Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.78.16.2
      1  1.78.16.2    martin /* $NetBSD: acpi_cpu_md.c,v 1.78.16.2 2020/04/13 08:04:11 martin Exp $ */
      2        1.1    jruoho 
      3        1.1    jruoho /*-
      4       1.41    jruoho  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5        1.1    jruoho  * All rights reserved.
      6        1.1    jruoho  *
      7        1.1    jruoho  * Redistribution and use in source and binary forms, with or without
      8        1.1    jruoho  * modification, are permitted provided that the following conditions
      9        1.1    jruoho  * are met:
     10        1.1    jruoho  *
     11        1.1    jruoho  * 1. Redistributions of source code must retain the above copyright
     12        1.1    jruoho  *    notice, this list of conditions and the following disclaimer.
     13        1.1    jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     14        1.1    jruoho  *    notice, this list of conditions and the following disclaimer in the
     15        1.1    jruoho  *    documentation and/or other materials provided with the distribution.
     16        1.1    jruoho  *
     17        1.1    jruoho  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18        1.1    jruoho  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19        1.1    jruoho  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20        1.1    jruoho  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21        1.1    jruoho  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22        1.1    jruoho  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23        1.1    jruoho  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24        1.1    jruoho  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25        1.1    jruoho  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26        1.1    jruoho  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27        1.1    jruoho  * SUCH DAMAGE.
     28        1.1    jruoho  */
     29        1.1    jruoho #include <sys/cdefs.h>
     30  1.78.16.2    martin __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.78.16.2 2020/04/13 08:04:11 martin Exp $");
     31        1.1    jruoho 
     32        1.1    jruoho #include <sys/param.h>
     33        1.1    jruoho #include <sys/bus.h>
     34       1.68    jruoho #include <sys/cpufreq.h>
     35       1.48    jruoho #include <sys/device.h>
     36        1.1    jruoho #include <sys/kcore.h>
     37        1.5    jruoho #include <sys/sysctl.h>
     38        1.4    jruoho #include <sys/xcall.h>
     39        1.1    jruoho 
     40        1.1    jruoho #include <x86/cpu.h>
     41        1.5    jruoho #include <x86/cpufunc.h>
     42        1.5    jruoho #include <x86/cputypes.h>
     43        1.1    jruoho #include <x86/cpuvar.h>
     44        1.1    jruoho #include <x86/machdep.h>
     45       1.75   msaitoh #include <x86/x86/tsc.h>
     46        1.1    jruoho 
     47        1.1    jruoho #include <dev/acpi/acpica.h>
     48        1.1    jruoho #include <dev/acpi/acpi_cpu.h>
     49        1.1    jruoho 
     50       1.12    jruoho #include <dev/pci/pcivar.h>
     51       1.12    jruoho #include <dev/pci/pcidevs.h>
     52       1.12    jruoho 
     53       1.38    jruoho #include <machine/acpi_machdep.h>
     54       1.38    jruoho 
     55       1.35    jruoho /*
     56       1.55    jruoho  * Intel IA32_MISC_ENABLE.
     57       1.55    jruoho  */
     58       1.55    jruoho #define MSR_MISC_ENABLE_EST	__BIT(16)
     59       1.55    jruoho #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60       1.55    jruoho 
     61       1.55    jruoho /*
     62       1.35    jruoho  * AMD C1E.
     63       1.35    jruoho  */
     64       1.35    jruoho #define MSR_CMPHALT		0xc0010055
     65       1.35    jruoho 
     66       1.35    jruoho #define MSR_CMPHALT_SMI		__BIT(27)
     67       1.35    jruoho #define MSR_CMPHALT_C1E		__BIT(28)
     68       1.35    jruoho #define MSR_CMPHALT_BMSTS	__BIT(29)
     69       1.33    jruoho 
     70       1.32    jruoho /*
     71       1.70    jruoho  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72       1.32    jruoho  */
     73       1.32    jruoho #define MSR_10H_LIMIT		0xc0010061
     74       1.32    jruoho #define MSR_10H_CONTROL		0xc0010062
     75       1.32    jruoho #define MSR_10H_STATUS		0xc0010063
     76       1.32    jruoho #define MSR_10H_CONFIG		0xc0010064
     77       1.22    jruoho 
     78       1.32    jruoho /*
     79       1.32    jruoho  * AMD family 0Fh.
     80       1.32    jruoho  */
     81       1.32    jruoho #define MSR_0FH_CONTROL		0xc0010041
     82       1.17    jruoho #define MSR_0FH_STATUS		0xc0010042
     83       1.17    jruoho 
     84       1.32    jruoho #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85       1.32    jruoho #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86       1.32    jruoho #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87       1.32    jruoho 
     88       1.32    jruoho #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89       1.32    jruoho #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90       1.32    jruoho #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91       1.32    jruoho #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92       1.32    jruoho 
     93       1.32    jruoho #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94       1.32    jruoho #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95       1.32    jruoho 
     96       1.32    jruoho #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97       1.32    jruoho #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98       1.32    jruoho #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99       1.32    jruoho #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100       1.32    jruoho #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101       1.32    jruoho #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102       1.32    jruoho #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103       1.32    jruoho 
    104       1.32    jruoho #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105       1.17    jruoho 
    106        1.5    jruoho static char	  native_idle_text[16];
    107        1.5    jruoho void		(*native_idle)(void) = NULL;
    108        1.1    jruoho 
    109       1.58    dyoung static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110       1.56    jruoho static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111       1.32    jruoho static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112       1.32    jruoho                                               uint32_t *);
    113       1.32    jruoho static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114       1.32    jruoho static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115       1.32    jruoho static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116       1.32    jruoho 					        uint32_t, uint32_t);
    117       1.19    jruoho static int	 acpicpu_md_pstate_sysctl_init(void);
    118        1.5    jruoho static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119        1.5    jruoho static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120        1.5    jruoho static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121        1.5    jruoho 
    122        1.5    jruoho extern struct acpicpu_softc **acpicpu_sc;
    123       1.19    jruoho static struct sysctllog *acpicpu_log = NULL;
    124        1.1    jruoho 
    125       1.48    jruoho struct cpu_info *
    126       1.48    jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127       1.48    jruoho {
    128       1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    129       1.48    jruoho 
    130       1.48    jruoho 	if (strcmp(cfaa->name, "frequency") != 0)
    131       1.48    jruoho 		return NULL;
    132       1.48    jruoho 
    133       1.48    jruoho 	return cfaa->ci;
    134       1.48    jruoho }
    135       1.48    jruoho 
    136       1.48    jruoho struct cpu_info *
    137       1.48    jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138       1.48    jruoho {
    139       1.48    jruoho 	struct cpufeature_attach_args *cfaa = aux;
    140       1.48    jruoho 
    141       1.48    jruoho 	return cfaa->ci;
    142       1.48    jruoho }
    143       1.48    jruoho 
    144        1.1    jruoho uint32_t
    145       1.43    jruoho acpicpu_md_flags(void)
    146        1.1    jruoho {
    147        1.1    jruoho 	struct cpu_info *ci = curcpu();
    148       1.12    jruoho 	struct pci_attach_args pa;
    149       1.18    jruoho 	uint32_t family, val = 0;
    150       1.21    jruoho 	uint32_t regs[4];
    151       1.66    jruoho 	uint64_t msr;
    152        1.1    jruoho 
    153       1.38    jruoho 	if (acpi_md_ncpus() == 1)
    154        1.1    jruoho 		val |= ACPICPU_FLAG_C_BM;
    155        1.1    jruoho 
    156        1.1    jruoho 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157        1.5    jruoho 		val |= ACPICPU_FLAG_C_FFH;
    158        1.1    jruoho 
    159       1.39    jruoho 	/*
    160       1.39    jruoho 	 * By default, assume that the local APIC timer
    161       1.39    jruoho 	 * as well as TSC are stalled during C3 sleep.
    162       1.39    jruoho 	 */
    163       1.25    jruoho 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164       1.22    jruoho 
    165       1.75   msaitoh 	/*
    166       1.75   msaitoh 	 * Detect whether TSC is invariant. If it is not, we keep the flag to
    167       1.75   msaitoh 	 * note that TSC will not run at constant rate. Depending on the CPU,
    168       1.75   msaitoh 	 * this may affect P- and T-state changes, but especially relevant
    169       1.75   msaitoh 	 * are C-states; with variant TSC, states larger than C1 may
    170       1.75   msaitoh 	 * completely stop the counter.
    171       1.75   msaitoh 	 */
    172       1.75   msaitoh 	if (tsc_is_invariant())
    173       1.75   msaitoh 		val &= ~ACPICPU_FLAG_C_TSC;
    174       1.75   msaitoh 
    175        1.1    jruoho 	switch (cpu_vendor) {
    176        1.1    jruoho 
    177       1.17    jruoho 	case CPUVENDOR_IDT:
    178       1.22    jruoho 
    179       1.22    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    180       1.22    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    181       1.22    jruoho 
    182       1.22    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    183       1.22    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    184       1.22    jruoho 
    185       1.22    jruoho 		break;
    186       1.22    jruoho 
    187        1.1    jruoho 	case CPUVENDOR_INTEL:
    188       1.17    jruoho 
    189       1.39    jruoho 		/*
    190       1.39    jruoho 		 * Bus master control and arbitration should be
    191       1.39    jruoho 		 * available on all supported Intel CPUs (to be
    192       1.39    jruoho 		 * sure, this is double-checked later from the
    193       1.39    jruoho 		 * firmware data). These flags imply that it is
    194       1.39    jruoho 		 * not necessary to flush caches before C3 state.
    195       1.39    jruoho 		 */
    196       1.22    jruoho 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    197       1.22    jruoho 
    198       1.39    jruoho 		/*
    199       1.39    jruoho 		 * Check if we can use "native", MSR-based,
    200       1.39    jruoho 		 * access. If not, we have to resort to I/O.
    201       1.39    jruoho 		 */
    202        1.5    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    203        1.5    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    204        1.5    jruoho 
    205       1.10    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    206       1.10    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    207       1.10    jruoho 
    208       1.22    jruoho 		/*
    209       1.25    jruoho 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    210       1.25    jruoho 		 * Boost are available. Also see if we might have
    211       1.25    jruoho 		 * an invariant local APIC timer ("ARAT").
    212       1.23    jruoho 		 */
    213       1.23    jruoho 		if (cpuid_level >= 0x06) {
    214       1.23    jruoho 
    215       1.44    jruoho 			x86_cpuid(0x00000006, regs);
    216       1.23    jruoho 
    217       1.34    jruoho 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    218       1.53    jruoho 				val |= ACPICPU_FLAG_P_HWF;
    219       1.23    jruoho 
    220       1.34    jruoho 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    221       1.24    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    222       1.25    jruoho 
    223       1.34    jruoho 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    224       1.25    jruoho 				val &= ~ACPICPU_FLAG_C_APIC;
    225       1.78       nat 
    226       1.23    jruoho 		}
    227       1.23    jruoho 
    228       1.17    jruoho 		break;
    229       1.12    jruoho 
    230       1.17    jruoho 	case CPUVENDOR_AMD:
    231       1.17    jruoho 
    232       1.32    jruoho 		x86_cpuid(0x80000000, regs);
    233       1.32    jruoho 
    234       1.32    jruoho 		if (regs[0] < 0x80000007)
    235       1.32    jruoho 			break;
    236       1.32    jruoho 
    237       1.32    jruoho 		x86_cpuid(0x80000007, regs);
    238       1.32    jruoho 
    239       1.73   msaitoh 		family = CPUID_TO_FAMILY(ci->ci_signature);
    240       1.18    jruoho 
    241       1.32    jruoho     		switch (family) {
    242        1.1    jruoho 
    243       1.22    jruoho 		case 0x0f:
    244       1.32    jruoho 
    245       1.45    jruoho 			/*
    246       1.72    jruoho 			 * Disable C1E if present.
    247       1.72    jruoho 			 */
    248       1.72    jruoho 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    249       1.72    jruoho 				val |= ACPICPU_FLAG_C_C1E;
    250       1.72    jruoho 
    251       1.72    jruoho 			/*
    252       1.45    jruoho 			 * Evaluate support for the "FID/VID
    253       1.45    jruoho 			 * algorithm" also used by powernow(4).
    254       1.45    jruoho 			 */
    255       1.32    jruoho 			if ((regs[3] & CPUID_APM_FID) == 0)
    256       1.32    jruoho 				break;
    257       1.32    jruoho 
    258       1.32    jruoho 			if ((regs[3] & CPUID_APM_VID) == 0)
    259       1.32    jruoho 				break;
    260       1.32    jruoho 
    261       1.32    jruoho 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    262       1.32    jruoho 			break;
    263       1.32    jruoho 
    264       1.17    jruoho 		case 0x10:
    265       1.17    jruoho 		case 0x11:
    266       1.66    jruoho 
    267       1.72    jruoho 			/*
    268       1.72    jruoho 			 * Disable C1E if present.
    269       1.72    jruoho 			 */
    270       1.66    jruoho 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    271       1.66    jruoho 				val |= ACPICPU_FLAG_C_C1E;
    272       1.66    jruoho 
    273       1.40  jmcneill 			/* FALLTHROUGH */
    274       1.40  jmcneill 
    275       1.69    jruoho 		case 0x12:
    276       1.40  jmcneill 		case 0x14: /* AMD Fusion */
    277       1.70    jruoho 		case 0x15: /* AMD Bulldozer */
    278        1.1    jruoho 
    279       1.42    jruoho 			/*
    280       1.75   msaitoh 			 * Like with Intel, detect MSR-based P-states,
    281       1.75   msaitoh 			 * and AMD's "turbo" (Core Performance Boost),
    282       1.75   msaitoh 			 * respectively.
    283       1.42    jruoho 			 */
    284       1.21    jruoho 			if ((regs[3] & CPUID_APM_HWP) != 0)
    285       1.17    jruoho 				val |= ACPICPU_FLAG_P_FFH;
    286       1.21    jruoho 
    287       1.21    jruoho 			if ((regs[3] & CPUID_APM_CPB) != 0)
    288       1.21    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    289       1.35    jruoho 
    290       1.42    jruoho 			/*
    291       1.42    jruoho 			 * Also check for APERF and MPERF,
    292       1.42    jruoho 			 * first available in the family 10h.
    293       1.42    jruoho 			 */
    294       1.42    jruoho 			if (cpuid_level >= 0x06) {
    295       1.42    jruoho 
    296       1.42    jruoho 				x86_cpuid(0x00000006, regs);
    297       1.42    jruoho 
    298       1.44    jruoho 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    299       1.53    jruoho 					val |= ACPICPU_FLAG_P_HWF;
    300       1.42    jruoho 			}
    301       1.42    jruoho 
    302       1.35    jruoho 			break;
    303       1.17    jruoho 		}
    304        1.1    jruoho 
    305        1.1    jruoho 		break;
    306        1.1    jruoho 	}
    307        1.1    jruoho 
    308       1.12    jruoho 	/*
    309       1.12    jruoho 	 * There are several erratums for PIIX4.
    310       1.12    jruoho 	 */
    311       1.43    jruoho 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    312       1.12    jruoho 		val |= ACPICPU_FLAG_PIIX4;
    313       1.12    jruoho 
    314        1.1    jruoho 	return val;
    315        1.1    jruoho }
    316        1.1    jruoho 
    317       1.12    jruoho static int
    318       1.58    dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    319       1.12    jruoho {
    320       1.12    jruoho 
    321       1.12    jruoho 	/*
    322       1.12    jruoho 	 * XXX: The pci_find_device(9) function only
    323       1.12    jruoho 	 *	deals with attached devices. Change this
    324       1.12    jruoho 	 *	to use something like pci_device_foreach().
    325       1.12    jruoho 	 */
    326       1.12    jruoho 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    327       1.12    jruoho 		return 0;
    328       1.12    jruoho 
    329       1.12    jruoho 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    330       1.12    jruoho 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    331       1.12    jruoho 		return 1;
    332       1.12    jruoho 
    333       1.12    jruoho 	return 0;
    334       1.12    jruoho }
    335       1.12    jruoho 
    336       1.35    jruoho void
    337       1.43    jruoho acpicpu_md_quirk_c1e(void)
    338       1.35    jruoho {
    339       1.35    jruoho 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    340       1.35    jruoho 	uint64_t val;
    341       1.35    jruoho 
    342       1.66    jruoho 	val = rdmsr(MSR_CMPHALT);
    343       1.35    jruoho 
    344       1.35    jruoho 	if ((val & c1e) != 0)
    345       1.35    jruoho 		wrmsr(MSR_CMPHALT, val & ~c1e);
    346       1.35    jruoho }
    347       1.35    jruoho 
    348        1.1    jruoho int
    349       1.43    jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    350        1.1    jruoho {
    351        1.1    jruoho 	const size_t size = sizeof(native_idle_text);
    352       1.31    jruoho 	struct acpicpu_cstate *cs;
    353       1.31    jruoho 	bool ipi = false;
    354       1.31    jruoho 	int i;
    355        1.1    jruoho 
    356       1.45    jruoho 	/*
    357       1.45    jruoho 	 * Save the cpu_idle(9) loop used by default.
    358       1.45    jruoho 	 */
    359        1.1    jruoho 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    360       1.31    jruoho 
    361       1.31    jruoho 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    362       1.31    jruoho 
    363       1.31    jruoho 		cs = &sc->sc_cstate[i];
    364       1.31    jruoho 
    365       1.31    jruoho 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    366       1.31    jruoho 			ipi = true;
    367       1.31    jruoho 			break;
    368       1.31    jruoho 		}
    369       1.31    jruoho 	}
    370       1.31    jruoho 
    371       1.31    jruoho 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    372        1.1    jruoho 
    373        1.1    jruoho 	return 0;
    374        1.1    jruoho }
    375        1.1    jruoho 
    376        1.1    jruoho int
    377       1.43    jruoho acpicpu_md_cstate_stop(void)
    378        1.1    jruoho {
    379       1.62    jruoho 	static char text[16];
    380       1.62    jruoho 	void (*func)(void);
    381       1.31    jruoho 	bool ipi;
    382        1.1    jruoho 
    383       1.62    jruoho 	x86_cpu_idle_get(&func, text, sizeof(text));
    384       1.62    jruoho 
    385       1.62    jruoho 	if (func == native_idle)
    386       1.62    jruoho 		return EALREADY;
    387       1.62    jruoho 
    388       1.31    jruoho 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    389       1.31    jruoho 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    390        1.1    jruoho 
    391        1.4    jruoho 	/*
    392        1.4    jruoho 	 * Run a cross-call to ensure that all CPUs are
    393        1.4    jruoho 	 * out from the ACPI idle-loop before detachment.
    394        1.4    jruoho 	 */
    395  1.78.16.2    martin 	xc_barrier(0);
    396        1.1    jruoho 
    397        1.1    jruoho 	return 0;
    398        1.1    jruoho }
    399        1.1    jruoho 
    400        1.3    jruoho /*
    401       1.64    jruoho  * Called with interrupts enabled.
    402        1.3    jruoho  */
    403  1.78.16.2    martin void __nocsan
    404       1.43    jruoho acpicpu_md_cstate_enter(int method, int state)
    405        1.1    jruoho {
    406        1.3    jruoho 	struct cpu_info *ci = curcpu();
    407        1.1    jruoho 
    408       1.64    jruoho 	KASSERT(ci->ci_ilevel == IPL_NONE);
    409       1.64    jruoho 
    410        1.1    jruoho 	switch (method) {
    411        1.1    jruoho 
    412        1.1    jruoho 	case ACPICPU_C_STATE_FFH:
    413        1.3    jruoho 
    414        1.3    jruoho 		x86_monitor(&ci->ci_want_resched, 0, 0);
    415        1.3    jruoho 
    416       1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    417        1.3    jruoho 			return;
    418        1.3    jruoho 
    419        1.1    jruoho 		x86_mwait((state - 1) << 4, 0);
    420        1.1    jruoho 		break;
    421        1.1    jruoho 
    422        1.1    jruoho 	case ACPICPU_C_STATE_HALT:
    423        1.3    jruoho 
    424       1.64    jruoho 		x86_disable_intr();
    425       1.64    jruoho 
    426       1.64    jruoho 		if (__predict_false(ci->ci_want_resched != 0)) {
    427       1.64    jruoho 			x86_enable_intr();
    428        1.3    jruoho 			return;
    429       1.64    jruoho 		}
    430        1.3    jruoho 
    431        1.1    jruoho 		x86_stihlt();
    432        1.1    jruoho 		break;
    433        1.1    jruoho 	}
    434        1.1    jruoho }
    435        1.5    jruoho 
    436        1.5    jruoho int
    437       1.41    jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    438        1.5    jruoho {
    439       1.62    jruoho 	uint64_t xc, val;
    440       1.62    jruoho 
    441       1.63    jruoho 	switch (cpu_vendor) {
    442       1.62    jruoho 
    443       1.63    jruoho 	case CPUVENDOR_IDT:
    444       1.63    jruoho 	case CPUVENDOR_INTEL:
    445       1.62    jruoho 
    446       1.63    jruoho 		/*
    447       1.63    jruoho 		 * Make sure EST is enabled.
    448       1.63    jruoho 		 */
    449       1.63    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    450       1.62    jruoho 
    451       1.62    jruoho 			val = rdmsr(MSR_MISC_ENABLE);
    452       1.62    jruoho 
    453       1.63    jruoho 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    454       1.63    jruoho 
    455       1.63    jruoho 				val |= MSR_MISC_ENABLE_EST;
    456       1.63    jruoho 				wrmsr(MSR_MISC_ENABLE, val);
    457       1.63    jruoho 				val = rdmsr(MSR_MISC_ENABLE);
    458       1.63    jruoho 
    459       1.63    jruoho 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    460       1.63    jruoho 					return ENOTTY;
    461       1.63    jruoho 			}
    462       1.62    jruoho 		}
    463       1.62    jruoho 	}
    464       1.57    jruoho 
    465       1.57    jruoho 	/*
    466       1.57    jruoho 	 * Reset the APERF and MPERF counters.
    467       1.57    jruoho 	 */
    468       1.57    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    469       1.57    jruoho 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    470       1.57    jruoho 		xc_wait(xc);
    471       1.57    jruoho 	}
    472       1.57    jruoho 
    473       1.19    jruoho 	return acpicpu_md_pstate_sysctl_init();
    474        1.5    jruoho }
    475        1.5    jruoho 
    476        1.5    jruoho int
    477        1.5    jruoho acpicpu_md_pstate_stop(void)
    478        1.5    jruoho {
    479       1.62    jruoho 
    480       1.62    jruoho 	if (acpicpu_log == NULL)
    481       1.62    jruoho 		return EALREADY;
    482       1.62    jruoho 
    483       1.62    jruoho 	sysctl_teardown(&acpicpu_log);
    484       1.62    jruoho 	acpicpu_log = NULL;
    485        1.5    jruoho 
    486        1.5    jruoho 	return 0;
    487        1.5    jruoho }
    488        1.5    jruoho 
    489        1.5    jruoho int
    490       1.55    jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    491        1.5    jruoho {
    492       1.56    jruoho 	struct cpu_info *ci = sc->sc_ci;
    493       1.15    jruoho 	struct acpicpu_pstate *ps, msr;
    494       1.18    jruoho 	uint32_t family, i = 0;
    495       1.13    jruoho 
    496       1.15    jruoho 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    497       1.13    jruoho 
    498        1.5    jruoho 	switch (cpu_vendor) {
    499        1.5    jruoho 
    500       1.17    jruoho 	case CPUVENDOR_IDT:
    501        1.5    jruoho 	case CPUVENDOR_INTEL:
    502       1.33    jruoho 
    503       1.33    jruoho 		/*
    504       1.33    jruoho 		 * If the so-called Turbo Boost is present,
    505       1.33    jruoho 		 * the P0-state is always the "turbo state".
    506       1.51    jruoho 		 * It is shown as the P1 frequency + 1 MHz.
    507       1.33    jruoho 		 *
    508       1.33    jruoho 		 * For discussion, see:
    509       1.33    jruoho 		 *
    510       1.33    jruoho 		 *	Intel Corporation: Intel Turbo Boost Technology
    511       1.33    jruoho 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    512       1.33    jruoho 		 *	Based Processors. White Paper, November 2008.
    513       1.33    jruoho 		 */
    514       1.55    jruoho 		if (sc->sc_pstate_count >= 2 &&
    515       1.52    jruoho 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    516       1.51    jruoho 
    517       1.51    jruoho 			ps = &sc->sc_pstate[0];
    518       1.51    jruoho 
    519       1.51    jruoho 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    520       1.51    jruoho 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    521       1.51    jruoho 		}
    522       1.33    jruoho 
    523       1.15    jruoho 		msr.ps_control_addr = MSR_PERF_CTL;
    524       1.15    jruoho 		msr.ps_control_mask = __BITS(0, 15);
    525       1.15    jruoho 
    526       1.15    jruoho 		msr.ps_status_addr  = MSR_PERF_STATUS;
    527       1.15    jruoho 		msr.ps_status_mask  = __BITS(0, 15);
    528       1.13    jruoho 		break;
    529       1.13    jruoho 
    530       1.13    jruoho 	case CPUVENDOR_AMD:
    531       1.13    jruoho 
    532       1.33    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    533       1.33    jruoho 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    534       1.33    jruoho 
    535       1.73   msaitoh 		family = CPUID_TO_FAMILY(ci->ci_signature);
    536       1.18    jruoho 
    537       1.18    jruoho 		switch (family) {
    538       1.17    jruoho 
    539       1.32    jruoho 		case 0x0f:
    540       1.32    jruoho 			msr.ps_control_addr = MSR_0FH_CONTROL;
    541       1.32    jruoho 			msr.ps_status_addr  = MSR_0FH_STATUS;
    542       1.32    jruoho 			break;
    543       1.32    jruoho 
    544       1.17    jruoho 		case 0x10:
    545       1.17    jruoho 		case 0x11:
    546       1.69    jruoho 		case 0x12:
    547       1.71    jruoho 		case 0x14:
    548       1.71    jruoho 		case 0x15:
    549       1.17    jruoho 			msr.ps_control_addr = MSR_10H_CONTROL;
    550       1.17    jruoho 			msr.ps_control_mask = __BITS(0, 2);
    551       1.17    jruoho 
    552       1.17    jruoho 			msr.ps_status_addr  = MSR_10H_STATUS;
    553       1.17    jruoho 			msr.ps_status_mask  = __BITS(0, 2);
    554       1.17    jruoho 			break;
    555       1.17    jruoho 
    556       1.17    jruoho 		default:
    557       1.55    jruoho 			/*
    558       1.55    jruoho 			 * If we have an unknown AMD CPU, rely on XPSS.
    559       1.55    jruoho 			 */
    560       1.17    jruoho 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    561       1.17    jruoho 				return EOPNOTSUPP;
    562       1.17    jruoho 		}
    563       1.13    jruoho 
    564       1.13    jruoho 		break;
    565       1.13    jruoho 
    566       1.13    jruoho 	default:
    567       1.13    jruoho 		return ENODEV;
    568       1.13    jruoho 	}
    569        1.5    jruoho 
    570       1.26    jruoho 	/*
    571       1.26    jruoho 	 * Fill the P-state structures with MSR addresses that are
    572       1.27    jruoho 	 * known to be correct. If we do not know the addresses,
    573       1.27    jruoho 	 * leave the values intact. If a vendor uses XPSS, we do
    574       1.39    jruoho 	 * not necessarily need to do anything to support new CPUs.
    575       1.26    jruoho 	 */
    576       1.15    jruoho 	while (i < sc->sc_pstate_count) {
    577       1.15    jruoho 
    578       1.15    jruoho 		ps = &sc->sc_pstate[i];
    579       1.15    jruoho 
    580       1.32    jruoho 		if (msr.ps_flags != 0)
    581       1.32    jruoho 			ps->ps_flags |= msr.ps_flags;
    582       1.32    jruoho 
    583       1.27    jruoho 		if (msr.ps_status_addr != 0)
    584       1.15    jruoho 			ps->ps_status_addr = msr.ps_status_addr;
    585       1.15    jruoho 
    586       1.27    jruoho 		if (msr.ps_status_mask != 0)
    587       1.15    jruoho 			ps->ps_status_mask = msr.ps_status_mask;
    588       1.15    jruoho 
    589       1.27    jruoho 		if (msr.ps_control_addr != 0)
    590       1.15    jruoho 			ps->ps_control_addr = msr.ps_control_addr;
    591       1.15    jruoho 
    592       1.27    jruoho 		if (msr.ps_control_mask != 0)
    593       1.15    jruoho 			ps->ps_control_mask = msr.ps_control_mask;
    594       1.15    jruoho 
    595       1.15    jruoho 		i++;
    596       1.15    jruoho 	}
    597       1.15    jruoho 
    598       1.15    jruoho 	return 0;
    599       1.15    jruoho }
    600       1.15    jruoho 
    601       1.55    jruoho /*
    602       1.55    jruoho  * Read the IA32_APERF and IA32_MPERF counters. The first
    603       1.55    jruoho  * increments at the rate of the fixed maximum frequency
    604       1.55    jruoho  * configured during the boot, whereas APERF counts at the
    605       1.55    jruoho  * rate of the actual frequency. Note that the MSRs must be
    606       1.55    jruoho  * read without delay, and that only the ratio between
    607       1.55    jruoho  * IA32_APERF and IA32_MPERF is architecturally defined.
    608       1.55    jruoho  *
    609       1.55    jruoho  * The function thus returns the percentage of the actual
    610       1.55    jruoho  * frequency in terms of the maximum frequency of the calling
    611       1.55    jruoho  * CPU since the last call. A value zero implies an error.
    612       1.55    jruoho  *
    613       1.55    jruoho  * For further details, refer to:
    614       1.55    jruoho  *
    615       1.55    jruoho  *	Intel Corporation: Intel 64 and IA-32 Architectures
    616       1.55    jruoho  *	Software Developer's Manual. Section 13.2, Volume 3A:
    617       1.55    jruoho  *	System Programming Guide, Part 1. July, 2008.
    618       1.55    jruoho  *
    619       1.55    jruoho  *	Advanced Micro Devices: BIOS and Kernel Developer's
    620       1.55    jruoho  *	Guide (BKDG) for AMD Family 10h Processors. Section
    621       1.55    jruoho  *	2.4.5, Revision 3.48, April 2010.
    622       1.55    jruoho  */
    623       1.41    jruoho uint8_t
    624       1.56    jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
    625       1.41    jruoho {
    626       1.55    jruoho 	struct acpicpu_softc *sc;
    627       1.41    jruoho 	uint64_t aperf, mperf;
    628       1.55    jruoho 	uint8_t rv = 0;
    629       1.55    jruoho 
    630       1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    631       1.41    jruoho 
    632       1.55    jruoho 	if (__predict_false(sc == NULL))
    633       1.50    jruoho 		return 0;
    634       1.50    jruoho 
    635       1.53    jruoho 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    636       1.50    jruoho 		return 0;
    637       1.41    jruoho 
    638       1.41    jruoho 	aperf = sc->sc_pstate_aperf;
    639       1.41    jruoho 	mperf = sc->sc_pstate_mperf;
    640       1.41    jruoho 
    641       1.56    jruoho 	x86_disable_intr();
    642       1.56    jruoho 
    643       1.50    jruoho 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    644       1.50    jruoho 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    645       1.41    jruoho 
    646       1.56    jruoho 	x86_enable_intr();
    647       1.56    jruoho 
    648       1.41    jruoho 	aperf = sc->sc_pstate_aperf - aperf;
    649       1.41    jruoho 	mperf = sc->sc_pstate_mperf - mperf;
    650       1.41    jruoho 
    651       1.41    jruoho 	if (__predict_true(mperf != 0))
    652       1.41    jruoho 		rv = (aperf * 100) / mperf;
    653       1.41    jruoho 
    654       1.41    jruoho 	return rv;
    655       1.41    jruoho }
    656       1.41    jruoho 
    657       1.41    jruoho static void
    658       1.56    jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    659       1.41    jruoho {
    660       1.56    jruoho 	struct cpu_info *ci = curcpu();
    661       1.55    jruoho 	struct acpicpu_softc *sc;
    662       1.41    jruoho 
    663       1.55    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
    664       1.41    jruoho 
    665       1.55    jruoho 	if (__predict_false(sc == NULL))
    666       1.55    jruoho 		return;
    667       1.46    jruoho 
    668       1.56    jruoho 	x86_disable_intr();
    669       1.46    jruoho 
    670       1.55    jruoho 	wrmsr(MSR_APERF, 0);
    671       1.55    jruoho 	wrmsr(MSR_MPERF, 0);
    672       1.41    jruoho 
    673       1.56    jruoho 	x86_enable_intr();
    674       1.56    jruoho 
    675       1.41    jruoho 	sc->sc_pstate_aperf = 0;
    676       1.41    jruoho 	sc->sc_pstate_mperf = 0;
    677       1.41    jruoho }
    678       1.41    jruoho 
    679       1.15    jruoho int
    680       1.15    jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    681       1.15    jruoho {
    682       1.15    jruoho 	struct acpicpu_pstate *ps = NULL;
    683       1.15    jruoho 	uint64_t val;
    684       1.15    jruoho 	uint32_t i;
    685       1.15    jruoho 
    686       1.32    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    687       1.32    jruoho 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    688       1.32    jruoho 
    689       1.49    jruoho 	/*
    690       1.49    jruoho 	 * Pick any P-state for the status address.
    691       1.68    jruoho 	 */
    692       1.15    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    693       1.15    jruoho 
    694       1.15    jruoho 		ps = &sc->sc_pstate[i];
    695       1.15    jruoho 
    696       1.32    jruoho 		if (__predict_true(ps->ps_freq != 0))
    697       1.15    jruoho 			break;
    698       1.15    jruoho 	}
    699       1.15    jruoho 
    700       1.15    jruoho 	if (__predict_false(ps == NULL))
    701       1.17    jruoho 		return ENODEV;
    702       1.15    jruoho 
    703       1.28    jruoho 	if (__predict_false(ps->ps_status_addr == 0))
    704       1.13    jruoho 		return EINVAL;
    705        1.5    jruoho 
    706       1.13    jruoho 	val = rdmsr(ps->ps_status_addr);
    707        1.5    jruoho 
    708       1.28    jruoho 	if (__predict_true(ps->ps_status_mask != 0))
    709       1.13    jruoho 		val = val & ps->ps_status_mask;
    710        1.5    jruoho 
    711       1.49    jruoho 	/*
    712       1.49    jruoho 	 * Search for the value from known P-states.
    713       1.49    jruoho 	 */
    714       1.13    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    715        1.5    jruoho 
    716       1.13    jruoho 		ps = &sc->sc_pstate[i];
    717        1.5    jruoho 
    718       1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    719       1.13    jruoho 			continue;
    720        1.5    jruoho 
    721       1.29    jruoho 		if (val == ps->ps_status) {
    722       1.13    jruoho 			*freq = ps->ps_freq;
    723       1.13    jruoho 			return 0;
    724       1.13    jruoho 		}
    725        1.5    jruoho 	}
    726        1.5    jruoho 
    727       1.60    jruoho 	/*
    728       1.60    jruoho 	 * If the value was not found, try APERF/MPERF.
    729       1.60    jruoho 	 * The state is P0 if the return value is 100 %.
    730       1.60    jruoho 	 */
    731       1.60    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    732       1.60    jruoho 
    733       1.68    jruoho 		KASSERT(sc->sc_pstate_count > 0);
    734       1.68    jruoho 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    735       1.68    jruoho 
    736       1.60    jruoho 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    737       1.60    jruoho 			*freq = sc->sc_pstate[0].ps_freq;
    738       1.60    jruoho 			return 0;
    739       1.60    jruoho 		}
    740       1.60    jruoho 	}
    741       1.60    jruoho 
    742       1.13    jruoho 	return EIO;
    743        1.5    jruoho }
    744        1.5    jruoho 
    745        1.5    jruoho int
    746        1.5    jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    747        1.5    jruoho {
    748       1.54    jruoho 	uint64_t val = 0;
    749        1.5    jruoho 
    750       1.37    jruoho 	if (__predict_false(ps->ps_control_addr == 0))
    751       1.37    jruoho 		return EINVAL;
    752       1.37    jruoho 
    753       1.32    jruoho 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    754       1.32    jruoho 		return acpicpu_md_pstate_fidvid_set(ps);
    755       1.32    jruoho 
    756       1.54    jruoho 	/*
    757       1.54    jruoho 	 * If the mask is set, do a read-modify-write.
    758       1.54    jruoho 	 */
    759       1.54    jruoho 	if (__predict_true(ps->ps_control_mask != 0)) {
    760       1.54    jruoho 		val = rdmsr(ps->ps_control_addr);
    761       1.54    jruoho 		val &= ~ps->ps_control_mask;
    762       1.54    jruoho 	}
    763        1.5    jruoho 
    764       1.54    jruoho 	val |= ps->ps_control;
    765       1.13    jruoho 
    766       1.49    jruoho 	wrmsr(ps->ps_control_addr, val);
    767       1.49    jruoho 	DELAY(ps->ps_latency);
    768       1.14    jruoho 
    769       1.49    jruoho 	return 0;
    770        1.5    jruoho }
    771       1.10    jruoho 
    772       1.32    jruoho static int
    773       1.32    jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    774       1.32    jruoho {
    775       1.32    jruoho 	struct acpicpu_pstate *ps;
    776       1.32    jruoho 	uint32_t fid, i, vid;
    777       1.32    jruoho 	uint32_t cfid, cvid;
    778       1.32    jruoho 	int rv;
    779       1.32    jruoho 
    780       1.32    jruoho 	/*
    781       1.32    jruoho 	 * AMD family 0Fh needs special treatment.
    782       1.32    jruoho 	 * While it wants to use ACPI, it does not
    783       1.32    jruoho 	 * comply with the ACPI specifications.
    784       1.32    jruoho 	 */
    785       1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    786       1.32    jruoho 
    787       1.32    jruoho 	if (rv != 0)
    788       1.32    jruoho 		return rv;
    789       1.32    jruoho 
    790       1.32    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    791       1.32    jruoho 
    792       1.32    jruoho 		ps = &sc->sc_pstate[i];
    793       1.32    jruoho 
    794       1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    795       1.32    jruoho 			continue;
    796       1.32    jruoho 
    797       1.32    jruoho 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    798       1.32    jruoho 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    799       1.32    jruoho 
    800       1.32    jruoho 		if (cfid == fid && cvid == vid) {
    801       1.32    jruoho 			*freq = ps->ps_freq;
    802       1.32    jruoho 			return 0;
    803       1.32    jruoho 		}
    804       1.32    jruoho 	}
    805       1.32    jruoho 
    806       1.32    jruoho 	return EIO;
    807       1.32    jruoho }
    808       1.32    jruoho 
    809       1.32    jruoho static int
    810       1.32    jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    811       1.32    jruoho {
    812       1.32    jruoho 	const uint64_t ctrl = ps->ps_control;
    813       1.32    jruoho 	uint32_t cfid, cvid, fid, i, irt;
    814       1.32    jruoho 	uint32_t pll, vco_cfid, vco_fid;
    815       1.32    jruoho 	uint32_t val, vid, vst;
    816       1.32    jruoho 	int rv;
    817       1.32    jruoho 
    818       1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    819       1.32    jruoho 
    820       1.32    jruoho 	if (rv != 0)
    821       1.32    jruoho 		return rv;
    822       1.32    jruoho 
    823       1.32    jruoho 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    824       1.32    jruoho 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    825       1.32    jruoho 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    826       1.32    jruoho 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    827       1.32    jruoho 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    828       1.32    jruoho 
    829       1.32    jruoho 	vst = vst * 20;
    830       1.32    jruoho 	pll = pll * 1000 / 5;
    831       1.32    jruoho 	irt = 10 * __BIT(irt);
    832       1.32    jruoho 
    833       1.32    jruoho 	/*
    834       1.32    jruoho 	 * Phase 1.
    835       1.32    jruoho 	 */
    836       1.32    jruoho 	while (cvid > vid) {
    837       1.32    jruoho 
    838       1.32    jruoho 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    839       1.32    jruoho 		val = (val > cvid) ? 0 : cvid - val;
    840       1.32    jruoho 
    841       1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    842       1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    843       1.32    jruoho 
    844       1.32    jruoho 		if (rv != 0)
    845       1.32    jruoho 			return rv;
    846       1.32    jruoho 	}
    847       1.32    jruoho 
    848       1.32    jruoho 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    849       1.32    jruoho 
    850       1.32    jruoho 	for (; i > 0 && cvid > 0; --i) {
    851       1.32    jruoho 
    852       1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    853       1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    854       1.32    jruoho 
    855       1.32    jruoho 		if (rv != 0)
    856       1.32    jruoho 			return rv;
    857       1.32    jruoho 	}
    858       1.32    jruoho 
    859       1.32    jruoho 	/*
    860       1.32    jruoho 	 * Phase 2.
    861       1.32    jruoho 	 */
    862       1.32    jruoho 	if (cfid != fid) {
    863       1.32    jruoho 
    864       1.32    jruoho 		vco_fid  = FID_TO_VCO_FID(fid);
    865       1.32    jruoho 		vco_cfid = FID_TO_VCO_FID(cfid);
    866       1.32    jruoho 
    867       1.32    jruoho 		while (abs(vco_fid - vco_cfid) > 2) {
    868       1.32    jruoho 
    869       1.32    jruoho 			if (fid <= cfid)
    870       1.32    jruoho 				val = cfid - 2;
    871       1.32    jruoho 			else {
    872       1.32    jruoho 				val = (cfid > 6) ? cfid + 2 :
    873       1.32    jruoho 				    FID_TO_VCO_FID(cfid) + 2;
    874       1.32    jruoho 			}
    875       1.32    jruoho 
    876       1.32    jruoho 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    877       1.32    jruoho 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    878       1.32    jruoho 
    879       1.32    jruoho 			if (rv != 0)
    880       1.32    jruoho 				return rv;
    881       1.32    jruoho 
    882       1.32    jruoho 			vco_cfid = FID_TO_VCO_FID(cfid);
    883       1.32    jruoho 		}
    884       1.32    jruoho 
    885       1.32    jruoho 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    886       1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    887       1.32    jruoho 
    888       1.32    jruoho 		if (rv != 0)
    889       1.32    jruoho 			return rv;
    890       1.32    jruoho 	}
    891       1.32    jruoho 
    892       1.32    jruoho 	/*
    893       1.32    jruoho 	 * Phase 3.
    894       1.32    jruoho 	 */
    895       1.32    jruoho 	if (cvid != vid) {
    896       1.32    jruoho 
    897       1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    898       1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    899       1.32    jruoho 
    900       1.32    jruoho 		if (rv != 0)
    901       1.32    jruoho 			return rv;
    902       1.32    jruoho 	}
    903       1.32    jruoho 
    904       1.32    jruoho 	return 0;
    905       1.32    jruoho }
    906       1.32    jruoho 
    907       1.32    jruoho static int
    908       1.32    jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    909       1.32    jruoho {
    910       1.32    jruoho 	int i = ACPICPU_P_STATE_RETRY * 100;
    911       1.32    jruoho 	uint64_t val;
    912       1.32    jruoho 
    913       1.32    jruoho 	do {
    914       1.32    jruoho 		val = rdmsr(MSR_0FH_STATUS);
    915       1.32    jruoho 
    916       1.32    jruoho 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    917       1.32    jruoho 
    918       1.32    jruoho 	if (i == 0)
    919       1.32    jruoho 		return EAGAIN;
    920       1.32    jruoho 
    921       1.32    jruoho 	if (cfid != NULL)
    922       1.32    jruoho 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    923       1.32    jruoho 
    924       1.32    jruoho 	if (cvid != NULL)
    925       1.32    jruoho 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    926       1.32    jruoho 
    927       1.32    jruoho 	return 0;
    928       1.32    jruoho }
    929       1.32    jruoho 
    930       1.32    jruoho static void
    931       1.32    jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
    932       1.32    jruoho     uint32_t vid, uint32_t cnt, uint32_t tmo)
    933       1.32    jruoho {
    934       1.49    jruoho 	uint64_t val = 0;
    935       1.32    jruoho 
    936       1.49    jruoho 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    937       1.49    jruoho 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    938       1.49    jruoho 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    939       1.49    jruoho 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    940       1.32    jruoho 
    941       1.49    jruoho 	wrmsr(MSR_0FH_CONTROL, val);
    942       1.32    jruoho 	DELAY(tmo);
    943       1.32    jruoho }
    944       1.32    jruoho 
    945       1.10    jruoho int
    946       1.10    jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    947       1.10    jruoho {
    948       1.10    jruoho 	struct acpicpu_tstate *ts;
    949       1.14    jruoho 	uint64_t val;
    950       1.10    jruoho 	uint32_t i;
    951       1.10    jruoho 
    952       1.14    jruoho 	val = rdmsr(MSR_THERM_CONTROL);
    953       1.10    jruoho 
    954       1.10    jruoho 	for (i = 0; i < sc->sc_tstate_count; i++) {
    955       1.10    jruoho 
    956       1.10    jruoho 		ts = &sc->sc_tstate[i];
    957       1.10    jruoho 
    958       1.10    jruoho 		if (ts->ts_percent == 0)
    959       1.10    jruoho 			continue;
    960       1.10    jruoho 
    961       1.29    jruoho 		if (val == ts->ts_status) {
    962       1.10    jruoho 			*percent = ts->ts_percent;
    963       1.10    jruoho 			return 0;
    964       1.10    jruoho 		}
    965       1.10    jruoho 	}
    966       1.10    jruoho 
    967       1.10    jruoho 	return EIO;
    968       1.10    jruoho }
    969       1.10    jruoho 
    970       1.10    jruoho int
    971       1.10    jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    972       1.10    jruoho {
    973       1.49    jruoho 	uint64_t val;
    974       1.49    jruoho 	uint8_t i;
    975       1.10    jruoho 
    976       1.49    jruoho 	val = ts->ts_control;
    977       1.74    jruoho 	val = val & __BITS(0, 4);
    978       1.10    jruoho 
    979       1.49    jruoho 	wrmsr(MSR_THERM_CONTROL, val);
    980       1.10    jruoho 
    981       1.30    jruoho 	if (ts->ts_status == 0) {
    982       1.30    jruoho 		DELAY(ts->ts_latency);
    983       1.10    jruoho 		return 0;
    984       1.30    jruoho 	}
    985       1.10    jruoho 
    986       1.10    jruoho 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    987       1.10    jruoho 
    988       1.14    jruoho 		val = rdmsr(MSR_THERM_CONTROL);
    989       1.10    jruoho 
    990       1.29    jruoho 		if (val == ts->ts_status)
    991       1.49    jruoho 			return 0;
    992       1.10    jruoho 
    993       1.10    jruoho 		DELAY(ts->ts_latency);
    994       1.10    jruoho 	}
    995       1.10    jruoho 
    996       1.49    jruoho 	return EAGAIN;
    997       1.10    jruoho }
    998       1.19    jruoho 
    999       1.19    jruoho /*
   1000       1.19    jruoho  * A kludge for backwards compatibility.
   1001       1.19    jruoho  */
   1002       1.19    jruoho static int
   1003       1.19    jruoho acpicpu_md_pstate_sysctl_init(void)
   1004       1.19    jruoho {
   1005       1.19    jruoho 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1006       1.19    jruoho 	const char *str;
   1007       1.19    jruoho 	int rv;
   1008       1.19    jruoho 
   1009       1.19    jruoho 	switch (cpu_vendor) {
   1010       1.19    jruoho 
   1011       1.19    jruoho 	case CPUVENDOR_IDT:
   1012       1.19    jruoho 	case CPUVENDOR_INTEL:
   1013       1.19    jruoho 		str = "est";
   1014       1.19    jruoho 		break;
   1015       1.19    jruoho 
   1016       1.19    jruoho 	case CPUVENDOR_AMD:
   1017       1.19    jruoho 		str = "powernow";
   1018       1.19    jruoho 		break;
   1019       1.19    jruoho 
   1020       1.19    jruoho 	default:
   1021       1.19    jruoho 		return ENODEV;
   1022       1.19    jruoho 	}
   1023       1.19    jruoho 
   1024       1.19    jruoho 
   1025       1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1026       1.19    jruoho 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1027       1.19    jruoho 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1028       1.19    jruoho 
   1029       1.19    jruoho 	if (rv != 0)
   1030       1.19    jruoho 		goto fail;
   1031       1.19    jruoho 
   1032       1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1033       1.19    jruoho 	    0, CTLTYPE_NODE, str, NULL,
   1034       1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1035       1.19    jruoho 
   1036       1.19    jruoho 	if (rv != 0)
   1037       1.19    jruoho 		goto fail;
   1038       1.19    jruoho 
   1039       1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1040       1.19    jruoho 	    0, CTLTYPE_NODE, "frequency", NULL,
   1041       1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1042       1.19    jruoho 
   1043       1.19    jruoho 	if (rv != 0)
   1044       1.19    jruoho 		goto fail;
   1045       1.19    jruoho 
   1046       1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1047       1.19    jruoho 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1048       1.19    jruoho 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1049       1.19    jruoho 
   1050       1.19    jruoho 	if (rv != 0)
   1051       1.19    jruoho 		goto fail;
   1052       1.19    jruoho 
   1053       1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1054       1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1055       1.19    jruoho 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1056       1.19    jruoho 
   1057       1.19    jruoho 	if (rv != 0)
   1058       1.19    jruoho 		goto fail;
   1059       1.19    jruoho 
   1060       1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1061       1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1062       1.19    jruoho 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1063       1.19    jruoho 
   1064       1.19    jruoho 	if (rv != 0)
   1065       1.19    jruoho 		goto fail;
   1066       1.19    jruoho 
   1067       1.19    jruoho 	return 0;
   1068       1.19    jruoho 
   1069       1.19    jruoho fail:
   1070       1.19    jruoho 	if (acpicpu_log != NULL) {
   1071       1.19    jruoho 		sysctl_teardown(&acpicpu_log);
   1072       1.19    jruoho 		acpicpu_log = NULL;
   1073       1.19    jruoho 	}
   1074       1.19    jruoho 
   1075       1.19    jruoho 	return rv;
   1076       1.19    jruoho }
   1077       1.19    jruoho 
   1078       1.19    jruoho static int
   1079       1.19    jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1080       1.19    jruoho {
   1081       1.19    jruoho 	struct sysctlnode node;
   1082       1.19    jruoho 	uint32_t freq;
   1083       1.19    jruoho 	int err;
   1084       1.19    jruoho 
   1085       1.68    jruoho 	freq = cpufreq_get(curcpu());
   1086       1.19    jruoho 
   1087       1.68    jruoho 	if (freq == 0)
   1088       1.68    jruoho 		return ENXIO;
   1089       1.19    jruoho 
   1090       1.19    jruoho 	node = *rnode;
   1091       1.19    jruoho 	node.sysctl_data = &freq;
   1092       1.19    jruoho 
   1093       1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1094       1.19    jruoho 
   1095       1.19    jruoho 	if (err != 0 || newp == NULL)
   1096       1.19    jruoho 		return err;
   1097       1.19    jruoho 
   1098       1.19    jruoho 	return 0;
   1099       1.19    jruoho }
   1100       1.19    jruoho 
   1101       1.19    jruoho static int
   1102       1.19    jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1103       1.19    jruoho {
   1104       1.19    jruoho 	struct sysctlnode node;
   1105       1.19    jruoho 	uint32_t freq;
   1106       1.19    jruoho 	int err;
   1107       1.19    jruoho 
   1108       1.68    jruoho 	freq = cpufreq_get(curcpu());
   1109       1.19    jruoho 
   1110       1.68    jruoho 	if (freq == 0)
   1111       1.68    jruoho 		return ENXIO;
   1112       1.19    jruoho 
   1113       1.19    jruoho 	node = *rnode;
   1114       1.19    jruoho 	node.sysctl_data = &freq;
   1115       1.19    jruoho 
   1116       1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1117       1.19    jruoho 
   1118       1.19    jruoho 	if (err != 0 || newp == NULL)
   1119       1.19    jruoho 		return err;
   1120       1.19    jruoho 
   1121       1.68    jruoho 	cpufreq_set_all(freq);
   1122       1.19    jruoho 
   1123       1.19    jruoho 	return 0;
   1124       1.19    jruoho }
   1125       1.19    jruoho 
   1126       1.19    jruoho static int
   1127       1.19    jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1128       1.19    jruoho {
   1129       1.19    jruoho 	struct cpu_info *ci = curcpu();
   1130       1.19    jruoho 	struct acpicpu_softc *sc;
   1131       1.19    jruoho 	struct sysctlnode node;
   1132       1.19    jruoho 	char buf[1024];
   1133       1.19    jruoho 	size_t len;
   1134       1.19    jruoho 	uint32_t i;
   1135       1.19    jruoho 	int err;
   1136       1.19    jruoho 
   1137       1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1138       1.19    jruoho 
   1139       1.19    jruoho 	if (sc == NULL)
   1140       1.19    jruoho 		return ENXIO;
   1141       1.19    jruoho 
   1142       1.19    jruoho 	(void)memset(&buf, 0, sizeof(buf));
   1143       1.19    jruoho 
   1144       1.19    jruoho 	mutex_enter(&sc->sc_mtx);
   1145       1.19    jruoho 
   1146       1.19    jruoho 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1147       1.19    jruoho 
   1148       1.19    jruoho 		if (sc->sc_pstate[i].ps_freq == 0)
   1149       1.19    jruoho 			continue;
   1150       1.19    jruoho 
   1151       1.77  christos 		if (len >= sizeof(buf))
   1152       1.77  christos 			break;
   1153       1.19    jruoho 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1154       1.19    jruoho 		    sc->sc_pstate[i].ps_freq,
   1155       1.19    jruoho 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1156       1.19    jruoho 	}
   1157       1.19    jruoho 
   1158       1.19    jruoho 	mutex_exit(&sc->sc_mtx);
   1159       1.19    jruoho 
   1160       1.19    jruoho 	node = *rnode;
   1161       1.19    jruoho 	node.sysctl_data = buf;
   1162       1.19    jruoho 
   1163       1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1164       1.19    jruoho 
   1165       1.19    jruoho 	if (err != 0 || newp == NULL)
   1166       1.19    jruoho 		return err;
   1167       1.19    jruoho 
   1168       1.19    jruoho 	return 0;
   1169       1.19    jruoho }
   1170       1.19    jruoho 
   1171