Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.15
      1 /* $NetBSD: acpi_cpu_md.c,v 1.15 2010/08/18 18:32:20 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.15 2010/08/18 18:32:20 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 static char	  native_idle_text[16];
     52 void		(*native_idle)(void) = NULL;
     53 void		(*native_cpu_freq_init)(int) = NULL;
     54 
     55 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
     56 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
     57 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
     58 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
     59 static void	 acpicpu_md_pstate_status(void *, void *);
     60 static void	 acpicpu_md_tstate_status(void *, void *);
     61 
     62 extern uint32_t cpus_running;
     63 extern struct acpicpu_softc **acpicpu_sc;
     64 
     65 uint32_t
     66 acpicpu_md_cap(void)
     67 {
     68 	struct cpu_info *ci = curcpu();
     69 	uint32_t val = 0;
     70 
     71 	if (cpu_vendor != CPUVENDOR_INTEL)
     72 		return val;
     73 
     74 	/*
     75 	 * Basic SMP C-states (required for _CST).
     76 	 */
     77 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
     78 
     79         /*
     80 	 * If MONITOR/MWAIT is available, announce
     81 	 * support for native instructions in all C-states.
     82 	 */
     83         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
     84 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
     85 
     86 	/*
     87 	 * Set native P- and T-states, if available.
     88 	 */
     89         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
     90 		val |= ACPICPU_PDC_P_FFH;
     91 
     92 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
     93 		val |= ACPICPU_PDC_T_FFH;
     94 
     95 	return val;
     96 }
     97 
     98 uint32_t
     99 acpicpu_md_quirks(void)
    100 {
    101 	struct cpu_info *ci = curcpu();
    102 	struct pci_attach_args pa;
    103 	uint32_t val = 0;
    104 
    105 	if (acpicpu_md_cpus_running() == 1)
    106 		val |= ACPICPU_FLAG_C_BM;
    107 
    108 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    109 		val |= ACPICPU_FLAG_C_FFH;
    110 
    111 	switch (cpu_vendor) {
    112 
    113 	case CPUVENDOR_INTEL:
    114 
    115 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    116 			val |= ACPICPU_FLAG_P_FFH;
    117 
    118 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    119 			val |= ACPICPU_FLAG_T_FFH;
    120 
    121 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    122 
    123 		/*
    124 		 * Bus master arbitration is not
    125 		 * needed on some recent Intel CPUs.
    126 		 */
    127 		if (CPUID2FAMILY(ci->ci_signature) > 15)
    128 			val &= ~ACPICPU_FLAG_C_ARB;
    129 
    130 		if (CPUID2FAMILY(ci->ci_signature) == 6 &&
    131 		    CPUID2MODEL(ci->ci_signature) >= 15)
    132 			val &= ~ACPICPU_FLAG_C_ARB;
    133 
    134 		break;
    135 
    136 	case CPUVENDOR_AMD:
    137 
    138 		/*
    139 		 * XXX: Deal with (non-XPSS) PowerNow! and C1E.
    140 		 */
    141 		break;
    142 	}
    143 
    144 	/*
    145 	 * There are several erratums for PIIX4.
    146 	 */
    147 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    148 		val |= ACPICPU_FLAG_PIIX4;
    149 
    150 	return val;
    151 }
    152 
    153 static int
    154 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    155 {
    156 
    157 	/*
    158 	 * XXX: The pci_find_device(9) function only
    159 	 *	deals with attached devices. Change this
    160 	 *	to use something like pci_device_foreach().
    161 	 */
    162 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    163 		return 0;
    164 
    165 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    166 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    167 		return 1;
    168 
    169 	return 0;
    170 }
    171 
    172 uint32_t
    173 acpicpu_md_cpus_running(void)
    174 {
    175 
    176 	return popcount32(cpus_running);
    177 }
    178 
    179 int
    180 acpicpu_md_idle_start(void)
    181 {
    182 	const size_t size = sizeof(native_idle_text);
    183 
    184 	x86_disable_intr();
    185 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    186 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi");
    187 	x86_enable_intr();
    188 
    189 	return 0;
    190 }
    191 
    192 int
    193 acpicpu_md_idle_stop(void)
    194 {
    195 	uint64_t xc;
    196 
    197 	x86_disable_intr();
    198 	x86_cpu_idle_set(native_idle, native_idle_text);
    199 	x86_enable_intr();
    200 
    201 	/*
    202 	 * Run a cross-call to ensure that all CPUs are
    203 	 * out from the ACPI idle-loop before detachment.
    204 	 */
    205 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    206 	xc_wait(xc);
    207 
    208 	return 0;
    209 }
    210 
    211 /*
    212  * The MD idle loop. Called with interrupts disabled.
    213  */
    214 void
    215 acpicpu_md_idle_enter(int method, int state)
    216 {
    217 	struct cpu_info *ci = curcpu();
    218 
    219 	switch (method) {
    220 
    221 	case ACPICPU_C_STATE_FFH:
    222 
    223 		x86_enable_intr();
    224 		x86_monitor(&ci->ci_want_resched, 0, 0);
    225 
    226 		if (__predict_false(ci->ci_want_resched) != 0)
    227 			return;
    228 
    229 		x86_mwait((state - 1) << 4, 0);
    230 		break;
    231 
    232 	case ACPICPU_C_STATE_HALT:
    233 
    234 		if (__predict_false(ci->ci_want_resched) != 0) {
    235 			x86_enable_intr();
    236 			return;
    237 		}
    238 
    239 		x86_stihlt();
    240 		break;
    241 	}
    242 }
    243 
    244 int
    245 acpicpu_md_pstate_start(void)
    246 {
    247 	const struct sysctlnode	*fnode, *mnode, *rnode;
    248 	const char *str;
    249 	int rv;
    250 
    251 	switch (cpu_vendor) {
    252 
    253 	case CPUVENDOR_INTEL:
    254 		str = "est";
    255 		break;
    256 
    257 	case CPUVENDOR_AMD:
    258 		str = "powernow";
    259 		break;
    260 
    261 	default:
    262 		return ENODEV;
    263 	}
    264 
    265 	/*
    266 	 * A kludge for backwards compatibility.
    267 	 */
    268 	native_cpu_freq_init = cpu_freq_init;
    269 
    270 	if (cpu_freq_sysctllog != NULL) {
    271 		sysctl_teardown(&cpu_freq_sysctllog);
    272 		cpu_freq_sysctllog = NULL;
    273 	}
    274 
    275 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, NULL, &rnode,
    276 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    277 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    278 
    279 	if (rv != 0)
    280 		goto fail;
    281 
    282 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &rnode, &mnode,
    283 	    0, CTLTYPE_NODE, str, NULL,
    284 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    285 
    286 	if (rv != 0)
    287 		goto fail;
    288 
    289 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &mnode, &fnode,
    290 	    0, CTLTYPE_NODE, "frequency", NULL,
    291 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    292 
    293 	if (rv != 0)
    294 		goto fail;
    295 
    296 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    297 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    298 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    299 
    300 	if (rv != 0)
    301 		goto fail;
    302 
    303 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    304 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
    305 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    306 
    307 	if (rv != 0)
    308 		goto fail;
    309 
    310 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    311 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
    312 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    313 
    314 	if (rv != 0)
    315 		goto fail;
    316 
    317 	return 0;
    318 
    319 fail:
    320 	if (cpu_freq_sysctllog != NULL) {
    321 		sysctl_teardown(&cpu_freq_sysctllog);
    322 		cpu_freq_sysctllog = NULL;
    323 	}
    324 
    325 	if (native_cpu_freq_init != NULL)
    326 		(*native_cpu_freq_init)(cpu_vendor);
    327 
    328 	return rv;
    329 }
    330 
    331 int
    332 acpicpu_md_pstate_stop(void)
    333 {
    334 
    335 	if (cpu_freq_sysctllog != NULL) {
    336 		sysctl_teardown(&cpu_freq_sysctllog);
    337 		cpu_freq_sysctllog = NULL;
    338 	}
    339 
    340 	if (native_cpu_freq_init != NULL)
    341 		(*native_cpu_freq_init)(cpu_vendor);
    342 
    343 	return 0;
    344 }
    345 
    346 static int
    347 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
    348 {
    349 	struct cpu_info *ci = curcpu();
    350 	struct acpicpu_softc *sc;
    351 	struct sysctlnode node;
    352 	uint32_t freq;
    353 	int err;
    354 
    355 	sc = acpicpu_sc[ci->ci_acpiid];
    356 
    357 	if (sc == NULL)
    358 		return ENXIO;
    359 
    360 	err = acpicpu_pstate_get(sc, &freq);
    361 
    362 	if (err != 0)
    363 		return err;
    364 
    365 	node = *rnode;
    366 	node.sysctl_data = &freq;
    367 
    368 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    369 
    370 	if (err != 0 || newp == NULL)
    371 		return err;
    372 
    373 	return 0;
    374 }
    375 
    376 static int
    377 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
    378 {
    379 	struct cpu_info *ci = curcpu();
    380 	struct acpicpu_softc *sc;
    381 	struct sysctlnode node;
    382 	uint32_t freq;
    383 	int err;
    384 
    385 	sc = acpicpu_sc[ci->ci_acpiid];
    386 
    387 	if (sc == NULL)
    388 		return ENXIO;
    389 
    390 	err = acpicpu_pstate_get(sc, &freq);
    391 
    392 	if (err != 0)
    393 		return err;
    394 
    395 	node = *rnode;
    396 	node.sysctl_data = &freq;
    397 
    398 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    399 
    400 	if (err != 0 || newp == NULL)
    401 		return err;
    402 
    403 	err = acpicpu_pstate_set(sc, freq);
    404 
    405 	if (err != 0)
    406 		return err;
    407 
    408 	return 0;
    409 }
    410 
    411 static int
    412 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
    413 {
    414 	struct cpu_info *ci = curcpu();
    415 	struct acpicpu_softc *sc;
    416 	struct sysctlnode node;
    417 	char buf[1024];
    418 	size_t len;
    419 	uint32_t i;
    420 	int err;
    421 
    422 	sc = acpicpu_sc[ci->ci_acpiid];
    423 
    424 	if (sc == NULL)
    425 		return ENXIO;
    426 
    427 	(void)memset(&buf, 0, sizeof(buf));
    428 
    429 	mutex_enter(&sc->sc_mtx);
    430 
    431 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
    432 
    433 		if (sc->sc_pstate[i].ps_freq == 0)
    434 			continue;
    435 
    436 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
    437 		    sc->sc_pstate[i].ps_freq,
    438 		    i < (sc->sc_pstate_count - 1) ? " " : "");
    439 	}
    440 
    441 	mutex_exit(&sc->sc_mtx);
    442 
    443 	node = *rnode;
    444 	node.sysctl_data = buf;
    445 
    446 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    447 
    448 	if (err != 0 || newp == NULL)
    449 		return err;
    450 
    451 	return 0;
    452 }
    453 
    454 int
    455 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    456 {
    457 	struct acpicpu_pstate *ps, msr;
    458 	uint32_t i = 0;
    459 
    460 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    461 
    462 	switch (cpu_vendor) {
    463 
    464 	case CPUVENDOR_INTEL:
    465 		msr.ps_control_addr = MSR_PERF_CTL;
    466 		msr.ps_control_mask = __BITS(0, 15);
    467 
    468 		msr.ps_status_addr  = MSR_PERF_STATUS;
    469 		msr.ps_status_mask  = __BITS(0, 15);
    470 		break;
    471 
    472 	case CPUVENDOR_AMD:
    473 
    474 		if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    475 			return EOPNOTSUPP;
    476 
    477 		break;
    478 
    479 	default:
    480 		return ENODEV;
    481 	}
    482 
    483 	while (i < sc->sc_pstate_count) {
    484 
    485 		ps = &sc->sc_pstate[i];
    486 
    487 		if (ps->ps_status_addr == 0)
    488 			ps->ps_status_addr = msr.ps_status_addr;
    489 
    490 		if (ps->ps_status_mask == 0)
    491 			ps->ps_status_mask = msr.ps_status_mask;
    492 
    493 		if (ps->ps_control_addr == 0)
    494 			ps->ps_control_addr = msr.ps_control_addr;
    495 
    496 		if (ps->ps_control_mask == 0)
    497 			ps->ps_control_mask = msr.ps_control_mask;
    498 
    499 		i++;
    500 	}
    501 
    502 	return 0;
    503 }
    504 
    505 int
    506 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    507 {
    508 	struct acpicpu_pstate *ps = NULL;
    509 	uint64_t val;
    510 	uint32_t i;
    511 
    512 	for (i = 0; i < sc->sc_pstate_count; i++) {
    513 
    514 		ps = &sc->sc_pstate[i];
    515 
    516 		if (ps->ps_freq != 0)
    517 			break;
    518 	}
    519 
    520 	if (__predict_false(ps == NULL))
    521 		return EINVAL;
    522 
    523 	if (ps->ps_status_addr == 0)
    524 		return EINVAL;
    525 
    526 	val = rdmsr(ps->ps_status_addr);
    527 
    528 	if (ps->ps_status_mask != 0)
    529 		val = val & ps->ps_status_mask;
    530 
    531 	for (i = 0; i < sc->sc_pstate_count; i++) {
    532 
    533 		ps = &sc->sc_pstate[i];
    534 
    535 		if (ps->ps_freq == 0)
    536 			continue;
    537 
    538 		if (val == ps->ps_status) {
    539 			*freq = ps->ps_freq;
    540 			return 0;
    541 		}
    542 	}
    543 
    544 	return EIO;
    545 }
    546 
    547 int
    548 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    549 {
    550 	struct msr_rw_info msr;
    551 	uint64_t xc;
    552 	int rv = 0;
    553 
    554 	msr.msr_read  = false;
    555 	msr.msr_type  = ps->ps_control_addr;
    556 	msr.msr_value = ps->ps_control;
    557 
    558 	if (ps->ps_control_mask != 0) {
    559 		msr.msr_mask = ps->ps_control_mask;
    560 		msr.msr_read = true;
    561 	}
    562 
    563 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    564 	xc_wait(xc);
    565 
    566 	if (ps->ps_status_addr == 0)
    567 		return 0;
    568 
    569 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    570 	xc_wait(xc);
    571 
    572 	return rv;
    573 }
    574 
    575 static void
    576 acpicpu_md_pstate_status(void *arg1, void *arg2)
    577 {
    578 	struct acpicpu_pstate *ps = arg1;
    579 	uint64_t val;
    580 	int i;
    581 
    582 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    583 
    584 		val = rdmsr(ps->ps_status_addr);
    585 
    586 		if (ps->ps_status_mask != 0)
    587 			val = val & ps->ps_status_mask;
    588 
    589 		if (val == ps->ps_status)
    590 			return;
    591 
    592 		DELAY(ps->ps_latency);
    593 	}
    594 
    595 	*(uintptr_t *)arg2 = EAGAIN;
    596 }
    597 
    598 int
    599 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    600 {
    601 	struct acpicpu_tstate *ts;
    602 	uint64_t val;
    603 	uint32_t i;
    604 
    605 	if (cpu_vendor != CPUVENDOR_INTEL)
    606 		return ENODEV;
    607 
    608 	val = rdmsr(MSR_THERM_CONTROL);
    609 
    610 	for (i = 0; i < sc->sc_tstate_count; i++) {
    611 
    612 		ts = &sc->sc_tstate[i];
    613 
    614 		if (ts->ts_percent == 0)
    615 			continue;
    616 
    617 		if (val == ts->ts_control || val == ts->ts_status) {
    618 			*percent = ts->ts_percent;
    619 			return 0;
    620 		}
    621 	}
    622 
    623 	return EIO;
    624 }
    625 
    626 int
    627 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    628 {
    629 	struct msr_rw_info msr;
    630 	uint64_t xc;
    631 	int rv = 0;
    632 
    633 	if (cpu_vendor != CPUVENDOR_INTEL)
    634 		return ENODEV;
    635 
    636 	msr.msr_read  = true;
    637 	msr.msr_type  = MSR_THERM_CONTROL;
    638 	msr.msr_value = ts->ts_control;
    639 	msr.msr_mask = __BITS(1, 4);
    640 
    641 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    642 	xc_wait(xc);
    643 
    644 	if (ts->ts_status == 0)
    645 		return 0;
    646 
    647 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    648 	xc_wait(xc);
    649 
    650 	return rv;
    651 }
    652 
    653 static void
    654 acpicpu_md_tstate_status(void *arg1, void *arg2)
    655 {
    656 	struct acpicpu_tstate *ts = arg1;
    657 	uint64_t val;
    658 	int i;
    659 
    660 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    661 
    662 		val = rdmsr(MSR_THERM_CONTROL);
    663 
    664 		if (val == ts->ts_status)
    665 			return;
    666 
    667 		DELAY(ts->ts_latency);
    668 	}
    669 
    670 	*(uintptr_t *)arg2 = EAGAIN;
    671 }
    672