 tls /*
167 1.71.6.2 tls * Detect whether TSC is invariant. If it is not, we keep the flag to
168 1.71.6.2 tls * note that TSC will not run at constant rate. Depending on the CPU,
169 1.71.6.2 tls * this may affect P- and T-state changes, but especially relevant
170 1.71.6.2 tls * are C-states; with variant TSC, states larger than C1 may
171 1.71.6.2 tls * completely stop the counter.
172 1.71.6.2 tls */
173 1.71.6.2 tls if (tsc_is_invariant())
174 1.71.6.2 tls val &= ~ACPICPU_FLAG_C_TSC;
175 1.71.6.2 tls
176 1.1 jruoho switch (cpu_vendor) {
177 1.1 jruoho
178 1.17 jruoho case CPUVENDOR_IDT:
179 1.22 jruoho
180 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
181 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
182 1.22 jruoho
183 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
184 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
185 1.22 jruoho
186 1.22 jruoho break;
187 1.22 jruoho
188 1.1 jruoho case CPUVENDOR_INTEL:
189 1.17 jruoho
190 1.39 jruoho /*
191 1.39 jruoho * Bus master control and arbitration should be
192 1.39 jruoho * available on all supported Intel CPUs (to be
193 1.39 jruoho * sure, this is double-checked later from the
194 1.39 jruoho * firmware data). These flags imply that it is
195 1.39 jruoho * not necessary to flush caches before C3 state.
196 1.39 jruoho */
197 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
198 1.22 jruoho
199 1.39 jruoho /*
200 1.39 jruoho * Check if we can use "native", MSR-based,
201 1.39 jruoho * access. If not, we have to resort to I/O.
202 1.39 jruoho */
203 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
204 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
205 1.5 jruoho
206 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
207 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
208 1.10 jruoho
209 1.22 jruoho /*
210 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
211 1.25 jruoho * Boost are available. Also see if we might have
212 1.25 jruoho * an invariant local APIC timer ("ARAT").
213 1.23 jruoho */
214 1.23 jruoho if (cpuid_level >= 0x06) {
215 1.23 jruoho
216 1.44 jruoho x86_cpuid(0x00000006, regs);
217 1.23 jruoho
218 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
219 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
220 1.23 jruoho
221 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
222 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
223 1.25 jruoho
224 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
225 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
226 1.71.6.3 jdolecek
227 1.23 jruoho }
228 1.23 jruoho
229 1.17 jruoho break;
230 1.12 jruoho
231 1.17 jruoho case CPUVENDOR_AMD:
232 1.17 jruoho
233 1.32 jruoho x86_cpuid(0x80000000, regs);
234 1.32 jruoho
235 1.32 jruoho if (regs[0] < 0x80000007)
236 1.32 jruoho break;
237 1.32 jruoho
238 1.32 jruoho x86_cpuid(0x80000007, regs);
239 1.32 jruoho
240 1.71.6.2 tls family = CPUID_TO_FAMILY(ci->ci_signature);
241 1.18 jruoho
242 1.32 jruoho switch (family) {
243 1.1 jruoho
244 1.22 jruoho case 0x0f:
245 1.32 jruoho
246 1.45 jruoho /*
247 1.71.6.1 tls * Disable C1E if present.
248 1.71.6.1 tls */
249 1.71.6.1 tls if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
250 1.71.6.1 tls val |= ACPICPU_FLAG_C_C1E;
251 1.71.6.1 tls
252 1.71.6.1 tls /*
253 1.45 jruoho * Evaluate support for the "FID/VID
254 1.45 jruoho * algorithm" also used by powernow(4).
255 1.45 jruoho */
256 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
257 1.32 jruoho break;
258 1.32 jruoho
259 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
260 1.32 jruoho break;
261 1.32 jruoho
262 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
263 1.32 jruoho break;
264 1.32 jruoho
265 1.17 jruoho case 0x10:
266 1.17 jruoho case 0x11:
267 1.66 jruoho
268 1.71.6.1 tls /*
269 1.71.6.1 tls * Disable C1E if present.
270 1.71.6.1 tls */
271 1.66 jruoho if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
272 1.66 jruoho val |= ACPICPU_FLAG_C_C1E;
273 1.66 jruoho
274 1.40 jmcneill /* FALLTHROUGH */
275 1.40 jmcneill
276 1.69 jruoho case 0x12:
277 1.40 jmcneill case 0x14: /* AMD Fusion */
278 1.70 jruoho case 0x15: /* AMD Bulldozer */
279 1.1 jruoho
280 1.42 jruoho /*
281 1.71.6.2 tls * Like with Intel, detect MSR-based P-states,
282 1.71.6.2 tls * and AMD's "turbo" (Core Performance Boost),
283 1.71.6.2 tls * respectively.
284 1.42 jruoho */
285 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
286 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
287 1.21 jruoho
288 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
289 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
290 1.35 jruoho
291 1.42 jruoho /*
292 1.42 jruoho * Also check for APERF and MPERF,
293 1.42 jruoho * first available in the family 10h.
294 1.42 jruoho */
295 1.42 jruoho if (cpuid_level >= 0x06) {
296 1.42 jruoho
297 1.42 jruoho x86_cpuid(0x00000006, regs);
298 1.42 jruoho
299 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
300 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
301 1.42 jruoho }
302 1.42 jruoho
303 1.35 jruoho break;
304 1.17 jruoho }
305 1.1 jruoho
306 1.1 jruoho break;
307 1.1 jruoho }
308 1.1 jruoho
309 1.12 jruoho /*
310 1.12 jruoho * There are several erratums for PIIX4.
311 1.12 jruoho */
312 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
313 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
314 1.12 jruoho
315 1.1 jruoho return val;
316 1.1 jruoho }
317 1.1 jruoho
318 1.12 jruoho static int
319 1.58 dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
320 1.12 jruoho {
321 1.12 jruoho
322 1.12 jruoho /*
323 1.12 jruoho * XXX: The pci_find_device(9) function only
324 1.12 jruoho * deals with attached devices. Change this
325 1.12 jruoho * to use something like pci_device_foreach().
326 1.12 jruoho */
327 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
328 1.12 jruoho return 0;
329 1.12 jruoho
330 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
331 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
332 1.12 jruoho return 1;
333 1.12 jruoho
334 1.12 jruoho return 0;
335 1.12 jruoho }
336 1.12 jruoho
337 1.35 jruoho void
338 1.43 jruoho acpicpu_md_quirk_c1e(void)
339 1.35 jruoho {
340 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
341 1.35 jruoho uint64_t val;
342 1.35 jruoho
343 1.66 jruoho val = rdmsr(MSR_CMPHALT);
344 1.35 jruoho
345 1.35 jruoho if ((val & c1e) != 0)
346 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
347 1.35 jruoho }
348 1.35 jruoho
349 1.1 jruoho int
350 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
351 1.1 jruoho {
352 1.1 jruoho const size_t size = sizeof(native_idle_text);
353 1.31 jruoho struct acpicpu_cstate *cs;
354 1.31 jruoho bool ipi = false;
355 1.31 jruoho int i;
356 1.1 jruoho
357 1.45 jruoho /*
358 1.45 jruoho * Save the cpu_idle(9) loop used by default.
359 1.45 jruoho */
360 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
361 1.31 jruoho
362 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
363 1.31 jruoho
364 1.31 jruoho cs = &sc->sc_cstate[i];
365 1.31 jruoho
366 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
367 1.31 jruoho ipi = true;
368 1.31 jruoho break;
369 1.31 jruoho }
370 1.31 jruoho }
371 1.31 jruoho
372 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
373 1.1 jruoho
374 1.1 jruoho return 0;
375 1.1 jruoho }
376 1.1 jruoho
377 1.1 jruoho int
378 1.43 jruoho acpicpu_md_cstate_stop(void)
379 1.1 jruoho {
380 1.62 jruoho static char text[16];
381 1.62 jruoho void (*func)(void);
382 1.4 jruoho uint64_t xc;
383 1.31 jruoho bool ipi;
384 1.1 jruoho
385 1.62 jruoho x86_cpu_idle_get(&func, text, sizeof(text));
386 1.62 jruoho
387 1.62 jruoho if (func == native_idle)
388 1.62 jruoho return EALREADY;
389 1.62 jruoho
390 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
391 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
392 1.1 jruoho
393 1.4 jruoho /*
394 1.4 jruoho * Run a cross-call to ensure that all CPUs are
395 1.4 jruoho * out from the ACPI idle-loop before detachment.
396 1.4 jruoho */
397 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
398 1.4 jruoho xc_wait(xc);
399 1.1 jruoho
400 1.1 jruoho return 0;
401 1.1 jruoho }
402 1.1 jruoho
403 1.3 jruoho /*
404 1.64 jruoho * Called with interrupts enabled.
405 1.3 jruoho */
406 1.1 jruoho void
407 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
408 1.1 jruoho {
409 1.3 jruoho struct cpu_info *ci = curcpu();
410 1.1 jruoho
411 1.64 jruoho KASSERT(ci->ci_ilevel == IPL_NONE);
412 1.64 jruoho
413 1.1 jruoho switch (method) {
414 1.1 jruoho
415 1.1 jruoho case ACPICPU_C_STATE_FFH:
416 1.3 jruoho
417 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
418 1.3 jruoho
419 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
420 1.3 jruoho return;
421 1.3 jruoho
422 1.1 jruoho x86_mwait((state - 1) << 4, 0);
423 1.1 jruoho break;
424 1.1 jruoho
425 1.1 jruoho case ACPICPU_C_STATE_HALT:
426 1.3 jruoho
427 1.64 jruoho x86_disable_intr();
428 1.64 jruoho
429 1.64 jruoho if (__predict_false(ci->ci_want_resched != 0)) {
430 1.64 jruoho x86_enable_intr();
431 1.3 jruoho return;
432 1.64 jruoho }
433 1.3 jruoho
434 1.1 jruoho x86_stihlt();
435 1.1 jruoho break;
436 1.1 jruoho }
437 1.1 jruoho }
438 1.5 jruoho
439 1.5 jruoho int
440 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
441 1.5 jruoho {
442 1.62 jruoho uint64_t xc, val;
443 1.62 jruoho
444 1.63 jruoho switch (cpu_vendor) {
445 1.62 jruoho
446 1.63 jruoho case CPUVENDOR_IDT:
447 1.63 jruoho case CPUVENDOR_INTEL:
448 1.62 jruoho
449 1.63 jruoho /*
450 1.63 jruoho * Make sure EST is enabled.
451 1.63 jruoho */
452 1.63 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
453 1.62 jruoho
454 1.62 jruoho val = rdmsr(MSR_MISC_ENABLE);
455 1.62 jruoho
456 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0) {
457 1.63 jruoho
458 1.63 jruoho val |= MSR_MISC_ENABLE_EST;
459 1.63 jruoho wrmsr(MSR_MISC_ENABLE, val);
460 1.63 jruoho val = rdmsr(MSR_MISC_ENABLE);
461 1.63 jruoho
462 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0)
463 1.63 jruoho return ENOTTY;
464 1.63 jruoho }
465 1.62 jruoho }
466 1.62 jruoho }
467 1.57 jruoho
468 1.57 jruoho /*
469 1.57 jruoho * Reset the APERF and MPERF counters.
470 1.57 jruoho */
471 1.57 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
472 1.57 jruoho xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
473 1.57 jruoho xc_wait(xc);
474 1.57 jruoho }
475 1.57 jruoho
476 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
477 1.5 jruoho }
478 1.5 jruoho
479 1.5 jruoho int
480 1.5 jruoho acpicpu_md_pstate_stop(void)
481 1.5 jruoho {
482 1.62 jruoho
483 1.62 jruoho if (acpicpu_log == NULL)
484 1.62 jruoho return EALREADY;
485 1.62 jruoho
486 1.62 jruoho sysctl_teardown(&acpicpu_log);
487 1.62 jruoho acpicpu_log = NULL;
488 1.5 jruoho
489 1.5 jruoho return 0;
490 1.5 jruoho }
491 1.5 jruoho
492 1.5 jruoho int
493 1.55 jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
494 1.5 jruoho {
495 1.56 jruoho struct cpu_info *ci = sc->sc_ci;
496 1.15 jruoho struct acpicpu_pstate *ps, msr;
497 1.18 jruoho uint32_t family, i = 0;
498 1.13 jruoho
499 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
500 1.13 jruoho
501 1.5 jruoho switch (cpu_vendor) {
502 1.5 jruoho
503 1.17 jruoho case CPUVENDOR_IDT:
504 1.5 jruoho case CPUVENDOR_INTEL:
505 1.33 jruoho
506 1.33 jruoho /*
507 1.33 jruoho * If the so-called Turbo Boost is present,
508 1.33 jruoho * the P0-state is always the "turbo state".
509 1.51 jruoho * It is shown as the P1 frequency + 1 MHz.
510 1.33 jruoho *
511 1.33 jruoho * For discussion, see:
512 1.33 jruoho *
513 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
514 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
515 1.33 jruoho * Based Processors. White Paper, November 2008.
516 1.33 jruoho */
517 1.55 jruoho if (sc->sc_pstate_count >= 2 &&
518 1.52 jruoho (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
519 1.51 jruoho
520 1.51 jruoho ps = &sc->sc_pstate[0];
521 1.51 jruoho
522 1.51 jruoho if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
523 1.51 jruoho ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
524 1.51 jruoho }
525 1.33 jruoho
526 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
527 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
528 1.15 jruoho
529 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
530 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
531 1.13 jruoho break;
532 1.13 jruoho
533 1.13 jruoho case CPUVENDOR_AMD:
534 1.13 jruoho
535 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
536 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
537 1.33 jruoho
538 1.71.6.2 tls family = CPUID_TO_FAMILY(ci->ci_signature);
539 1.18 jruoho
540 1.18 jruoho switch (family) {
541 1.17 jruoho
542 1.32 jruoho case 0x0f:
543 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
544 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
545 1.32 jruoho break;
546 1.32 jruoho
547 1.17 jruoho case 0x10:
548 1.17 jruoho case 0x11:
549 1.69 jruoho case 0x12:
550 1.71 jruoho case 0x14:
551 1.71 jruoho case 0x15:
552 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
553 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
554 1.17 jruoho
555 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
556 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
557 1.17 jruoho break;
558 1.17 jruoho
559 1.17 jruoho default:
560 1.55 jruoho /*
561 1.55 jruoho * If we have an unknown AMD CPU, rely on XPSS.
562 1.55 jruoho */
563 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
564 1.17 jruoho return EOPNOTSUPP;
565 1.17 jruoho }
566 1.13 jruoho
567 1.13 jruoho break;
568 1.13 jruoho
569 1.13 jruoho default:
570 1.13 jruoho return ENODEV;
571 1.13 jruoho }
572 1.5 jruoho
573 1.26 jruoho /*
574 1.26 jruoho * Fill the P-state structures with MSR addresses that are
575 1.27 jruoho * known to be correct. If we do not know the addresses,
576 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
577 1.39 jruoho * not necessarily need to do anything to support new CPUs.
578 1.26 jruoho */
579 1.15 jruoho while (i < sc->sc_pstate_count) {
580 1.15 jruoho
581 1.15 jruoho ps = &sc->sc_pstate[i];
582 1.15 jruoho
583 1.32 jruoho if (msr.ps_flags != 0)
584 1.32 jruoho ps->ps_flags |= msr.ps_flags;
585 1.32 jruoho
586 1.27 jruoho if (msr.ps_status_addr != 0)
587 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
588 1.15 jruoho
589 1.27 jruoho if (msr.ps_status_mask != 0)
590 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
591 1.15 jruoho
592 1.27 jruoho if (msr.ps_control_addr != 0)
593 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
594 1.15 jruoho
595 1.27 jruoho if (msr.ps_control_mask != 0)
596 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
597 1.15 jruoho
598 1.15 jruoho i++;
599 1.15 jruoho }
600 1.15 jruoho
601 1.15 jruoho return 0;
602 1.15 jruoho }
603 1.15 jruoho
604 1.55 jruoho /*
605 1.55 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
606 1.55 jruoho * increments at the rate of the fixed maximum frequency
607 1.55 jruoho * configured during the boot, whereas APERF counts at the
608 1.55 jruoho * rate of the actual frequency. Note that the MSRs must be
609 1.55 jruoho * read without delay, and that only the ratio between
610 1.55 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
611 1.55 jruoho *
612 1.55 jruoho * The function thus returns the percentage of the actual
613 1.55 jruoho * frequency in terms of the maximum frequency of the calling
614 1.55 jruoho * CPU since the last call. A value zero implies an error.
615 1.55 jruoho *
616 1.55 jruoho * For further details, refer to:
617 1.55 jruoho *
618 1.55 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
619 1.55 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
620 1.55 jruoho * System Programming Guide, Part 1. July, 2008.
621 1.55 jruoho *
622 1.55 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
623 1.55 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
624 1.55 jruoho * 2.4.5, Revision 3.48, April 2010.
625 1.55 jruoho */
626 1.41 jruoho uint8_t
627 1.56 jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
628 1.41 jruoho {
629 1.55 jruoho struct acpicpu_softc *sc;
630 1.41 jruoho uint64_t aperf, mperf;
631 1.55 jruoho uint8_t rv = 0;
632 1.55 jruoho
633 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
634 1.41 jruoho
635 1.55 jruoho if (__predict_false(sc == NULL))
636 1.50 jruoho return 0;
637 1.50 jruoho
638 1.53 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
639 1.50 jruoho return 0;
640 1.41 jruoho
641 1.41 jruoho aperf = sc->sc_pstate_aperf;
642 1.41 jruoho mperf = sc->sc_pstate_mperf;
643 1.41 jruoho
644 1.56 jruoho x86_disable_intr();
645 1.56 jruoho
646 1.50 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
647 1.50 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
648 1.41 jruoho
649 1.56 jruoho x86_enable_intr();
650 1.56 jruoho
651 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
652 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
653 1.41 jruoho
654 1.41 jruoho if (__predict_true(mperf != 0))
655 1.41 jruoho rv = (aperf * 100) / mperf;
656 1.41 jruoho
657 1.41 jruoho return rv;
658 1.41 jruoho }
659 1.41 jruoho
660 1.41 jruoho static void
661 1.56 jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
662 1.41 jruoho {
663 1.56 jruoho struct cpu_info *ci = curcpu();
664 1.55 jruoho struct acpicpu_softc *sc;
665 1.41 jruoho
666 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
667 1.41 jruoho
668 1.55 jruoho if (__predict_false(sc == NULL))
669 1.55 jruoho return;
670 1.46 jruoho
671 1.56 jruoho x86_disable_intr();
672 1.46 jruoho
673 1.55 jruoho wrmsr(MSR_APERF, 0);
674 1.55 jruoho wrmsr(MSR_MPERF, 0);
675 1.41 jruoho
676 1.56 jruoho x86_enable_intr();
677 1.56 jruoho
678 1.41 jruoho sc->sc_pstate_aperf = 0;
679 1.41 jruoho sc->sc_pstate_mperf = 0;
680 1.41 jruoho }
681 1.41 jruoho
682 1.15 jruoho int
683 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
684 1.15 jruoho {
685 1.15 jruoho struct acpicpu_pstate *ps = NULL;
686 1.15 jruoho uint64_t val;
687 1.15 jruoho uint32_t i;
688 1.15 jruoho
689 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
690 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
691 1.32 jruoho
692 1.49 jruoho /*
693 1.49 jruoho * Pick any P-state for the status address.
694 1.68 jruoho */
695 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
696 1.15 jruoho
697 1.15 jruoho ps = &sc->sc_pstate[i];
698 1.15 jruoho
699 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
700 1.15 jruoho break;
701 1.15 jruoho }
702 1.15 jruoho
703 1.15 jruoho if (__predict_false(ps == NULL))
704 1.17 jruoho return ENODEV;
705 1.15 jruoho
706 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
707 1.13 jruoho return EINVAL;
708 1.5 jruoho
709 1.13 jruoho val = rdmsr(ps->ps_status_addr);
710 1.5 jruoho
711 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
712 1.13 jruoho val = val & ps->ps_status_mask;
713 1.5 jruoho
714 1.49 jruoho /*
715 1.49 jruoho * Search for the value from known P-states.
716 1.49 jruoho */
717 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
718 1.5 jruoho
719 1.13 jruoho ps = &sc->sc_pstate[i];
720 1.5 jruoho
721 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
722 1.13 jruoho continue;
723 1.5 jruoho
724 1.29 jruoho if (val == ps->ps_status) {
725 1.13 jruoho *freq = ps->ps_freq;
726 1.13 jruoho return 0;
727 1.13 jruoho }
728 1.5 jruoho }
729 1.5 jruoho
730 1.60 jruoho /*
731 1.60 jruoho * If the value was not found, try APERF/MPERF.
732 1.60 jruoho * The state is P0 if the return value is 100 %.
733 1.60 jruoho */
734 1.60 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
735 1.60 jruoho
736 1.68 jruoho KASSERT(sc->sc_pstate_count > 0);
737 1.68 jruoho KASSERT(sc->sc_pstate[0].ps_freq != 0);
738 1.68 jruoho
739 1.60 jruoho if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
740 1.60 jruoho *freq = sc->sc_pstate[0].ps_freq;
741 1.60 jruoho return 0;
742 1.60 jruoho }
743 1.60 jruoho }
744 1.60 jruoho
745 1.13 jruoho return EIO;
746 1.5 jruoho }
747 1.5 jruoho
748 1.5 jruoho int
749 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
750 1.5 jruoho {
751 1.54 jruoho uint64_t val = 0;
752 1.5 jruoho
753 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
754 1.37 jruoho return EINVAL;
755 1.37 jruoho
756 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
757 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
758 1.32 jruoho
759 1.54 jruoho /*
760 1.54 jruoho * If the mask is set, do a read-modify-write.
761 1.54 jruoho */
762 1.54 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
763 1.54 jruoho val = rdmsr(ps->ps_control_addr);
764 1.54 jruoho val &= ~ps->ps_control_mask;
765 1.54 jruoho }
766 1.5 jruoho
767 1.54 jruoho val |= ps->ps_control;
768 1.13 jruoho
769 1.49 jruoho wrmsr(ps->ps_control_addr, val);
770 1.49 jruoho DELAY(ps->ps_latency);
771 1.14 jruoho
772 1.49 jruoho return 0;
773 1.5 jruoho }
774 1.10 jruoho
775 1.32 jruoho static int
776 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
777 1.32 jruoho {
778 1.32 jruoho struct acpicpu_pstate *ps;
779 1.32 jruoho uint32_t fid, i, vid;
780 1.32 jruoho uint32_t cfid, cvid;
781 1.32 jruoho int rv;
782 1.32 jruoho
783 1.32 jruoho /*
784 1.32 jruoho * AMD family 0Fh needs special treatment.
785 1.32 jruoho * While it wants to use ACPI, it does not
786 1.32 jruoho * comply with the ACPI specifications.
787 1.32 jruoho */
788 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
789 1.32 jruoho
790 1.32 jruoho if (rv != 0)
791 1.32 jruoho return rv;
792 1.32 jruoho
793 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
794 1.32 jruoho
795 1.32 jruoho ps = &sc->sc_pstate[i];
796 1.32 jruoho
797 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
798 1.32 jruoho continue;
799 1.32 jruoho
800 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
801 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
802 1.32 jruoho
803 1.32 jruoho if (cfid == fid && cvid == vid) {
804 1.32 jruoho *freq = ps->ps_freq;
805 1.32 jruoho return 0;
806 1.32 jruoho }
807 1.32 jruoho }
808 1.32 jruoho
809 1.32 jruoho return EIO;
810 1.32 jruoho }
811 1.32 jruoho
812 1.32 jruoho static int
813 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
814 1.32 jruoho {
815 1.32 jruoho const uint64_t ctrl = ps->ps_control;
816 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
817 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
818 1.32 jruoho uint32_t val, vid, vst;
819 1.32 jruoho int rv;
820 1.32 jruoho
821 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
822 1.32 jruoho
823 1.32 jruoho if (rv != 0)
824 1.32 jruoho return rv;
825 1.32 jruoho
826 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
827 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
828 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
829 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
830 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
831 1.32 jruoho
832 1.32 jruoho vst = vst * 20;
833 1.32 jruoho pll = pll * 1000 / 5;
834 1.32 jruoho irt = 10 * __BIT(irt);
835 1.32 jruoho
836 1.32 jruoho /*
837 1.32 jruoho * Phase 1.
838 1.32 jruoho */
839 1.32 jruoho while (cvid > vid) {
840 1.32 jruoho
841 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
842 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
843 1.32 jruoho
844 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
845 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
846 1.32 jruoho
847 1.32 jruoho if (rv != 0)
848 1.32 jruoho return rv;
849 1.32 jruoho }
850 1.32 jruoho
851 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
852 1.32 jruoho
853 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
854 1.32 jruoho
855 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
856 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
857 1.32 jruoho
858 1.32 jruoho if (rv != 0)
859 1.32 jruoho return rv;
860 1.32 jruoho }
861 1.32 jruoho
862 1.32 jruoho /*
863 1.32 jruoho * Phase 2.
864 1.32 jruoho */
865 1.32 jruoho if (cfid != fid) {
866 1.32 jruoho
867 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
868 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
869 1.32 jruoho
870 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
871 1.32 jruoho
872 1.32 jruoho if (fid <= cfid)
873 1.32 jruoho val = cfid - 2;
874 1.32 jruoho else {
875 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
876 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
877 1.32 jruoho }
878 1.32 jruoho
879 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
880 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
881 1.32 jruoho
882 1.32 jruoho if (rv != 0)
883 1.32 jruoho return rv;
884 1.32 jruoho
885 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
886 1.32 jruoho }
887 1.32 jruoho
888 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
889 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
890 1.32 jruoho
891 1.32 jruoho if (rv != 0)
892 1.32 jruoho return rv;
893 1.32 jruoho }
894 1.32 jruoho
895 1.32 jruoho /*
896 1.32 jruoho * Phase 3.
897 1.32 jruoho */
898 1.32 jruoho if (cvid != vid) {
899 1.32 jruoho
900 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
901 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
902 1.32 jruoho
903 1.32 jruoho if (rv != 0)
904 1.32 jruoho return rv;
905 1.32 jruoho }
906 1.32 jruoho
907 1.32 jruoho return 0;
908 1.32 jruoho }
909 1.32 jruoho
910 1.32 jruoho static int
911 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
912 1.32 jruoho {
913 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
914 1.32 jruoho uint64_t val;
915 1.32 jruoho
916 1.32 jruoho do {
917 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
918 1.32 jruoho
919 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
920 1.32 jruoho
921 1.32 jruoho if (i == 0)
922 1.32 jruoho return EAGAIN;
923 1.32 jruoho
924 1.32 jruoho if (cfid != NULL)
925 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
926 1.32 jruoho
927 1.32 jruoho if (cvid != NULL)
928 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
929 1.32 jruoho
930 1.32 jruoho return 0;
931 1.32 jruoho }
932 1.32 jruoho
933 1.32 jruoho static void
934 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
935 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
936 1.32 jruoho {
937 1.49 jruoho uint64_t val = 0;
938 1.32 jruoho
939 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
940 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
941 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
942 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
943 1.32 jruoho
944 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
945 1.32 jruoho DELAY(tmo);
946 1.32 jruoho }
947 1.32 jruoho
948 1.10 jruoho int
949 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
950 1.10 jruoho {
951 1.10 jruoho struct acpicpu_tstate *ts;
952 1.14 jruoho uint64_t val;
953 1.10 jruoho uint32_t i;
954 1.10 jruoho
955 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
956 1.10 jruoho
957 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
958 1.10 jruoho
959 1.10 jruoho ts = &sc->sc_tstate[i];
960 1.10 jruoho
961 1.10 jruoho if (ts->ts_percent == 0)
962 1.10 jruoho continue;
963 1.10 jruoho
964 1.29 jruoho if (val == ts->ts_status) {
965 1.10 jruoho *percent = ts->ts_percent;
966 1.10 jruoho return 0;
967 1.10 jruoho }
968 1.10 jruoho }
969 1.10 jruoho
970 1.10 jruoho return EIO;
971 1.10 jruoho }
972 1.10 jruoho
973 1.10 jruoho int
974 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
975 1.10 jruoho {
976 1.49 jruoho uint64_t val;
977 1.49 jruoho uint8_t i;
978 1.10 jruoho
979 1.49 jruoho val = ts->ts_control;
980 1.71.6.2 tls val = val & __BITS(0, 4);
981 1.10 jruoho
982 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
983 1.10 jruoho
984 1.30 jruoho if (ts->ts_status == 0) {
985 1.30 jruoho DELAY(ts->ts_latency);
986 1.10 jruoho return 0;
987 1.30 jruoho }
988 1.10 jruoho
989 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
990 1.10 jruoho
991 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
992 1.10 jruoho
993 1.29 jruoho if (val == ts->ts_status)
994 1.49 jruoho return 0;
995 1.10 jruoho
996 1.10 jruoho DELAY(ts->ts_latency);
997 1.10 jruoho }
998 1.10 jruoho
999 1.49 jruoho return EAGAIN;
1000 1.10 jruoho }
1001 1.19 jruoho
1002 1.19 jruoho /*
1003 1.19 jruoho * A kludge for backwards compatibility.
1004 1.19 jruoho */
1005 1.19 jruoho static int
1006 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1007 1.19 jruoho {
1008 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1009 1.19 jruoho const char *str;
1010 1.19 jruoho int rv;
1011 1.19 jruoho
1012 1.19 jruoho switch (cpu_vendor) {
1013 1.19 jruoho
1014 1.19 jruoho case CPUVENDOR_IDT:
1015 1.19 jruoho case CPUVENDOR_INTEL:
1016 1.19 jruoho str = "est";
1017 1.19 jruoho break;
1018 1.19 jruoho
1019 1.19 jruoho case CPUVENDOR_AMD:
1020 1.19 jruoho str = "powernow";
1021 1.19 jruoho break;
1022 1.19 jruoho
1023 1.19 jruoho default:
1024 1.19 jruoho return ENODEV;
1025 1.19 jruoho }
1026 1.19 jruoho
1027 1.19 jruoho
1028 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1029 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1030 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1031 1.19 jruoho
1032 1.19 jruoho if (rv != 0)
1033 1.19 jruoho goto fail;
1034 1.19 jruoho
1035 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1036 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1037 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1038 1.19 jruoho
1039 1.19 jruoho if (rv != 0)
1040 1.19 jruoho goto fail;
1041 1.19 jruoho
1042 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1043 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1044 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1045 1.19 jruoho
1046 1.19 jruoho if (rv != 0)
1047 1.19 jruoho goto fail;
1048 1.19 jruoho
1049 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1050 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1051 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1052 1.19 jruoho
1053 1.19 jruoho if (rv != 0)
1054 1.19 jruoho goto fail;
1055 1.19 jruoho
1056 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1057 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1058 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1059 1.19 jruoho
1060 1.19 jruoho if (rv != 0)
1061 1.19 jruoho goto fail;
1062 1.19 jruoho
1063 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1064 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1065 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1066 1.19 jruoho
1067 1.19 jruoho if (rv != 0)
1068 1.19 jruoho goto fail;
1069 1.19 jruoho
1070 1.19 jruoho return 0;
1071 1.19 jruoho
1072 1.19 jruoho fail:
1073 1.19 jruoho if (acpicpu_log != NULL) {
1074 1.19 jruoho sysctl_teardown(&acpicpu_log);
1075 1.19 jruoho acpicpu_log = NULL;
1076 1.19 jruoho }
1077 1.19 jruoho
1078 1.19 jruoho return rv;
1079 1.19 jruoho }
1080 1.19 jruoho
1081 1.19 jruoho static int
1082 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1083 1.19 jruoho {
1084 1.19 jruoho struct sysctlnode node;
1085 1.19 jruoho uint32_t freq;
1086 1.19 jruoho int err;
1087 1.19 jruoho
1088 1.68 jruoho freq = cpufreq_get(curcpu());
1089 1.19 jruoho
1090 1.68 jruoho if (freq == 0)
1091 1.68 jruoho return ENXIO;
1092 1.19 jruoho
1093 1.19 jruoho node = *rnode;
1094 1.19 jruoho node.sysctl_data = &freq;
1095 1.19 jruoho
1096 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1097 1.19 jruoho
1098 1.19 jruoho if (err != 0 || newp == NULL)
1099 1.19 jruoho return err;
1100 1.19 jruoho
1101 1.19 jruoho return 0;
1102 1.19 jruoho }
1103 1.19 jruoho
1104 1.19 jruoho static int
1105 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1106 1.19 jruoho {
1107 1.19 jruoho struct sysctlnode node;
1108 1.19 jruoho uint32_t freq;
1109 1.19 jruoho int err;
1110 1.19 jruoho
1111 1.68 jruoho freq = cpufreq_get(curcpu());
1112 1.19 jruoho
1113 1.68 jruoho if (freq == 0)
1114 1.68 jruoho return ENXIO;
1115 1.19 jruoho
1116 1.19 jruoho node = *rnode;
1117 1.19 jruoho node.sysctl_data = &freq;
1118 1.19 jruoho
1119 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1120 1.19 jruoho
1121 1.19 jruoho if (err != 0 || newp == NULL)
1122 1.19 jruoho return err;
1123 1.19 jruoho
1124 1.68 jruoho cpufreq_set_all(freq);
1125 1.19 jruoho
1126 1.19 jruoho return 0;
1127 1.19 jruoho }
1128 1.19 jruoho
1129 1.19 jruoho static int
1130 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1131 1.19 jruoho {
1132 1.19 jruoho struct cpu_info *ci = curcpu();
1133 1.19 jruoho struct acpicpu_softc *sc;
1134 1.19 jruoho struct sysctlnode node;
1135 1.19 jruoho char buf[1024];
1136 1.19 jruoho size_t len;
1137 1.19 jruoho uint32_t i;
1138 1.19 jruoho int err;
1139 1.19 jruoho
1140 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1141 1.19 jruoho
1142 1.19 jruoho if (sc == NULL)
1143 1.19 jruoho return ENXIO;
1144 1.19 jruoho
1145 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1146 1.19 jruoho
1147 1.19 jruoho mutex_enter(&sc->sc_mtx);
1148 1.19 jruoho
1149 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1150 1.19 jruoho
1151 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1152 1.19 jruoho continue;
1153 1.19 jruoho
1154 1.71.6.2 tls if (len >= sizeof(buf))
1155 1.71.6.2 tls break;
1156 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1157 1.19 jruoho sc->sc_pstate[i].ps_freq,
1158 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1159 1.19 jruoho }
1160 1.19 jruoho
1161 1.19 jruoho mutex_exit(&sc->sc_mtx);
1162 1.19 jruoho
1163 1.19 jruoho node = *rnode;
1164 1.19 jruoho node.sysctl_data = buf;
1165 1.19 jruoho
1166 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1167 1.19 jruoho
1168 1.19 jruoho if (err != 0 || newp == NULL)
1169 1.19 jruoho return err;
1170 1.19 jruoho
1171 1.19 jruoho return 0;
1172 1.19 jruoho }
1173 1.19 jruoho
1174