acpi_cpu_md.c revision 1.82 1 1.82 ad /* $NetBSD: acpi_cpu_md.c,v 1.82 2020/03/14 13:50:46 ad Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.82 ad __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.82 2020/03/14 13:50:46 ad Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.68 jruoho #include <sys/cpufreq.h>
35 1.48 jruoho #include <sys/device.h>
36 1.1 jruoho #include <sys/kcore.h>
37 1.5 jruoho #include <sys/sysctl.h>
38 1.4 jruoho #include <sys/xcall.h>
39 1.1 jruoho
40 1.1 jruoho #include <x86/cpu.h>
41 1.5 jruoho #include <x86/cpufunc.h>
42 1.5 jruoho #include <x86/cputypes.h>
43 1.1 jruoho #include <x86/cpuvar.h>
44 1.1 jruoho #include <x86/machdep.h>
45 1.75 msaitoh #include <x86/x86/tsc.h>
46 1.1 jruoho
47 1.1 jruoho #include <dev/acpi/acpica.h>
48 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
49 1.1 jruoho
50 1.12 jruoho #include <dev/pci/pcivar.h>
51 1.12 jruoho #include <dev/pci/pcidevs.h>
52 1.12 jruoho
53 1.38 jruoho #include <machine/acpi_machdep.h>
54 1.38 jruoho
55 1.35 jruoho /*
56 1.55 jruoho * Intel IA32_MISC_ENABLE.
57 1.55 jruoho */
58 1.55 jruoho #define MSR_MISC_ENABLE_EST __BIT(16)
59 1.55 jruoho #define MSR_MISC_ENABLE_TURBO __BIT(38)
60 1.55 jruoho
61 1.55 jruoho /*
62 1.35 jruoho * AMD C1E.
63 1.35 jruoho */
64 1.35 jruoho #define MSR_CMPHALT 0xc0010055
65 1.35 jruoho
66 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
67 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
68 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
69 1.33 jruoho
70 1.32 jruoho /*
71 1.70 jruoho * AMD families 10h, 11h, 12h, 14h, and 15h.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
74 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
75 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
76 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
77 1.22 jruoho
78 1.32 jruoho /*
79 1.32 jruoho * AMD family 0Fh.
80 1.32 jruoho */
81 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
82 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
83 1.17 jruoho
84 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87 1.32 jruoho
88 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92 1.32 jruoho
93 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95 1.32 jruoho
96 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103 1.32 jruoho
104 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105 1.17 jruoho
106 1.82 ad #ifdef ACPICPU_ENABLE_C3
107 1.5 jruoho static char native_idle_text[16];
108 1.5 jruoho void (*native_idle)(void) = NULL;
109 1.82 ad #endif
110 1.1 jruoho
111 1.58 dyoung static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
112 1.56 jruoho static void acpicpu_md_pstate_hwf_reset(void *, void *);
113 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
114 1.32 jruoho uint32_t *);
115 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
116 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
117 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
118 1.32 jruoho uint32_t, uint32_t);
119 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
120 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
121 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
122 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
123 1.5 jruoho
124 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
125 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
126 1.1 jruoho
127 1.48 jruoho struct cpu_info *
128 1.48 jruoho acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
129 1.48 jruoho {
130 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
131 1.48 jruoho
132 1.48 jruoho if (strcmp(cfaa->name, "frequency") != 0)
133 1.48 jruoho return NULL;
134 1.48 jruoho
135 1.48 jruoho return cfaa->ci;
136 1.48 jruoho }
137 1.48 jruoho
138 1.48 jruoho struct cpu_info *
139 1.48 jruoho acpicpu_md_attach(device_t parent, device_t self, void *aux)
140 1.48 jruoho {
141 1.48 jruoho struct cpufeature_attach_args *cfaa = aux;
142 1.48 jruoho
143 1.48 jruoho return cfaa->ci;
144 1.48 jruoho }
145 1.48 jruoho
146 1.1 jruoho uint32_t
147 1.43 jruoho acpicpu_md_flags(void)
148 1.1 jruoho {
149 1.1 jruoho struct cpu_info *ci = curcpu();
150 1.12 jruoho struct pci_attach_args pa;
151 1.18 jruoho uint32_t family, val = 0;
152 1.21 jruoho uint32_t regs[4];
153 1.66 jruoho uint64_t msr;
154 1.1 jruoho
155 1.38 jruoho if (acpi_md_ncpus() == 1)
156 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
157 1.1 jruoho
158 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
159 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
160 1.1 jruoho
161 1.39 jruoho /*
162 1.39 jruoho * By default, assume that the local APIC timer
163 1.39 jruoho * as well as TSC are stalled during C3 sleep.
164 1.39 jruoho */
165 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
166 1.22 jruoho
167 1.75 msaitoh /*
168 1.75 msaitoh * Detect whether TSC is invariant. If it is not, we keep the flag to
169 1.75 msaitoh * note that TSC will not run at constant rate. Depending on the CPU,
170 1.75 msaitoh * this may affect P- and T-state changes, but especially relevant
171 1.75 msaitoh * are C-states; with variant TSC, states larger than C1 may
172 1.75 msaitoh * completely stop the counter.
173 1.75 msaitoh */
174 1.75 msaitoh if (tsc_is_invariant())
175 1.75 msaitoh val &= ~ACPICPU_FLAG_C_TSC;
176 1.75 msaitoh
177 1.1 jruoho switch (cpu_vendor) {
178 1.1 jruoho
179 1.17 jruoho case CPUVENDOR_IDT:
180 1.22 jruoho
181 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
182 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
183 1.22 jruoho
184 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
185 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
186 1.22 jruoho
187 1.22 jruoho break;
188 1.22 jruoho
189 1.1 jruoho case CPUVENDOR_INTEL:
190 1.17 jruoho
191 1.39 jruoho /*
192 1.39 jruoho * Bus master control and arbitration should be
193 1.39 jruoho * available on all supported Intel CPUs (to be
194 1.39 jruoho * sure, this is double-checked later from the
195 1.39 jruoho * firmware data). These flags imply that it is
196 1.39 jruoho * not necessary to flush caches before C3 state.
197 1.39 jruoho */
198 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
199 1.22 jruoho
200 1.39 jruoho /*
201 1.39 jruoho * Check if we can use "native", MSR-based,
202 1.39 jruoho * access. If not, we have to resort to I/O.
203 1.39 jruoho */
204 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
205 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
206 1.5 jruoho
207 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
208 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
209 1.10 jruoho
210 1.22 jruoho /*
211 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
212 1.25 jruoho * Boost are available. Also see if we might have
213 1.25 jruoho * an invariant local APIC timer ("ARAT").
214 1.23 jruoho */
215 1.23 jruoho if (cpuid_level >= 0x06) {
216 1.23 jruoho
217 1.44 jruoho x86_cpuid(0x00000006, regs);
218 1.23 jruoho
219 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
220 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
221 1.23 jruoho
222 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
223 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
224 1.25 jruoho
225 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
226 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
227 1.78 nat
228 1.23 jruoho }
229 1.23 jruoho
230 1.17 jruoho break;
231 1.12 jruoho
232 1.17 jruoho case CPUVENDOR_AMD:
233 1.17 jruoho
234 1.32 jruoho x86_cpuid(0x80000000, regs);
235 1.32 jruoho
236 1.32 jruoho if (regs[0] < 0x80000007)
237 1.32 jruoho break;
238 1.32 jruoho
239 1.32 jruoho x86_cpuid(0x80000007, regs);
240 1.32 jruoho
241 1.73 msaitoh family = CPUID_TO_FAMILY(ci->ci_signature);
242 1.18 jruoho
243 1.32 jruoho switch (family) {
244 1.1 jruoho
245 1.22 jruoho case 0x0f:
246 1.32 jruoho
247 1.45 jruoho /*
248 1.72 jruoho * Disable C1E if present.
249 1.72 jruoho */
250 1.72 jruoho if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
251 1.72 jruoho val |= ACPICPU_FLAG_C_C1E;
252 1.72 jruoho
253 1.72 jruoho /*
254 1.45 jruoho * Evaluate support for the "FID/VID
255 1.45 jruoho * algorithm" also used by powernow(4).
256 1.45 jruoho */
257 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
258 1.32 jruoho break;
259 1.32 jruoho
260 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
261 1.32 jruoho break;
262 1.32 jruoho
263 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
264 1.32 jruoho break;
265 1.32 jruoho
266 1.17 jruoho case 0x10:
267 1.17 jruoho case 0x11:
268 1.66 jruoho
269 1.72 jruoho /*
270 1.72 jruoho * Disable C1E if present.
271 1.72 jruoho */
272 1.66 jruoho if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
273 1.66 jruoho val |= ACPICPU_FLAG_C_C1E;
274 1.66 jruoho
275 1.40 jmcneill /* FALLTHROUGH */
276 1.40 jmcneill
277 1.69 jruoho case 0x12:
278 1.40 jmcneill case 0x14: /* AMD Fusion */
279 1.70 jruoho case 0x15: /* AMD Bulldozer */
280 1.1 jruoho
281 1.42 jruoho /*
282 1.75 msaitoh * Like with Intel, detect MSR-based P-states,
283 1.75 msaitoh * and AMD's "turbo" (Core Performance Boost),
284 1.75 msaitoh * respectively.
285 1.42 jruoho */
286 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
287 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
288 1.21 jruoho
289 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
290 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
291 1.35 jruoho
292 1.42 jruoho /*
293 1.42 jruoho * Also check for APERF and MPERF,
294 1.42 jruoho * first available in the family 10h.
295 1.42 jruoho */
296 1.42 jruoho if (cpuid_level >= 0x06) {
297 1.42 jruoho
298 1.42 jruoho x86_cpuid(0x00000006, regs);
299 1.42 jruoho
300 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
301 1.53 jruoho val |= ACPICPU_FLAG_P_HWF;
302 1.42 jruoho }
303 1.42 jruoho
304 1.35 jruoho break;
305 1.17 jruoho }
306 1.1 jruoho
307 1.1 jruoho break;
308 1.1 jruoho }
309 1.1 jruoho
310 1.12 jruoho /*
311 1.12 jruoho * There are several erratums for PIIX4.
312 1.12 jruoho */
313 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
314 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
315 1.12 jruoho
316 1.1 jruoho return val;
317 1.1 jruoho }
318 1.1 jruoho
319 1.12 jruoho static int
320 1.58 dyoung acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
321 1.12 jruoho {
322 1.12 jruoho
323 1.12 jruoho /*
324 1.12 jruoho * XXX: The pci_find_device(9) function only
325 1.12 jruoho * deals with attached devices. Change this
326 1.12 jruoho * to use something like pci_device_foreach().
327 1.12 jruoho */
328 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
329 1.12 jruoho return 0;
330 1.12 jruoho
331 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
332 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
333 1.12 jruoho return 1;
334 1.12 jruoho
335 1.12 jruoho return 0;
336 1.12 jruoho }
337 1.12 jruoho
338 1.35 jruoho void
339 1.43 jruoho acpicpu_md_quirk_c1e(void)
340 1.35 jruoho {
341 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
342 1.35 jruoho uint64_t val;
343 1.35 jruoho
344 1.66 jruoho val = rdmsr(MSR_CMPHALT);
345 1.35 jruoho
346 1.35 jruoho if ((val & c1e) != 0)
347 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
348 1.35 jruoho }
349 1.35 jruoho
350 1.1 jruoho int
351 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
352 1.1 jruoho {
353 1.82 ad #ifdef ACPICPU_ENABLE_C3
354 1.82 ad /*
355 1.82 ad * XXX There are performance problems with the ACPI idle loop, and
356 1.82 ad * it does not enter deep sleep. Once those are resolved it'll be
357 1.82 ad * re-enabled.
358 1.82 ad */
359 1.1 jruoho const size_t size = sizeof(native_idle_text);
360 1.31 jruoho struct acpicpu_cstate *cs;
361 1.31 jruoho bool ipi = false;
362 1.31 jruoho int i;
363 1.1 jruoho
364 1.45 jruoho /*
365 1.45 jruoho * Save the cpu_idle(9) loop used by default.
366 1.45 jruoho */
367 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
368 1.31 jruoho
369 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
370 1.31 jruoho
371 1.31 jruoho cs = &sc->sc_cstate[i];
372 1.31 jruoho
373 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
374 1.31 jruoho ipi = true;
375 1.31 jruoho break;
376 1.31 jruoho }
377 1.31 jruoho }
378 1.31 jruoho
379 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
380 1.82 ad #endif /* ACPICPU_ENABLE_C3 */
381 1.1 jruoho
382 1.1 jruoho return 0;
383 1.1 jruoho }
384 1.1 jruoho
385 1.1 jruoho int
386 1.43 jruoho acpicpu_md_cstate_stop(void)
387 1.1 jruoho {
388 1.82 ad #ifdef ACPICPU_ENABLE_C3
389 1.82 ad /*
390 1.82 ad * XXX There are performance problems with the ACPI idle loop, and
391 1.82 ad * it does not enter deep sleep. Once those are resolved it'll be
392 1.82 ad * re-enabled.
393 1.82 ad */
394 1.62 jruoho static char text[16];
395 1.62 jruoho void (*func)(void);
396 1.31 jruoho bool ipi;
397 1.1 jruoho
398 1.62 jruoho x86_cpu_idle_get(&func, text, sizeof(text));
399 1.62 jruoho
400 1.62 jruoho if (func == native_idle)
401 1.62 jruoho return EALREADY;
402 1.62 jruoho
403 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
404 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
405 1.1 jruoho
406 1.4 jruoho /*
407 1.4 jruoho * Run a cross-call to ensure that all CPUs are
408 1.4 jruoho * out from the ACPI idle-loop before detachment.
409 1.4 jruoho */
410 1.80 uwe xc_barrier(0);
411 1.82 ad #endif /* ACPICPU_ENABLE_C3 */
412 1.1 jruoho
413 1.1 jruoho return 0;
414 1.1 jruoho }
415 1.1 jruoho
416 1.3 jruoho /*
417 1.64 jruoho * Called with interrupts enabled.
418 1.3 jruoho */
419 1.81 maxv void __nocsan
420 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
421 1.1 jruoho {
422 1.3 jruoho struct cpu_info *ci = curcpu();
423 1.1 jruoho
424 1.64 jruoho KASSERT(ci->ci_ilevel == IPL_NONE);
425 1.64 jruoho
426 1.1 jruoho switch (method) {
427 1.1 jruoho
428 1.1 jruoho case ACPICPU_C_STATE_FFH:
429 1.3 jruoho
430 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
431 1.3 jruoho
432 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
433 1.3 jruoho return;
434 1.3 jruoho
435 1.1 jruoho x86_mwait((state - 1) << 4, 0);
436 1.1 jruoho break;
437 1.1 jruoho
438 1.1 jruoho case ACPICPU_C_STATE_HALT:
439 1.3 jruoho
440 1.64 jruoho x86_disable_intr();
441 1.64 jruoho
442 1.64 jruoho if (__predict_false(ci->ci_want_resched != 0)) {
443 1.64 jruoho x86_enable_intr();
444 1.3 jruoho return;
445 1.64 jruoho }
446 1.3 jruoho
447 1.1 jruoho x86_stihlt();
448 1.1 jruoho break;
449 1.1 jruoho }
450 1.1 jruoho }
451 1.5 jruoho
452 1.5 jruoho int
453 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
454 1.5 jruoho {
455 1.62 jruoho uint64_t xc, val;
456 1.62 jruoho
457 1.63 jruoho switch (cpu_vendor) {
458 1.62 jruoho
459 1.63 jruoho case CPUVENDOR_IDT:
460 1.63 jruoho case CPUVENDOR_INTEL:
461 1.62 jruoho
462 1.63 jruoho /*
463 1.63 jruoho * Make sure EST is enabled.
464 1.63 jruoho */
465 1.63 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
466 1.62 jruoho
467 1.62 jruoho val = rdmsr(MSR_MISC_ENABLE);
468 1.62 jruoho
469 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0) {
470 1.63 jruoho
471 1.63 jruoho val |= MSR_MISC_ENABLE_EST;
472 1.63 jruoho wrmsr(MSR_MISC_ENABLE, val);
473 1.63 jruoho val = rdmsr(MSR_MISC_ENABLE);
474 1.63 jruoho
475 1.63 jruoho if ((val & MSR_MISC_ENABLE_EST) == 0)
476 1.63 jruoho return ENOTTY;
477 1.63 jruoho }
478 1.62 jruoho }
479 1.62 jruoho }
480 1.57 jruoho
481 1.57 jruoho /*
482 1.57 jruoho * Reset the APERF and MPERF counters.
483 1.57 jruoho */
484 1.57 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
485 1.57 jruoho xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
486 1.57 jruoho xc_wait(xc);
487 1.57 jruoho }
488 1.57 jruoho
489 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
490 1.5 jruoho }
491 1.5 jruoho
492 1.5 jruoho int
493 1.5 jruoho acpicpu_md_pstate_stop(void)
494 1.5 jruoho {
495 1.62 jruoho
496 1.62 jruoho if (acpicpu_log == NULL)
497 1.62 jruoho return EALREADY;
498 1.62 jruoho
499 1.62 jruoho sysctl_teardown(&acpicpu_log);
500 1.62 jruoho acpicpu_log = NULL;
501 1.5 jruoho
502 1.5 jruoho return 0;
503 1.5 jruoho }
504 1.5 jruoho
505 1.5 jruoho int
506 1.55 jruoho acpicpu_md_pstate_init(struct acpicpu_softc *sc)
507 1.5 jruoho {
508 1.56 jruoho struct cpu_info *ci = sc->sc_ci;
509 1.15 jruoho struct acpicpu_pstate *ps, msr;
510 1.18 jruoho uint32_t family, i = 0;
511 1.13 jruoho
512 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
513 1.13 jruoho
514 1.5 jruoho switch (cpu_vendor) {
515 1.5 jruoho
516 1.17 jruoho case CPUVENDOR_IDT:
517 1.5 jruoho case CPUVENDOR_INTEL:
518 1.33 jruoho
519 1.33 jruoho /*
520 1.33 jruoho * If the so-called Turbo Boost is present,
521 1.33 jruoho * the P0-state is always the "turbo state".
522 1.51 jruoho * It is shown as the P1 frequency + 1 MHz.
523 1.33 jruoho *
524 1.33 jruoho * For discussion, see:
525 1.33 jruoho *
526 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
527 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
528 1.33 jruoho * Based Processors. White Paper, November 2008.
529 1.33 jruoho */
530 1.55 jruoho if (sc->sc_pstate_count >= 2 &&
531 1.52 jruoho (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
532 1.51 jruoho
533 1.51 jruoho ps = &sc->sc_pstate[0];
534 1.51 jruoho
535 1.51 jruoho if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
536 1.51 jruoho ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
537 1.51 jruoho }
538 1.33 jruoho
539 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
540 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
541 1.15 jruoho
542 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
543 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
544 1.13 jruoho break;
545 1.13 jruoho
546 1.13 jruoho case CPUVENDOR_AMD:
547 1.13 jruoho
548 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
549 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
550 1.33 jruoho
551 1.73 msaitoh family = CPUID_TO_FAMILY(ci->ci_signature);
552 1.18 jruoho
553 1.18 jruoho switch (family) {
554 1.17 jruoho
555 1.32 jruoho case 0x0f:
556 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
557 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
558 1.32 jruoho break;
559 1.32 jruoho
560 1.17 jruoho case 0x10:
561 1.17 jruoho case 0x11:
562 1.69 jruoho case 0x12:
563 1.71 jruoho case 0x14:
564 1.71 jruoho case 0x15:
565 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
566 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
567 1.17 jruoho
568 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
569 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
570 1.17 jruoho break;
571 1.17 jruoho
572 1.17 jruoho default:
573 1.55 jruoho /*
574 1.55 jruoho * If we have an unknown AMD CPU, rely on XPSS.
575 1.55 jruoho */
576 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
577 1.17 jruoho return EOPNOTSUPP;
578 1.17 jruoho }
579 1.13 jruoho
580 1.13 jruoho break;
581 1.13 jruoho
582 1.13 jruoho default:
583 1.13 jruoho return ENODEV;
584 1.13 jruoho }
585 1.5 jruoho
586 1.26 jruoho /*
587 1.26 jruoho * Fill the P-state structures with MSR addresses that are
588 1.27 jruoho * known to be correct. If we do not know the addresses,
589 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
590 1.39 jruoho * not necessarily need to do anything to support new CPUs.
591 1.26 jruoho */
592 1.15 jruoho while (i < sc->sc_pstate_count) {
593 1.15 jruoho
594 1.15 jruoho ps = &sc->sc_pstate[i];
595 1.15 jruoho
596 1.32 jruoho if (msr.ps_flags != 0)
597 1.32 jruoho ps->ps_flags |= msr.ps_flags;
598 1.32 jruoho
599 1.27 jruoho if (msr.ps_status_addr != 0)
600 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
601 1.15 jruoho
602 1.27 jruoho if (msr.ps_status_mask != 0)
603 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
604 1.15 jruoho
605 1.27 jruoho if (msr.ps_control_addr != 0)
606 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
607 1.15 jruoho
608 1.27 jruoho if (msr.ps_control_mask != 0)
609 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
610 1.15 jruoho
611 1.15 jruoho i++;
612 1.15 jruoho }
613 1.15 jruoho
614 1.15 jruoho return 0;
615 1.15 jruoho }
616 1.15 jruoho
617 1.55 jruoho /*
618 1.55 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
619 1.55 jruoho * increments at the rate of the fixed maximum frequency
620 1.55 jruoho * configured during the boot, whereas APERF counts at the
621 1.55 jruoho * rate of the actual frequency. Note that the MSRs must be
622 1.55 jruoho * read without delay, and that only the ratio between
623 1.55 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
624 1.55 jruoho *
625 1.55 jruoho * The function thus returns the percentage of the actual
626 1.55 jruoho * frequency in terms of the maximum frequency of the calling
627 1.55 jruoho * CPU since the last call. A value zero implies an error.
628 1.55 jruoho *
629 1.55 jruoho * For further details, refer to:
630 1.55 jruoho *
631 1.55 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
632 1.55 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
633 1.55 jruoho * System Programming Guide, Part 1. July, 2008.
634 1.55 jruoho *
635 1.55 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
636 1.55 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
637 1.55 jruoho * 2.4.5, Revision 3.48, April 2010.
638 1.55 jruoho */
639 1.41 jruoho uint8_t
640 1.56 jruoho acpicpu_md_pstate_hwf(struct cpu_info *ci)
641 1.41 jruoho {
642 1.55 jruoho struct acpicpu_softc *sc;
643 1.41 jruoho uint64_t aperf, mperf;
644 1.55 jruoho uint8_t rv = 0;
645 1.55 jruoho
646 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
647 1.41 jruoho
648 1.55 jruoho if (__predict_false(sc == NULL))
649 1.50 jruoho return 0;
650 1.50 jruoho
651 1.53 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
652 1.50 jruoho return 0;
653 1.41 jruoho
654 1.41 jruoho aperf = sc->sc_pstate_aperf;
655 1.41 jruoho mperf = sc->sc_pstate_mperf;
656 1.41 jruoho
657 1.56 jruoho x86_disable_intr();
658 1.56 jruoho
659 1.50 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
660 1.50 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
661 1.41 jruoho
662 1.56 jruoho x86_enable_intr();
663 1.56 jruoho
664 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
665 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
666 1.41 jruoho
667 1.41 jruoho if (__predict_true(mperf != 0))
668 1.41 jruoho rv = (aperf * 100) / mperf;
669 1.41 jruoho
670 1.41 jruoho return rv;
671 1.41 jruoho }
672 1.41 jruoho
673 1.41 jruoho static void
674 1.56 jruoho acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
675 1.41 jruoho {
676 1.56 jruoho struct cpu_info *ci = curcpu();
677 1.55 jruoho struct acpicpu_softc *sc;
678 1.41 jruoho
679 1.55 jruoho sc = acpicpu_sc[ci->ci_acpiid];
680 1.41 jruoho
681 1.55 jruoho if (__predict_false(sc == NULL))
682 1.55 jruoho return;
683 1.46 jruoho
684 1.56 jruoho x86_disable_intr();
685 1.46 jruoho
686 1.55 jruoho wrmsr(MSR_APERF, 0);
687 1.55 jruoho wrmsr(MSR_MPERF, 0);
688 1.41 jruoho
689 1.56 jruoho x86_enable_intr();
690 1.56 jruoho
691 1.41 jruoho sc->sc_pstate_aperf = 0;
692 1.41 jruoho sc->sc_pstate_mperf = 0;
693 1.41 jruoho }
694 1.41 jruoho
695 1.15 jruoho int
696 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
697 1.15 jruoho {
698 1.15 jruoho struct acpicpu_pstate *ps = NULL;
699 1.15 jruoho uint64_t val;
700 1.15 jruoho uint32_t i;
701 1.15 jruoho
702 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
703 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
704 1.32 jruoho
705 1.49 jruoho /*
706 1.49 jruoho * Pick any P-state for the status address.
707 1.68 jruoho */
708 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
709 1.15 jruoho
710 1.15 jruoho ps = &sc->sc_pstate[i];
711 1.15 jruoho
712 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
713 1.15 jruoho break;
714 1.15 jruoho }
715 1.15 jruoho
716 1.15 jruoho if (__predict_false(ps == NULL))
717 1.17 jruoho return ENODEV;
718 1.15 jruoho
719 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
720 1.13 jruoho return EINVAL;
721 1.5 jruoho
722 1.13 jruoho val = rdmsr(ps->ps_status_addr);
723 1.5 jruoho
724 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
725 1.13 jruoho val = val & ps->ps_status_mask;
726 1.5 jruoho
727 1.49 jruoho /*
728 1.49 jruoho * Search for the value from known P-states.
729 1.49 jruoho */
730 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
731 1.5 jruoho
732 1.13 jruoho ps = &sc->sc_pstate[i];
733 1.5 jruoho
734 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
735 1.13 jruoho continue;
736 1.5 jruoho
737 1.29 jruoho if (val == ps->ps_status) {
738 1.13 jruoho *freq = ps->ps_freq;
739 1.13 jruoho return 0;
740 1.13 jruoho }
741 1.5 jruoho }
742 1.5 jruoho
743 1.60 jruoho /*
744 1.60 jruoho * If the value was not found, try APERF/MPERF.
745 1.60 jruoho * The state is P0 if the return value is 100 %.
746 1.60 jruoho */
747 1.60 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
748 1.60 jruoho
749 1.68 jruoho KASSERT(sc->sc_pstate_count > 0);
750 1.68 jruoho KASSERT(sc->sc_pstate[0].ps_freq != 0);
751 1.68 jruoho
752 1.60 jruoho if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
753 1.60 jruoho *freq = sc->sc_pstate[0].ps_freq;
754 1.60 jruoho return 0;
755 1.60 jruoho }
756 1.60 jruoho }
757 1.60 jruoho
758 1.13 jruoho return EIO;
759 1.5 jruoho }
760 1.5 jruoho
761 1.5 jruoho int
762 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
763 1.5 jruoho {
764 1.54 jruoho uint64_t val = 0;
765 1.5 jruoho
766 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
767 1.37 jruoho return EINVAL;
768 1.37 jruoho
769 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
770 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
771 1.32 jruoho
772 1.54 jruoho /*
773 1.54 jruoho * If the mask is set, do a read-modify-write.
774 1.54 jruoho */
775 1.54 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
776 1.54 jruoho val = rdmsr(ps->ps_control_addr);
777 1.54 jruoho val &= ~ps->ps_control_mask;
778 1.54 jruoho }
779 1.5 jruoho
780 1.54 jruoho val |= ps->ps_control;
781 1.13 jruoho
782 1.49 jruoho wrmsr(ps->ps_control_addr, val);
783 1.49 jruoho DELAY(ps->ps_latency);
784 1.14 jruoho
785 1.49 jruoho return 0;
786 1.5 jruoho }
787 1.10 jruoho
788 1.32 jruoho static int
789 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
790 1.32 jruoho {
791 1.32 jruoho struct acpicpu_pstate *ps;
792 1.32 jruoho uint32_t fid, i, vid;
793 1.32 jruoho uint32_t cfid, cvid;
794 1.32 jruoho int rv;
795 1.32 jruoho
796 1.32 jruoho /*
797 1.32 jruoho * AMD family 0Fh needs special treatment.
798 1.32 jruoho * While it wants to use ACPI, it does not
799 1.32 jruoho * comply with the ACPI specifications.
800 1.32 jruoho */
801 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
802 1.32 jruoho
803 1.32 jruoho if (rv != 0)
804 1.32 jruoho return rv;
805 1.32 jruoho
806 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
807 1.32 jruoho
808 1.32 jruoho ps = &sc->sc_pstate[i];
809 1.32 jruoho
810 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
811 1.32 jruoho continue;
812 1.32 jruoho
813 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
814 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
815 1.32 jruoho
816 1.32 jruoho if (cfid == fid && cvid == vid) {
817 1.32 jruoho *freq = ps->ps_freq;
818 1.32 jruoho return 0;
819 1.32 jruoho }
820 1.32 jruoho }
821 1.32 jruoho
822 1.32 jruoho return EIO;
823 1.32 jruoho }
824 1.32 jruoho
825 1.32 jruoho static int
826 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
827 1.32 jruoho {
828 1.32 jruoho const uint64_t ctrl = ps->ps_control;
829 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
830 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
831 1.32 jruoho uint32_t val, vid, vst;
832 1.32 jruoho int rv;
833 1.32 jruoho
834 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
835 1.32 jruoho
836 1.32 jruoho if (rv != 0)
837 1.32 jruoho return rv;
838 1.32 jruoho
839 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
840 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
841 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
842 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
843 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
844 1.32 jruoho
845 1.32 jruoho vst = vst * 20;
846 1.32 jruoho pll = pll * 1000 / 5;
847 1.32 jruoho irt = 10 * __BIT(irt);
848 1.32 jruoho
849 1.32 jruoho /*
850 1.32 jruoho * Phase 1.
851 1.32 jruoho */
852 1.32 jruoho while (cvid > vid) {
853 1.32 jruoho
854 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
855 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
856 1.32 jruoho
857 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
858 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
859 1.32 jruoho
860 1.32 jruoho if (rv != 0)
861 1.32 jruoho return rv;
862 1.32 jruoho }
863 1.32 jruoho
864 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
865 1.32 jruoho
866 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
867 1.32 jruoho
868 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
869 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
870 1.32 jruoho
871 1.32 jruoho if (rv != 0)
872 1.32 jruoho return rv;
873 1.32 jruoho }
874 1.32 jruoho
875 1.32 jruoho /*
876 1.32 jruoho * Phase 2.
877 1.32 jruoho */
878 1.32 jruoho if (cfid != fid) {
879 1.32 jruoho
880 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
881 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
882 1.32 jruoho
883 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
884 1.32 jruoho
885 1.32 jruoho if (fid <= cfid)
886 1.32 jruoho val = cfid - 2;
887 1.32 jruoho else {
888 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
889 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
890 1.32 jruoho }
891 1.32 jruoho
892 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
893 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
894 1.32 jruoho
895 1.32 jruoho if (rv != 0)
896 1.32 jruoho return rv;
897 1.32 jruoho
898 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
899 1.32 jruoho }
900 1.32 jruoho
901 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
902 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
903 1.32 jruoho
904 1.32 jruoho if (rv != 0)
905 1.32 jruoho return rv;
906 1.32 jruoho }
907 1.32 jruoho
908 1.32 jruoho /*
909 1.32 jruoho * Phase 3.
910 1.32 jruoho */
911 1.32 jruoho if (cvid != vid) {
912 1.32 jruoho
913 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
914 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
915 1.32 jruoho
916 1.32 jruoho if (rv != 0)
917 1.32 jruoho return rv;
918 1.32 jruoho }
919 1.32 jruoho
920 1.32 jruoho return 0;
921 1.32 jruoho }
922 1.32 jruoho
923 1.32 jruoho static int
924 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
925 1.32 jruoho {
926 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
927 1.32 jruoho uint64_t val;
928 1.32 jruoho
929 1.32 jruoho do {
930 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
931 1.32 jruoho
932 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
933 1.32 jruoho
934 1.32 jruoho if (i == 0)
935 1.32 jruoho return EAGAIN;
936 1.32 jruoho
937 1.32 jruoho if (cfid != NULL)
938 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
939 1.32 jruoho
940 1.32 jruoho if (cvid != NULL)
941 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
942 1.32 jruoho
943 1.32 jruoho return 0;
944 1.32 jruoho }
945 1.32 jruoho
946 1.32 jruoho static void
947 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
948 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
949 1.32 jruoho {
950 1.49 jruoho uint64_t val = 0;
951 1.32 jruoho
952 1.49 jruoho val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
953 1.49 jruoho val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
954 1.49 jruoho val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
955 1.49 jruoho val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
956 1.32 jruoho
957 1.49 jruoho wrmsr(MSR_0FH_CONTROL, val);
958 1.32 jruoho DELAY(tmo);
959 1.32 jruoho }
960 1.32 jruoho
961 1.10 jruoho int
962 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
963 1.10 jruoho {
964 1.10 jruoho struct acpicpu_tstate *ts;
965 1.14 jruoho uint64_t val;
966 1.10 jruoho uint32_t i;
967 1.10 jruoho
968 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
969 1.10 jruoho
970 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
971 1.10 jruoho
972 1.10 jruoho ts = &sc->sc_tstate[i];
973 1.10 jruoho
974 1.10 jruoho if (ts->ts_percent == 0)
975 1.10 jruoho continue;
976 1.10 jruoho
977 1.29 jruoho if (val == ts->ts_status) {
978 1.10 jruoho *percent = ts->ts_percent;
979 1.10 jruoho return 0;
980 1.10 jruoho }
981 1.10 jruoho }
982 1.10 jruoho
983 1.10 jruoho return EIO;
984 1.10 jruoho }
985 1.10 jruoho
986 1.10 jruoho int
987 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
988 1.10 jruoho {
989 1.49 jruoho uint64_t val;
990 1.49 jruoho uint8_t i;
991 1.10 jruoho
992 1.49 jruoho val = ts->ts_control;
993 1.74 jruoho val = val & __BITS(0, 4);
994 1.10 jruoho
995 1.49 jruoho wrmsr(MSR_THERM_CONTROL, val);
996 1.10 jruoho
997 1.30 jruoho if (ts->ts_status == 0) {
998 1.30 jruoho DELAY(ts->ts_latency);
999 1.10 jruoho return 0;
1000 1.30 jruoho }
1001 1.10 jruoho
1002 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1003 1.10 jruoho
1004 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1005 1.10 jruoho
1006 1.29 jruoho if (val == ts->ts_status)
1007 1.49 jruoho return 0;
1008 1.10 jruoho
1009 1.10 jruoho DELAY(ts->ts_latency);
1010 1.10 jruoho }
1011 1.10 jruoho
1012 1.49 jruoho return EAGAIN;
1013 1.10 jruoho }
1014 1.19 jruoho
1015 1.19 jruoho /*
1016 1.19 jruoho * A kludge for backwards compatibility.
1017 1.19 jruoho */
1018 1.19 jruoho static int
1019 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1020 1.19 jruoho {
1021 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1022 1.19 jruoho const char *str;
1023 1.19 jruoho int rv;
1024 1.19 jruoho
1025 1.19 jruoho switch (cpu_vendor) {
1026 1.19 jruoho
1027 1.19 jruoho case CPUVENDOR_IDT:
1028 1.19 jruoho case CPUVENDOR_INTEL:
1029 1.19 jruoho str = "est";
1030 1.19 jruoho break;
1031 1.19 jruoho
1032 1.19 jruoho case CPUVENDOR_AMD:
1033 1.19 jruoho str = "powernow";
1034 1.19 jruoho break;
1035 1.19 jruoho
1036 1.19 jruoho default:
1037 1.19 jruoho return ENODEV;
1038 1.19 jruoho }
1039 1.19 jruoho
1040 1.19 jruoho
1041 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1042 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1043 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1044 1.19 jruoho
1045 1.19 jruoho if (rv != 0)
1046 1.19 jruoho goto fail;
1047 1.19 jruoho
1048 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1049 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1050 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1051 1.19 jruoho
1052 1.19 jruoho if (rv != 0)
1053 1.19 jruoho goto fail;
1054 1.19 jruoho
1055 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1056 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1057 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1058 1.19 jruoho
1059 1.19 jruoho if (rv != 0)
1060 1.19 jruoho goto fail;
1061 1.19 jruoho
1062 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1063 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1064 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1065 1.19 jruoho
1066 1.19 jruoho if (rv != 0)
1067 1.19 jruoho goto fail;
1068 1.19 jruoho
1069 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1070 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1071 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1072 1.19 jruoho
1073 1.19 jruoho if (rv != 0)
1074 1.19 jruoho goto fail;
1075 1.19 jruoho
1076 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1077 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1078 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1079 1.19 jruoho
1080 1.19 jruoho if (rv != 0)
1081 1.19 jruoho goto fail;
1082 1.19 jruoho
1083 1.19 jruoho return 0;
1084 1.19 jruoho
1085 1.19 jruoho fail:
1086 1.19 jruoho if (acpicpu_log != NULL) {
1087 1.19 jruoho sysctl_teardown(&acpicpu_log);
1088 1.19 jruoho acpicpu_log = NULL;
1089 1.19 jruoho }
1090 1.19 jruoho
1091 1.19 jruoho return rv;
1092 1.19 jruoho }
1093 1.19 jruoho
1094 1.19 jruoho static int
1095 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1096 1.19 jruoho {
1097 1.19 jruoho struct sysctlnode node;
1098 1.19 jruoho uint32_t freq;
1099 1.19 jruoho int err;
1100 1.19 jruoho
1101 1.68 jruoho freq = cpufreq_get(curcpu());
1102 1.19 jruoho
1103 1.68 jruoho if (freq == 0)
1104 1.68 jruoho return ENXIO;
1105 1.19 jruoho
1106 1.19 jruoho node = *rnode;
1107 1.19 jruoho node.sysctl_data = &freq;
1108 1.19 jruoho
1109 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1110 1.19 jruoho
1111 1.19 jruoho if (err != 0 || newp == NULL)
1112 1.19 jruoho return err;
1113 1.19 jruoho
1114 1.19 jruoho return 0;
1115 1.19 jruoho }
1116 1.19 jruoho
1117 1.19 jruoho static int
1118 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1119 1.19 jruoho {
1120 1.19 jruoho struct sysctlnode node;
1121 1.19 jruoho uint32_t freq;
1122 1.19 jruoho int err;
1123 1.19 jruoho
1124 1.68 jruoho freq = cpufreq_get(curcpu());
1125 1.19 jruoho
1126 1.68 jruoho if (freq == 0)
1127 1.68 jruoho return ENXIO;
1128 1.19 jruoho
1129 1.19 jruoho node = *rnode;
1130 1.19 jruoho node.sysctl_data = &freq;
1131 1.19 jruoho
1132 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1133 1.19 jruoho
1134 1.19 jruoho if (err != 0 || newp == NULL)
1135 1.19 jruoho return err;
1136 1.19 jruoho
1137 1.68 jruoho cpufreq_set_all(freq);
1138 1.19 jruoho
1139 1.19 jruoho return 0;
1140 1.19 jruoho }
1141 1.19 jruoho
1142 1.19 jruoho static int
1143 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1144 1.19 jruoho {
1145 1.19 jruoho struct cpu_info *ci = curcpu();
1146 1.19 jruoho struct acpicpu_softc *sc;
1147 1.19 jruoho struct sysctlnode node;
1148 1.19 jruoho char buf[1024];
1149 1.19 jruoho size_t len;
1150 1.19 jruoho uint32_t i;
1151 1.19 jruoho int err;
1152 1.19 jruoho
1153 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1154 1.19 jruoho
1155 1.19 jruoho if (sc == NULL)
1156 1.19 jruoho return ENXIO;
1157 1.19 jruoho
1158 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1159 1.19 jruoho
1160 1.19 jruoho mutex_enter(&sc->sc_mtx);
1161 1.19 jruoho
1162 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1163 1.19 jruoho
1164 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1165 1.19 jruoho continue;
1166 1.19 jruoho
1167 1.77 christos if (len >= sizeof(buf))
1168 1.77 christos break;
1169 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1170 1.19 jruoho sc->sc_pstate[i].ps_freq,
1171 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1172 1.19 jruoho }
1173 1.19 jruoho
1174 1.19 jruoho mutex_exit(&sc->sc_mtx);
1175 1.19 jruoho
1176 1.19 jruoho node = *rnode;
1177 1.19 jruoho node.sysctl_data = buf;
1178 1.19 jruoho
1179 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1180 1.19 jruoho
1181 1.19 jruoho if (err != 0 || newp == NULL)
1182 1.19 jruoho return err;
1183 1.19 jruoho
1184 1.19 jruoho return 0;
1185 1.19 jruoho }
1186 1.19 jruoho
1187