acpi_cpu_md.c revision 1.9.2.3 1 1.9.2.3 yamt /* $NetBSD: acpi_cpu_md.c,v 1.9.2.3 2010/10/09 03:31:56 yamt Exp $ */
2 1.9.2.2 yamt
3 1.9.2.2 yamt /*-
4 1.9.2.2 yamt * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.9.2.2 yamt * All rights reserved.
6 1.9.2.2 yamt *
7 1.9.2.2 yamt * Redistribution and use in source and binary forms, with or without
8 1.9.2.2 yamt * modification, are permitted provided that the following conditions
9 1.9.2.2 yamt * are met:
10 1.9.2.2 yamt *
11 1.9.2.2 yamt * 1. Redistributions of source code must retain the above copyright
12 1.9.2.2 yamt * notice, this list of conditions and the following disclaimer.
13 1.9.2.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
14 1.9.2.2 yamt * notice, this list of conditions and the following disclaimer in the
15 1.9.2.2 yamt * documentation and/or other materials provided with the distribution.
16 1.9.2.2 yamt *
17 1.9.2.2 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.9.2.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.9.2.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.9.2.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.9.2.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.9.2.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.9.2.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.9.2.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.9.2.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.9.2.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.9.2.2 yamt * SUCH DAMAGE.
28 1.9.2.2 yamt */
29 1.9.2.2 yamt #include <sys/cdefs.h>
30 1.9.2.3 yamt __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.9.2.3 2010/10/09 03:31:56 yamt Exp $");
31 1.9.2.2 yamt
32 1.9.2.2 yamt #include <sys/param.h>
33 1.9.2.2 yamt #include <sys/bus.h>
34 1.9.2.2 yamt #include <sys/kcore.h>
35 1.9.2.2 yamt #include <sys/sysctl.h>
36 1.9.2.2 yamt #include <sys/xcall.h>
37 1.9.2.2 yamt
38 1.9.2.2 yamt #include <x86/cpu.h>
39 1.9.2.2 yamt #include <x86/cpufunc.h>
40 1.9.2.2 yamt #include <x86/cputypes.h>
41 1.9.2.2 yamt #include <x86/cpuvar.h>
42 1.9.2.2 yamt #include <x86/cpu_msr.h>
43 1.9.2.2 yamt #include <x86/machdep.h>
44 1.9.2.2 yamt
45 1.9.2.2 yamt #include <dev/acpi/acpica.h>
46 1.9.2.2 yamt #include <dev/acpi/acpi_cpu.h>
47 1.9.2.2 yamt
48 1.9.2.3 yamt #include <dev/pci/pcivar.h>
49 1.9.2.3 yamt #include <dev/pci/pcidevs.h>
50 1.9.2.3 yamt
51 1.9.2.3 yamt #define ACPICPU_P_STATE_STATUS 0
52 1.9.2.3 yamt
53 1.9.2.3 yamt /*
54 1.9.2.3 yamt * AMD families 10h and 11h.
55 1.9.2.3 yamt */
56 1.9.2.3 yamt #define MSR_10H_LIMIT 0xc0010061
57 1.9.2.3 yamt #define MSR_10H_CONTROL 0xc0010062
58 1.9.2.3 yamt #define MSR_10H_STATUS 0xc0010063
59 1.9.2.3 yamt #define MSR_10H_CONFIG 0xc0010064
60 1.9.2.3 yamt
61 1.9.2.3 yamt /*
62 1.9.2.3 yamt * AMD family 0Fh.
63 1.9.2.3 yamt */
64 1.9.2.3 yamt #define MSR_0FH_CONTROL 0xc0010041
65 1.9.2.3 yamt #define MSR_0FH_STATUS 0xc0010042
66 1.9.2.3 yamt
67 1.9.2.3 yamt #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
68 1.9.2.3 yamt #define MSR_0FH_STATUS_CVID __BITS(32, 36)
69 1.9.2.3 yamt #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
70 1.9.2.3 yamt
71 1.9.2.3 yamt #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
72 1.9.2.3 yamt #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
73 1.9.2.3 yamt #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
74 1.9.2.3 yamt #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
75 1.9.2.3 yamt
76 1.9.2.3 yamt #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
77 1.9.2.3 yamt #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
78 1.9.2.3 yamt
79 1.9.2.3 yamt #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
80 1.9.2.3 yamt #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
81 1.9.2.3 yamt #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
82 1.9.2.3 yamt #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
83 1.9.2.3 yamt #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
84 1.9.2.3 yamt #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
85 1.9.2.3 yamt #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
86 1.9.2.3 yamt
87 1.9.2.3 yamt #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
88 1.9.2.3 yamt
89 1.9.2.2 yamt static char native_idle_text[16];
90 1.9.2.2 yamt void (*native_idle)(void) = NULL;
91 1.9.2.2 yamt
92 1.9.2.3 yamt static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
93 1.9.2.3 yamt static void acpicpu_md_pstate_status(void *, void *);
94 1.9.2.3 yamt static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
95 1.9.2.3 yamt uint32_t *);
96 1.9.2.3 yamt static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
97 1.9.2.3 yamt static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
98 1.9.2.3 yamt static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
99 1.9.2.3 yamt uint32_t, uint32_t);
100 1.9.2.3 yamt static void acpicpu_md_tstate_status(void *, void *);
101 1.9.2.3 yamt static int acpicpu_md_pstate_sysctl_init(void);
102 1.9.2.2 yamt static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
103 1.9.2.2 yamt static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
104 1.9.2.2 yamt static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
105 1.9.2.2 yamt
106 1.9.2.2 yamt extern uint32_t cpus_running;
107 1.9.2.2 yamt extern struct acpicpu_softc **acpicpu_sc;
108 1.9.2.3 yamt static struct sysctllog *acpicpu_log = NULL;
109 1.9.2.2 yamt
110 1.9.2.2 yamt uint32_t
111 1.9.2.2 yamt acpicpu_md_cap(void)
112 1.9.2.2 yamt {
113 1.9.2.2 yamt struct cpu_info *ci = curcpu();
114 1.9.2.2 yamt uint32_t val = 0;
115 1.9.2.2 yamt
116 1.9.2.3 yamt if (cpu_vendor != CPUVENDOR_IDT &&
117 1.9.2.3 yamt cpu_vendor != CPUVENDOR_INTEL)
118 1.9.2.2 yamt return val;
119 1.9.2.2 yamt
120 1.9.2.2 yamt /*
121 1.9.2.2 yamt * Basic SMP C-states (required for _CST).
122 1.9.2.2 yamt */
123 1.9.2.2 yamt val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
124 1.9.2.2 yamt
125 1.9.2.2 yamt /*
126 1.9.2.2 yamt * If MONITOR/MWAIT is available, announce
127 1.9.2.2 yamt * support for native instructions in all C-states.
128 1.9.2.2 yamt */
129 1.9.2.2 yamt if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
130 1.9.2.2 yamt val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
131 1.9.2.2 yamt
132 1.9.2.2 yamt /*
133 1.9.2.3 yamt * Set native P- and T-states, if available.
134 1.9.2.2 yamt */
135 1.9.2.2 yamt if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
136 1.9.2.2 yamt val |= ACPICPU_PDC_P_FFH;
137 1.9.2.2 yamt
138 1.9.2.3 yamt if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
139 1.9.2.3 yamt val |= ACPICPU_PDC_T_FFH;
140 1.9.2.3 yamt
141 1.9.2.2 yamt return val;
142 1.9.2.2 yamt }
143 1.9.2.2 yamt
144 1.9.2.2 yamt uint32_t
145 1.9.2.2 yamt acpicpu_md_quirks(void)
146 1.9.2.2 yamt {
147 1.9.2.2 yamt struct cpu_info *ci = curcpu();
148 1.9.2.3 yamt struct pci_attach_args pa;
149 1.9.2.3 yamt uint32_t family, val = 0;
150 1.9.2.3 yamt uint32_t regs[4];
151 1.9.2.2 yamt
152 1.9.2.2 yamt if (acpicpu_md_cpus_running() == 1)
153 1.9.2.2 yamt val |= ACPICPU_FLAG_C_BM;
154 1.9.2.2 yamt
155 1.9.2.2 yamt if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
156 1.9.2.2 yamt val |= ACPICPU_FLAG_C_FFH;
157 1.9.2.2 yamt
158 1.9.2.3 yamt val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
159 1.9.2.3 yamt
160 1.9.2.2 yamt switch (cpu_vendor) {
161 1.9.2.2 yamt
162 1.9.2.3 yamt case CPUVENDOR_IDT:
163 1.9.2.3 yamt
164 1.9.2.3 yamt if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
165 1.9.2.3 yamt val |= ACPICPU_FLAG_P_FFH;
166 1.9.2.3 yamt
167 1.9.2.3 yamt if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
168 1.9.2.3 yamt val |= ACPICPU_FLAG_T_FFH;
169 1.9.2.3 yamt
170 1.9.2.3 yamt break;
171 1.9.2.3 yamt
172 1.9.2.2 yamt case CPUVENDOR_INTEL:
173 1.9.2.2 yamt
174 1.9.2.2 yamt val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
175 1.9.2.2 yamt
176 1.9.2.2 yamt if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
177 1.9.2.2 yamt val |= ACPICPU_FLAG_P_FFH;
178 1.9.2.2 yamt
179 1.9.2.3 yamt if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
180 1.9.2.3 yamt val |= ACPICPU_FLAG_T_FFH;
181 1.9.2.3 yamt
182 1.9.2.2 yamt /*
183 1.9.2.3 yamt * Check whether MSR_APERF, MSR_MPERF, and Turbo
184 1.9.2.3 yamt * Boost are available. Also see if we might have
185 1.9.2.3 yamt * an invariant local APIC timer ("ARAT").
186 1.9.2.2 yamt */
187 1.9.2.3 yamt if (cpuid_level >= 0x06) {
188 1.9.2.2 yamt
189 1.9.2.3 yamt x86_cpuid(0x06, regs);
190 1.9.2.2 yamt
191 1.9.2.3 yamt if ((regs[2] & CPUID_DSPM_HWF) != 0)
192 1.9.2.3 yamt val |= ACPICPU_FLAG_P_HW;
193 1.9.2.2 yamt
194 1.9.2.3 yamt if ((regs[0] & CPUID_DSPM_IDA) != 0)
195 1.9.2.3 yamt val |= ACPICPU_FLAG_P_TURBO;
196 1.9.2.3 yamt
197 1.9.2.3 yamt if ((regs[0] & CPUID_DSPM_ARAT) != 0)
198 1.9.2.3 yamt val &= ~ACPICPU_FLAG_C_APIC;
199 1.9.2.3 yamt }
200 1.9.2.2 yamt
201 1.9.2.2 yamt /*
202 1.9.2.3 yamt * Detect whether TSC is invariant. If it is not,
203 1.9.2.3 yamt * we keep the flag to note that TSC will not run
204 1.9.2.3 yamt * at constant rate. Depending on the CPU, this may
205 1.9.2.3 yamt * affect P- and T-state changes, but especially
206 1.9.2.3 yamt * relevant are C-states; with variant TSC, states
207 1.9.2.3 yamt * larger than C1 may completely stop the counter.
208 1.9.2.2 yamt */
209 1.9.2.3 yamt x86_cpuid(0x80000000, regs);
210 1.9.2.3 yamt
211 1.9.2.3 yamt if (regs[0] >= 0x80000007) {
212 1.9.2.3 yamt
213 1.9.2.3 yamt x86_cpuid(0x80000007, regs);
214 1.9.2.3 yamt
215 1.9.2.3 yamt if ((regs[3] & __BIT(8)) != 0)
216 1.9.2.3 yamt val &= ~ACPICPU_FLAG_C_TSC;
217 1.9.2.3 yamt }
218 1.9.2.3 yamt
219 1.9.2.3 yamt break;
220 1.9.2.3 yamt
221 1.9.2.3 yamt case CPUVENDOR_AMD:
222 1.9.2.3 yamt
223 1.9.2.3 yamt x86_cpuid(0x80000000, regs);
224 1.9.2.3 yamt
225 1.9.2.3 yamt if (regs[0] < 0x80000007)
226 1.9.2.3 yamt break;
227 1.9.2.3 yamt
228 1.9.2.3 yamt x86_cpuid(0x80000007, regs);
229 1.9.2.3 yamt
230 1.9.2.3 yamt family = CPUID2FAMILY(ci->ci_signature);
231 1.9.2.3 yamt
232 1.9.2.3 yamt if (family == 0xf)
233 1.9.2.3 yamt family += CPUID2EXTFAMILY(ci->ci_signature);
234 1.9.2.3 yamt
235 1.9.2.3 yamt switch (family) {
236 1.9.2.3 yamt
237 1.9.2.3 yamt case 0x0f:
238 1.9.2.3 yamt
239 1.9.2.3 yamt if ((regs[3] & CPUID_APM_FID) == 0)
240 1.9.2.3 yamt break;
241 1.9.2.3 yamt
242 1.9.2.3 yamt if ((regs[3] & CPUID_APM_VID) == 0)
243 1.9.2.3 yamt break;
244 1.9.2.3 yamt
245 1.9.2.3 yamt val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
246 1.9.2.3 yamt break;
247 1.9.2.3 yamt
248 1.9.2.3 yamt case 0x10:
249 1.9.2.3 yamt case 0x11:
250 1.9.2.3 yamt
251 1.9.2.3 yamt if ((regs[3] & CPUID_APM_TSC) != 0)
252 1.9.2.3 yamt val &= ~ACPICPU_FLAG_C_TSC;
253 1.9.2.3 yamt
254 1.9.2.3 yamt if ((regs[3] & CPUID_APM_HWP) != 0)
255 1.9.2.3 yamt val |= ACPICPU_FLAG_P_FFH;
256 1.9.2.3 yamt
257 1.9.2.3 yamt if ((regs[3] & CPUID_APM_CPB) != 0)
258 1.9.2.3 yamt val |= ACPICPU_FLAG_P_TURBO;
259 1.9.2.3 yamt }
260 1.9.2.3 yamt
261 1.9.2.2 yamt break;
262 1.9.2.2 yamt }
263 1.9.2.2 yamt
264 1.9.2.3 yamt /*
265 1.9.2.3 yamt * There are several erratums for PIIX4.
266 1.9.2.3 yamt */
267 1.9.2.3 yamt if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
268 1.9.2.3 yamt val |= ACPICPU_FLAG_PIIX4;
269 1.9.2.3 yamt
270 1.9.2.2 yamt return val;
271 1.9.2.2 yamt }
272 1.9.2.2 yamt
273 1.9.2.3 yamt static int
274 1.9.2.3 yamt acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
275 1.9.2.3 yamt {
276 1.9.2.3 yamt
277 1.9.2.3 yamt /*
278 1.9.2.3 yamt * XXX: The pci_find_device(9) function only
279 1.9.2.3 yamt * deals with attached devices. Change this
280 1.9.2.3 yamt * to use something like pci_device_foreach().
281 1.9.2.3 yamt */
282 1.9.2.3 yamt if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
283 1.9.2.3 yamt return 0;
284 1.9.2.3 yamt
285 1.9.2.3 yamt if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
286 1.9.2.3 yamt PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
287 1.9.2.3 yamt return 1;
288 1.9.2.3 yamt
289 1.9.2.3 yamt return 0;
290 1.9.2.3 yamt }
291 1.9.2.3 yamt
292 1.9.2.2 yamt uint32_t
293 1.9.2.2 yamt acpicpu_md_cpus_running(void)
294 1.9.2.2 yamt {
295 1.9.2.2 yamt
296 1.9.2.2 yamt return popcount32(cpus_running);
297 1.9.2.2 yamt }
298 1.9.2.2 yamt
299 1.9.2.2 yamt int
300 1.9.2.3 yamt acpicpu_md_idle_start(struct acpicpu_softc *sc)
301 1.9.2.2 yamt {
302 1.9.2.2 yamt const size_t size = sizeof(native_idle_text);
303 1.9.2.3 yamt struct acpicpu_cstate *cs;
304 1.9.2.3 yamt bool ipi = false;
305 1.9.2.3 yamt int i;
306 1.9.2.2 yamt
307 1.9.2.2 yamt x86_cpu_idle_get(&native_idle, native_idle_text, size);
308 1.9.2.3 yamt
309 1.9.2.3 yamt for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
310 1.9.2.3 yamt
311 1.9.2.3 yamt cs = &sc->sc_cstate[i];
312 1.9.2.3 yamt
313 1.9.2.3 yamt if (cs->cs_method == ACPICPU_C_STATE_HALT) {
314 1.9.2.3 yamt ipi = true;
315 1.9.2.3 yamt break;
316 1.9.2.3 yamt }
317 1.9.2.3 yamt }
318 1.9.2.3 yamt
319 1.9.2.3 yamt x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
320 1.9.2.2 yamt
321 1.9.2.2 yamt return 0;
322 1.9.2.2 yamt }
323 1.9.2.2 yamt
324 1.9.2.2 yamt int
325 1.9.2.2 yamt acpicpu_md_idle_stop(void)
326 1.9.2.2 yamt {
327 1.9.2.2 yamt uint64_t xc;
328 1.9.2.3 yamt bool ipi;
329 1.9.2.2 yamt
330 1.9.2.3 yamt ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
331 1.9.2.3 yamt x86_cpu_idle_set(native_idle, native_idle_text, ipi);
332 1.9.2.2 yamt
333 1.9.2.2 yamt /*
334 1.9.2.2 yamt * Run a cross-call to ensure that all CPUs are
335 1.9.2.2 yamt * out from the ACPI idle-loop before detachment.
336 1.9.2.2 yamt */
337 1.9.2.2 yamt xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
338 1.9.2.2 yamt xc_wait(xc);
339 1.9.2.2 yamt
340 1.9.2.2 yamt return 0;
341 1.9.2.2 yamt }
342 1.9.2.2 yamt
343 1.9.2.2 yamt /*
344 1.9.2.3 yamt * Called with interrupts disabled.
345 1.9.2.3 yamt * Caller should enable interrupts after return.
346 1.9.2.2 yamt */
347 1.9.2.2 yamt void
348 1.9.2.2 yamt acpicpu_md_idle_enter(int method, int state)
349 1.9.2.2 yamt {
350 1.9.2.2 yamt struct cpu_info *ci = curcpu();
351 1.9.2.2 yamt
352 1.9.2.2 yamt switch (method) {
353 1.9.2.2 yamt
354 1.9.2.2 yamt case ACPICPU_C_STATE_FFH:
355 1.9.2.2 yamt
356 1.9.2.2 yamt x86_enable_intr();
357 1.9.2.2 yamt x86_monitor(&ci->ci_want_resched, 0, 0);
358 1.9.2.2 yamt
359 1.9.2.3 yamt if (__predict_false(ci->ci_want_resched != 0))
360 1.9.2.2 yamt return;
361 1.9.2.2 yamt
362 1.9.2.2 yamt x86_mwait((state - 1) << 4, 0);
363 1.9.2.2 yamt break;
364 1.9.2.2 yamt
365 1.9.2.2 yamt case ACPICPU_C_STATE_HALT:
366 1.9.2.2 yamt
367 1.9.2.3 yamt if (__predict_false(ci->ci_want_resched != 0))
368 1.9.2.2 yamt return;
369 1.9.2.2 yamt
370 1.9.2.2 yamt x86_stihlt();
371 1.9.2.2 yamt break;
372 1.9.2.2 yamt }
373 1.9.2.2 yamt }
374 1.9.2.2 yamt
375 1.9.2.2 yamt int
376 1.9.2.2 yamt acpicpu_md_pstate_start(void)
377 1.9.2.2 yamt {
378 1.9.2.3 yamt const uint64_t est = __BIT(16);
379 1.9.2.3 yamt uint64_t val;
380 1.9.2.2 yamt
381 1.9.2.2 yamt switch (cpu_vendor) {
382 1.9.2.2 yamt
383 1.9.2.3 yamt case CPUVENDOR_IDT:
384 1.9.2.2 yamt case CPUVENDOR_INTEL:
385 1.9.2.3 yamt
386 1.9.2.3 yamt val = rdmsr(MSR_MISC_ENABLE);
387 1.9.2.3 yamt
388 1.9.2.3 yamt if ((val & est) == 0) {
389 1.9.2.3 yamt
390 1.9.2.3 yamt val |= est;
391 1.9.2.3 yamt
392 1.9.2.3 yamt wrmsr(MSR_MISC_ENABLE, val);
393 1.9.2.3 yamt val = rdmsr(MSR_MISC_ENABLE);
394 1.9.2.3 yamt
395 1.9.2.3 yamt if ((val & est) == 0)
396 1.9.2.3 yamt return ENOTTY;
397 1.9.2.3 yamt }
398 1.9.2.3 yamt }
399 1.9.2.3 yamt
400 1.9.2.3 yamt return acpicpu_md_pstate_sysctl_init();
401 1.9.2.3 yamt }
402 1.9.2.3 yamt
403 1.9.2.3 yamt int
404 1.9.2.3 yamt acpicpu_md_pstate_stop(void)
405 1.9.2.3 yamt {
406 1.9.2.3 yamt
407 1.9.2.3 yamt if (acpicpu_log != NULL)
408 1.9.2.3 yamt sysctl_teardown(&acpicpu_log);
409 1.9.2.3 yamt
410 1.9.2.3 yamt return 0;
411 1.9.2.3 yamt }
412 1.9.2.3 yamt
413 1.9.2.3 yamt int
414 1.9.2.3 yamt acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
415 1.9.2.3 yamt {
416 1.9.2.3 yamt struct acpicpu_pstate *ps, msr;
417 1.9.2.3 yamt struct cpu_info *ci = curcpu();
418 1.9.2.3 yamt uint32_t family, i = 0;
419 1.9.2.3 yamt
420 1.9.2.3 yamt (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
421 1.9.2.3 yamt
422 1.9.2.3 yamt switch (cpu_vendor) {
423 1.9.2.3 yamt
424 1.9.2.3 yamt case CPUVENDOR_IDT:
425 1.9.2.3 yamt case CPUVENDOR_INTEL:
426 1.9.2.3 yamt
427 1.9.2.3 yamt /*
428 1.9.2.3 yamt * If the so-called Turbo Boost is present,
429 1.9.2.3 yamt * the P0-state is always the "turbo state".
430 1.9.2.3 yamt *
431 1.9.2.3 yamt * For discussion, see:
432 1.9.2.3 yamt *
433 1.9.2.3 yamt * Intel Corporation: Intel Turbo Boost Technology
434 1.9.2.3 yamt * in Intel Core(tm) Microarchitectures (Nehalem)
435 1.9.2.3 yamt * Based Processors. White Paper, November 2008.
436 1.9.2.3 yamt */
437 1.9.2.3 yamt if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
438 1.9.2.3 yamt sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
439 1.9.2.3 yamt
440 1.9.2.3 yamt msr.ps_control_addr = MSR_PERF_CTL;
441 1.9.2.3 yamt msr.ps_control_mask = __BITS(0, 15);
442 1.9.2.3 yamt
443 1.9.2.3 yamt msr.ps_status_addr = MSR_PERF_STATUS;
444 1.9.2.3 yamt msr.ps_status_mask = __BITS(0, 15);
445 1.9.2.3 yamt break;
446 1.9.2.3 yamt
447 1.9.2.3 yamt case CPUVENDOR_AMD:
448 1.9.2.3 yamt
449 1.9.2.3 yamt if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
450 1.9.2.3 yamt msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
451 1.9.2.3 yamt
452 1.9.2.3 yamt family = CPUID2FAMILY(ci->ci_signature);
453 1.9.2.3 yamt
454 1.9.2.3 yamt if (family == 0xf)
455 1.9.2.3 yamt family += CPUID2EXTFAMILY(ci->ci_signature);
456 1.9.2.3 yamt
457 1.9.2.3 yamt switch (family) {
458 1.9.2.3 yamt
459 1.9.2.3 yamt case 0x0f:
460 1.9.2.3 yamt msr.ps_control_addr = MSR_0FH_CONTROL;
461 1.9.2.3 yamt msr.ps_status_addr = MSR_0FH_STATUS;
462 1.9.2.3 yamt break;
463 1.9.2.3 yamt
464 1.9.2.3 yamt case 0x10:
465 1.9.2.3 yamt case 0x11:
466 1.9.2.3 yamt msr.ps_control_addr = MSR_10H_CONTROL;
467 1.9.2.3 yamt msr.ps_control_mask = __BITS(0, 2);
468 1.9.2.3 yamt
469 1.9.2.3 yamt msr.ps_status_addr = MSR_10H_STATUS;
470 1.9.2.3 yamt msr.ps_status_mask = __BITS(0, 2);
471 1.9.2.3 yamt break;
472 1.9.2.3 yamt
473 1.9.2.3 yamt default:
474 1.9.2.3 yamt
475 1.9.2.3 yamt if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
476 1.9.2.3 yamt return EOPNOTSUPP;
477 1.9.2.3 yamt }
478 1.9.2.3 yamt
479 1.9.2.2 yamt break;
480 1.9.2.2 yamt
481 1.9.2.2 yamt default:
482 1.9.2.2 yamt return ENODEV;
483 1.9.2.2 yamt }
484 1.9.2.2 yamt
485 1.9.2.2 yamt /*
486 1.9.2.3 yamt * Fill the P-state structures with MSR addresses that are
487 1.9.2.3 yamt * known to be correct. If we do not know the addresses,
488 1.9.2.3 yamt * leave the values intact. If a vendor uses XPSS, we do
489 1.9.2.3 yamt * not necessary need to do anything to support new CPUs.
490 1.9.2.2 yamt */
491 1.9.2.3 yamt while (i < sc->sc_pstate_count) {
492 1.9.2.3 yamt
493 1.9.2.3 yamt ps = &sc->sc_pstate[i];
494 1.9.2.3 yamt
495 1.9.2.3 yamt if (msr.ps_flags != 0)
496 1.9.2.3 yamt ps->ps_flags |= msr.ps_flags;
497 1.9.2.3 yamt
498 1.9.2.3 yamt if (msr.ps_status_addr != 0)
499 1.9.2.3 yamt ps->ps_status_addr = msr.ps_status_addr;
500 1.9.2.3 yamt
501 1.9.2.3 yamt if (msr.ps_status_mask != 0)
502 1.9.2.3 yamt ps->ps_status_mask = msr.ps_status_mask;
503 1.9.2.3 yamt
504 1.9.2.3 yamt if (msr.ps_control_addr != 0)
505 1.9.2.3 yamt ps->ps_control_addr = msr.ps_control_addr;
506 1.9.2.3 yamt
507 1.9.2.3 yamt if (msr.ps_control_mask != 0)
508 1.9.2.3 yamt ps->ps_control_mask = msr.ps_control_mask;
509 1.9.2.3 yamt
510 1.9.2.3 yamt i++;
511 1.9.2.3 yamt }
512 1.9.2.3 yamt
513 1.9.2.3 yamt return 0;
514 1.9.2.3 yamt }
515 1.9.2.3 yamt
516 1.9.2.3 yamt int
517 1.9.2.3 yamt acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
518 1.9.2.3 yamt {
519 1.9.2.3 yamt struct acpicpu_pstate *ps = NULL;
520 1.9.2.3 yamt uint64_t val;
521 1.9.2.3 yamt uint32_t i;
522 1.9.2.3 yamt
523 1.9.2.3 yamt if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
524 1.9.2.3 yamt return acpicpu_md_pstate_fidvid_get(sc, freq);
525 1.9.2.3 yamt
526 1.9.2.3 yamt for (i = 0; i < sc->sc_pstate_count; i++) {
527 1.9.2.3 yamt
528 1.9.2.3 yamt ps = &sc->sc_pstate[i];
529 1.9.2.3 yamt
530 1.9.2.3 yamt if (__predict_true(ps->ps_freq != 0))
531 1.9.2.3 yamt break;
532 1.9.2.3 yamt }
533 1.9.2.3 yamt
534 1.9.2.3 yamt if (__predict_false(ps == NULL))
535 1.9.2.3 yamt return ENODEV;
536 1.9.2.3 yamt
537 1.9.2.3 yamt if (__predict_false(ps->ps_status_addr == 0))
538 1.9.2.3 yamt return EINVAL;
539 1.9.2.3 yamt
540 1.9.2.3 yamt val = rdmsr(ps->ps_status_addr);
541 1.9.2.3 yamt
542 1.9.2.3 yamt if (__predict_true(ps->ps_status_mask != 0))
543 1.9.2.3 yamt val = val & ps->ps_status_mask;
544 1.9.2.3 yamt
545 1.9.2.3 yamt for (i = 0; i < sc->sc_pstate_count; i++) {
546 1.9.2.3 yamt
547 1.9.2.3 yamt ps = &sc->sc_pstate[i];
548 1.9.2.3 yamt
549 1.9.2.3 yamt if (__predict_false(ps->ps_freq == 0))
550 1.9.2.3 yamt continue;
551 1.9.2.3 yamt
552 1.9.2.3 yamt if (val == ps->ps_status) {
553 1.9.2.3 yamt *freq = ps->ps_freq;
554 1.9.2.3 yamt return 0;
555 1.9.2.3 yamt }
556 1.9.2.3 yamt }
557 1.9.2.3 yamt
558 1.9.2.3 yamt return EIO;
559 1.9.2.3 yamt }
560 1.9.2.3 yamt
561 1.9.2.3 yamt int
562 1.9.2.3 yamt acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
563 1.9.2.3 yamt {
564 1.9.2.3 yamt struct msr_rw_info msr;
565 1.9.2.3 yamt uint64_t xc;
566 1.9.2.3 yamt int rv = 0;
567 1.9.2.3 yamt
568 1.9.2.3 yamt if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
569 1.9.2.3 yamt return acpicpu_md_pstate_fidvid_set(ps);
570 1.9.2.3 yamt
571 1.9.2.3 yamt msr.msr_read = false;
572 1.9.2.3 yamt msr.msr_type = ps->ps_control_addr;
573 1.9.2.3 yamt msr.msr_value = ps->ps_control;
574 1.9.2.3 yamt
575 1.9.2.3 yamt if (__predict_true(ps->ps_control_mask != 0)) {
576 1.9.2.3 yamt msr.msr_mask = ps->ps_control_mask;
577 1.9.2.3 yamt msr.msr_read = true;
578 1.9.2.3 yamt }
579 1.9.2.3 yamt
580 1.9.2.3 yamt xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
581 1.9.2.3 yamt xc_wait(xc);
582 1.9.2.3 yamt
583 1.9.2.3 yamt if (ACPICPU_P_STATE_STATUS == 0) {
584 1.9.2.3 yamt DELAY(ps->ps_latency);
585 1.9.2.3 yamt return 0;
586 1.9.2.3 yamt }
587 1.9.2.3 yamt
588 1.9.2.3 yamt xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
589 1.9.2.3 yamt xc_wait(xc);
590 1.9.2.3 yamt
591 1.9.2.3 yamt return rv;
592 1.9.2.3 yamt }
593 1.9.2.3 yamt
594 1.9.2.3 yamt static void
595 1.9.2.3 yamt acpicpu_md_pstate_status(void *arg1, void *arg2)
596 1.9.2.3 yamt {
597 1.9.2.3 yamt struct acpicpu_pstate *ps = arg1;
598 1.9.2.3 yamt uint64_t val;
599 1.9.2.3 yamt int i;
600 1.9.2.3 yamt
601 1.9.2.3 yamt for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
602 1.9.2.3 yamt
603 1.9.2.3 yamt val = rdmsr(ps->ps_status_addr);
604 1.9.2.2 yamt
605 1.9.2.3 yamt if (__predict_true(ps->ps_status_mask != 0))
606 1.9.2.3 yamt val = val & ps->ps_status_mask;
607 1.9.2.3 yamt
608 1.9.2.3 yamt if (val == ps->ps_status)
609 1.9.2.3 yamt return;
610 1.9.2.3 yamt
611 1.9.2.3 yamt DELAY(ps->ps_latency);
612 1.9.2.2 yamt }
613 1.9.2.2 yamt
614 1.9.2.3 yamt *(uintptr_t *)arg2 = EAGAIN;
615 1.9.2.3 yamt }
616 1.9.2.3 yamt
617 1.9.2.3 yamt static int
618 1.9.2.3 yamt acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
619 1.9.2.3 yamt {
620 1.9.2.3 yamt struct acpicpu_pstate *ps;
621 1.9.2.3 yamt uint32_t fid, i, vid;
622 1.9.2.3 yamt uint32_t cfid, cvid;
623 1.9.2.3 yamt int rv;
624 1.9.2.3 yamt
625 1.9.2.3 yamt /*
626 1.9.2.3 yamt * AMD family 0Fh needs special treatment.
627 1.9.2.3 yamt * While it wants to use ACPI, it does not
628 1.9.2.3 yamt * comply with the ACPI specifications.
629 1.9.2.3 yamt */
630 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
631 1.9.2.3 yamt
632 1.9.2.3 yamt if (rv != 0)
633 1.9.2.3 yamt return rv;
634 1.9.2.3 yamt
635 1.9.2.3 yamt for (i = 0; i < sc->sc_pstate_count; i++) {
636 1.9.2.3 yamt
637 1.9.2.3 yamt ps = &sc->sc_pstate[i];
638 1.9.2.3 yamt
639 1.9.2.3 yamt if (__predict_false(ps->ps_freq == 0))
640 1.9.2.3 yamt continue;
641 1.9.2.3 yamt
642 1.9.2.3 yamt fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
643 1.9.2.3 yamt vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
644 1.9.2.3 yamt
645 1.9.2.3 yamt if (cfid == fid && cvid == vid) {
646 1.9.2.3 yamt *freq = ps->ps_freq;
647 1.9.2.3 yamt return 0;
648 1.9.2.3 yamt }
649 1.9.2.3 yamt }
650 1.9.2.3 yamt
651 1.9.2.3 yamt return EIO;
652 1.9.2.3 yamt }
653 1.9.2.3 yamt
654 1.9.2.3 yamt static int
655 1.9.2.3 yamt acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
656 1.9.2.3 yamt {
657 1.9.2.3 yamt const uint64_t ctrl = ps->ps_control;
658 1.9.2.3 yamt uint32_t cfid, cvid, fid, i, irt;
659 1.9.2.3 yamt uint32_t pll, vco_cfid, vco_fid;
660 1.9.2.3 yamt uint32_t val, vid, vst;
661 1.9.2.3 yamt int rv;
662 1.9.2.3 yamt
663 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
664 1.9.2.3 yamt
665 1.9.2.3 yamt if (rv != 0)
666 1.9.2.3 yamt return rv;
667 1.9.2.3 yamt
668 1.9.2.3 yamt fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
669 1.9.2.3 yamt vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
670 1.9.2.3 yamt irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
671 1.9.2.3 yamt vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
672 1.9.2.3 yamt pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
673 1.9.2.3 yamt
674 1.9.2.3 yamt vst = vst * 20;
675 1.9.2.3 yamt pll = pll * 1000 / 5;
676 1.9.2.3 yamt irt = 10 * __BIT(irt);
677 1.9.2.3 yamt
678 1.9.2.3 yamt /*
679 1.9.2.3 yamt * Phase 1.
680 1.9.2.3 yamt */
681 1.9.2.3 yamt while (cvid > vid) {
682 1.9.2.3 yamt
683 1.9.2.3 yamt val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
684 1.9.2.3 yamt val = (val > cvid) ? 0 : cvid - val;
685 1.9.2.3 yamt
686 1.9.2.3 yamt acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
687 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
688 1.9.2.3 yamt
689 1.9.2.3 yamt if (rv != 0)
690 1.9.2.3 yamt return rv;
691 1.9.2.3 yamt }
692 1.9.2.3 yamt
693 1.9.2.3 yamt i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
694 1.9.2.3 yamt
695 1.9.2.3 yamt for (; i > 0 && cvid > 0; --i) {
696 1.9.2.3 yamt
697 1.9.2.3 yamt acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
698 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
699 1.9.2.3 yamt
700 1.9.2.3 yamt if (rv != 0)
701 1.9.2.3 yamt return rv;
702 1.9.2.3 yamt }
703 1.9.2.3 yamt
704 1.9.2.3 yamt /*
705 1.9.2.3 yamt * Phase 2.
706 1.9.2.3 yamt */
707 1.9.2.3 yamt if (cfid != fid) {
708 1.9.2.3 yamt
709 1.9.2.3 yamt vco_fid = FID_TO_VCO_FID(fid);
710 1.9.2.3 yamt vco_cfid = FID_TO_VCO_FID(cfid);
711 1.9.2.3 yamt
712 1.9.2.3 yamt while (abs(vco_fid - vco_cfid) > 2) {
713 1.9.2.3 yamt
714 1.9.2.3 yamt if (fid <= cfid)
715 1.9.2.3 yamt val = cfid - 2;
716 1.9.2.3 yamt else {
717 1.9.2.3 yamt val = (cfid > 6) ? cfid + 2 :
718 1.9.2.3 yamt FID_TO_VCO_FID(cfid) + 2;
719 1.9.2.3 yamt }
720 1.9.2.3 yamt
721 1.9.2.3 yamt acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
722 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
723 1.9.2.3 yamt
724 1.9.2.3 yamt if (rv != 0)
725 1.9.2.3 yamt return rv;
726 1.9.2.3 yamt
727 1.9.2.3 yamt vco_cfid = FID_TO_VCO_FID(cfid);
728 1.9.2.3 yamt }
729 1.9.2.3 yamt
730 1.9.2.3 yamt acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
731 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
732 1.9.2.3 yamt
733 1.9.2.3 yamt if (rv != 0)
734 1.9.2.3 yamt return rv;
735 1.9.2.3 yamt }
736 1.9.2.3 yamt
737 1.9.2.3 yamt /*
738 1.9.2.3 yamt * Phase 3.
739 1.9.2.3 yamt */
740 1.9.2.3 yamt if (cvid != vid) {
741 1.9.2.3 yamt
742 1.9.2.3 yamt acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
743 1.9.2.3 yamt rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
744 1.9.2.3 yamt
745 1.9.2.3 yamt if (rv != 0)
746 1.9.2.3 yamt return rv;
747 1.9.2.3 yamt }
748 1.9.2.3 yamt
749 1.9.2.3 yamt if (cfid != fid || cvid != vid)
750 1.9.2.3 yamt return EIO;
751 1.9.2.3 yamt
752 1.9.2.3 yamt return 0;
753 1.9.2.3 yamt }
754 1.9.2.3 yamt
755 1.9.2.3 yamt static int
756 1.9.2.3 yamt acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
757 1.9.2.3 yamt {
758 1.9.2.3 yamt int i = ACPICPU_P_STATE_RETRY * 100;
759 1.9.2.3 yamt uint64_t val;
760 1.9.2.3 yamt
761 1.9.2.3 yamt do {
762 1.9.2.3 yamt val = rdmsr(MSR_0FH_STATUS);
763 1.9.2.3 yamt
764 1.9.2.3 yamt } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
765 1.9.2.3 yamt
766 1.9.2.3 yamt if (i == 0)
767 1.9.2.3 yamt return EAGAIN;
768 1.9.2.3 yamt
769 1.9.2.3 yamt if (cfid != NULL)
770 1.9.2.3 yamt *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
771 1.9.2.3 yamt
772 1.9.2.3 yamt if (cvid != NULL)
773 1.9.2.3 yamt *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
774 1.9.2.3 yamt
775 1.9.2.3 yamt return 0;
776 1.9.2.3 yamt }
777 1.9.2.3 yamt
778 1.9.2.3 yamt static void
779 1.9.2.3 yamt acpicpu_md_pstate_fidvid_write(uint32_t fid,
780 1.9.2.3 yamt uint32_t vid, uint32_t cnt, uint32_t tmo)
781 1.9.2.3 yamt {
782 1.9.2.3 yamt struct msr_rw_info msr;
783 1.9.2.3 yamt uint64_t xc;
784 1.9.2.3 yamt
785 1.9.2.3 yamt msr.msr_read = false;
786 1.9.2.3 yamt msr.msr_type = MSR_0FH_CONTROL;
787 1.9.2.3 yamt msr.msr_value = 0;
788 1.9.2.3 yamt
789 1.9.2.3 yamt msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
790 1.9.2.3 yamt msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
791 1.9.2.3 yamt msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
792 1.9.2.3 yamt msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
793 1.9.2.3 yamt
794 1.9.2.3 yamt xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
795 1.9.2.3 yamt xc_wait(xc);
796 1.9.2.3 yamt
797 1.9.2.3 yamt DELAY(tmo);
798 1.9.2.3 yamt }
799 1.9.2.3 yamt
800 1.9.2.3 yamt int
801 1.9.2.3 yamt acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
802 1.9.2.3 yamt {
803 1.9.2.3 yamt struct acpicpu_tstate *ts;
804 1.9.2.3 yamt uint64_t val;
805 1.9.2.3 yamt uint32_t i;
806 1.9.2.3 yamt
807 1.9.2.3 yamt val = rdmsr(MSR_THERM_CONTROL);
808 1.9.2.3 yamt
809 1.9.2.3 yamt for (i = 0; i < sc->sc_tstate_count; i++) {
810 1.9.2.3 yamt
811 1.9.2.3 yamt ts = &sc->sc_tstate[i];
812 1.9.2.3 yamt
813 1.9.2.3 yamt if (ts->ts_percent == 0)
814 1.9.2.3 yamt continue;
815 1.9.2.3 yamt
816 1.9.2.3 yamt if (val == ts->ts_status) {
817 1.9.2.3 yamt *percent = ts->ts_percent;
818 1.9.2.3 yamt return 0;
819 1.9.2.3 yamt }
820 1.9.2.3 yamt }
821 1.9.2.3 yamt
822 1.9.2.3 yamt return EIO;
823 1.9.2.3 yamt }
824 1.9.2.3 yamt
825 1.9.2.3 yamt int
826 1.9.2.3 yamt acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
827 1.9.2.3 yamt {
828 1.9.2.3 yamt struct msr_rw_info msr;
829 1.9.2.3 yamt uint64_t xc;
830 1.9.2.3 yamt int rv = 0;
831 1.9.2.3 yamt
832 1.9.2.3 yamt msr.msr_read = true;
833 1.9.2.3 yamt msr.msr_type = MSR_THERM_CONTROL;
834 1.9.2.3 yamt msr.msr_value = ts->ts_control;
835 1.9.2.3 yamt msr.msr_mask = __BITS(1, 4);
836 1.9.2.3 yamt
837 1.9.2.3 yamt xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
838 1.9.2.3 yamt xc_wait(xc);
839 1.9.2.3 yamt
840 1.9.2.3 yamt if (ts->ts_status == 0) {
841 1.9.2.3 yamt DELAY(ts->ts_latency);
842 1.9.2.3 yamt return 0;
843 1.9.2.3 yamt }
844 1.9.2.3 yamt
845 1.9.2.3 yamt xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
846 1.9.2.3 yamt xc_wait(xc);
847 1.9.2.3 yamt
848 1.9.2.3 yamt return rv;
849 1.9.2.3 yamt }
850 1.9.2.3 yamt
851 1.9.2.3 yamt static void
852 1.9.2.3 yamt acpicpu_md_tstate_status(void *arg1, void *arg2)
853 1.9.2.3 yamt {
854 1.9.2.3 yamt struct acpicpu_tstate *ts = arg1;
855 1.9.2.3 yamt uint64_t val;
856 1.9.2.3 yamt int i;
857 1.9.2.3 yamt
858 1.9.2.3 yamt for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
859 1.9.2.3 yamt
860 1.9.2.3 yamt val = rdmsr(MSR_THERM_CONTROL);
861 1.9.2.3 yamt
862 1.9.2.3 yamt if (val == ts->ts_status)
863 1.9.2.3 yamt return;
864 1.9.2.3 yamt
865 1.9.2.3 yamt DELAY(ts->ts_latency);
866 1.9.2.3 yamt }
867 1.9.2.3 yamt
868 1.9.2.3 yamt *(uintptr_t *)arg2 = EAGAIN;
869 1.9.2.3 yamt }
870 1.9.2.3 yamt
871 1.9.2.3 yamt /*
872 1.9.2.3 yamt * A kludge for backwards compatibility.
873 1.9.2.3 yamt */
874 1.9.2.3 yamt static int
875 1.9.2.3 yamt acpicpu_md_pstate_sysctl_init(void)
876 1.9.2.3 yamt {
877 1.9.2.3 yamt const struct sysctlnode *fnode, *mnode, *rnode;
878 1.9.2.3 yamt const char *str;
879 1.9.2.3 yamt int rv;
880 1.9.2.3 yamt
881 1.9.2.3 yamt switch (cpu_vendor) {
882 1.9.2.3 yamt
883 1.9.2.3 yamt case CPUVENDOR_IDT:
884 1.9.2.3 yamt case CPUVENDOR_INTEL:
885 1.9.2.3 yamt str = "est";
886 1.9.2.3 yamt break;
887 1.9.2.3 yamt
888 1.9.2.3 yamt case CPUVENDOR_AMD:
889 1.9.2.3 yamt str = "powernow";
890 1.9.2.3 yamt break;
891 1.9.2.3 yamt
892 1.9.2.3 yamt default:
893 1.9.2.3 yamt return ENODEV;
894 1.9.2.3 yamt }
895 1.9.2.3 yamt
896 1.9.2.3 yamt
897 1.9.2.3 yamt rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
898 1.9.2.2 yamt CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
899 1.9.2.2 yamt NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
900 1.9.2.2 yamt
901 1.9.2.2 yamt if (rv != 0)
902 1.9.2.2 yamt goto fail;
903 1.9.2.2 yamt
904 1.9.2.3 yamt rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
905 1.9.2.2 yamt 0, CTLTYPE_NODE, str, NULL,
906 1.9.2.2 yamt NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
907 1.9.2.2 yamt
908 1.9.2.2 yamt if (rv != 0)
909 1.9.2.2 yamt goto fail;
910 1.9.2.2 yamt
911 1.9.2.3 yamt rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
912 1.9.2.2 yamt 0, CTLTYPE_NODE, "frequency", NULL,
913 1.9.2.2 yamt NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
914 1.9.2.2 yamt
915 1.9.2.2 yamt if (rv != 0)
916 1.9.2.2 yamt goto fail;
917 1.9.2.2 yamt
918 1.9.2.3 yamt rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
919 1.9.2.2 yamt CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
920 1.9.2.2 yamt acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
921 1.9.2.2 yamt
922 1.9.2.2 yamt if (rv != 0)
923 1.9.2.2 yamt goto fail;
924 1.9.2.2 yamt
925 1.9.2.3 yamt rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
926 1.9.2.2 yamt CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
927 1.9.2.2 yamt acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
928 1.9.2.2 yamt
929 1.9.2.2 yamt if (rv != 0)
930 1.9.2.2 yamt goto fail;
931 1.9.2.2 yamt
932 1.9.2.3 yamt rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
933 1.9.2.2 yamt CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
934 1.9.2.2 yamt acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
935 1.9.2.2 yamt
936 1.9.2.2 yamt if (rv != 0)
937 1.9.2.2 yamt goto fail;
938 1.9.2.2 yamt
939 1.9.2.2 yamt return 0;
940 1.9.2.2 yamt
941 1.9.2.2 yamt fail:
942 1.9.2.3 yamt if (acpicpu_log != NULL) {
943 1.9.2.3 yamt sysctl_teardown(&acpicpu_log);
944 1.9.2.3 yamt acpicpu_log = NULL;
945 1.9.2.2 yamt }
946 1.9.2.2 yamt
947 1.9.2.2 yamt return rv;
948 1.9.2.2 yamt }
949 1.9.2.2 yamt
950 1.9.2.2 yamt static int
951 1.9.2.2 yamt acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
952 1.9.2.2 yamt {
953 1.9.2.2 yamt struct cpu_info *ci = curcpu();
954 1.9.2.2 yamt struct acpicpu_softc *sc;
955 1.9.2.2 yamt struct sysctlnode node;
956 1.9.2.2 yamt uint32_t freq;
957 1.9.2.2 yamt int err;
958 1.9.2.2 yamt
959 1.9.2.2 yamt sc = acpicpu_sc[ci->ci_acpiid];
960 1.9.2.2 yamt
961 1.9.2.2 yamt if (sc == NULL)
962 1.9.2.2 yamt return ENXIO;
963 1.9.2.2 yamt
964 1.9.2.2 yamt err = acpicpu_pstate_get(sc, &freq);
965 1.9.2.2 yamt
966 1.9.2.2 yamt if (err != 0)
967 1.9.2.2 yamt return err;
968 1.9.2.2 yamt
969 1.9.2.2 yamt node = *rnode;
970 1.9.2.2 yamt node.sysctl_data = &freq;
971 1.9.2.2 yamt
972 1.9.2.2 yamt err = sysctl_lookup(SYSCTLFN_CALL(&node));
973 1.9.2.2 yamt
974 1.9.2.2 yamt if (err != 0 || newp == NULL)
975 1.9.2.2 yamt return err;
976 1.9.2.2 yamt
977 1.9.2.2 yamt return 0;
978 1.9.2.2 yamt }
979 1.9.2.2 yamt
980 1.9.2.2 yamt static int
981 1.9.2.2 yamt acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
982 1.9.2.2 yamt {
983 1.9.2.2 yamt struct cpu_info *ci = curcpu();
984 1.9.2.2 yamt struct acpicpu_softc *sc;
985 1.9.2.2 yamt struct sysctlnode node;
986 1.9.2.2 yamt uint32_t freq;
987 1.9.2.2 yamt int err;
988 1.9.2.2 yamt
989 1.9.2.2 yamt sc = acpicpu_sc[ci->ci_acpiid];
990 1.9.2.2 yamt
991 1.9.2.2 yamt if (sc == NULL)
992 1.9.2.2 yamt return ENXIO;
993 1.9.2.2 yamt
994 1.9.2.2 yamt err = acpicpu_pstate_get(sc, &freq);
995 1.9.2.2 yamt
996 1.9.2.2 yamt if (err != 0)
997 1.9.2.2 yamt return err;
998 1.9.2.2 yamt
999 1.9.2.2 yamt node = *rnode;
1000 1.9.2.2 yamt node.sysctl_data = &freq;
1001 1.9.2.2 yamt
1002 1.9.2.2 yamt err = sysctl_lookup(SYSCTLFN_CALL(&node));
1003 1.9.2.2 yamt
1004 1.9.2.2 yamt if (err != 0 || newp == NULL)
1005 1.9.2.2 yamt return err;
1006 1.9.2.2 yamt
1007 1.9.2.2 yamt err = acpicpu_pstate_set(sc, freq);
1008 1.9.2.2 yamt
1009 1.9.2.2 yamt if (err != 0)
1010 1.9.2.2 yamt return err;
1011 1.9.2.2 yamt
1012 1.9.2.2 yamt return 0;
1013 1.9.2.2 yamt }
1014 1.9.2.2 yamt
1015 1.9.2.2 yamt static int
1016 1.9.2.2 yamt acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1017 1.9.2.2 yamt {
1018 1.9.2.2 yamt struct cpu_info *ci = curcpu();
1019 1.9.2.2 yamt struct acpicpu_softc *sc;
1020 1.9.2.2 yamt struct sysctlnode node;
1021 1.9.2.2 yamt char buf[1024];
1022 1.9.2.2 yamt size_t len;
1023 1.9.2.2 yamt uint32_t i;
1024 1.9.2.2 yamt int err;
1025 1.9.2.2 yamt
1026 1.9.2.2 yamt sc = acpicpu_sc[ci->ci_acpiid];
1027 1.9.2.2 yamt
1028 1.9.2.2 yamt if (sc == NULL)
1029 1.9.2.2 yamt return ENXIO;
1030 1.9.2.2 yamt
1031 1.9.2.2 yamt (void)memset(&buf, 0, sizeof(buf));
1032 1.9.2.2 yamt
1033 1.9.2.2 yamt mutex_enter(&sc->sc_mtx);
1034 1.9.2.2 yamt
1035 1.9.2.2 yamt for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1036 1.9.2.2 yamt
1037 1.9.2.2 yamt if (sc->sc_pstate[i].ps_freq == 0)
1038 1.9.2.2 yamt continue;
1039 1.9.2.2 yamt
1040 1.9.2.2 yamt len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1041 1.9.2.2 yamt sc->sc_pstate[i].ps_freq,
1042 1.9.2.2 yamt i < (sc->sc_pstate_count - 1) ? " " : "");
1043 1.9.2.2 yamt }
1044 1.9.2.2 yamt
1045 1.9.2.2 yamt mutex_exit(&sc->sc_mtx);
1046 1.9.2.2 yamt
1047 1.9.2.2 yamt node = *rnode;
1048 1.9.2.2 yamt node.sysctl_data = buf;
1049 1.9.2.2 yamt
1050 1.9.2.2 yamt err = sysctl_lookup(SYSCTLFN_CALL(&node));
1051 1.9.2.2 yamt
1052 1.9.2.2 yamt if (err != 0 || newp == NULL)
1053 1.9.2.2 yamt return err;
1054 1.9.2.2 yamt
1055 1.9.2.2 yamt return 0;
1056 1.9.2.2 yamt }
1057 1.9.2.2 yamt
1058