Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.16
      1 /* $NetBSD: acpi_cpu_md.c,v 1.16 2010/08/19 11:08:33 jmcneill Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.16 2010/08/19 11:08:33 jmcneill Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 static char	  native_idle_text[16];
     52 void		(*native_idle)(void) = NULL;
     53 void		(*native_cpu_freq_init)(int) = NULL;
     54 
     55 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
     56 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
     57 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
     58 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
     59 static void	 acpicpu_md_pstate_status(void *, void *);
     60 static void	 acpicpu_md_tstate_status(void *, void *);
     61 
     62 extern uint32_t cpus_running;
     63 extern struct acpicpu_softc **acpicpu_sc;
     64 
     65 uint32_t
     66 acpicpu_md_cap(void)
     67 {
     68 	struct cpu_info *ci = curcpu();
     69 	uint32_t val = 0;
     70 
     71 	switch (cpu_vendor) {
     72 	case CPUVENDOR_INTEL:
     73 	case CPUVENDOR_IDT:
     74 		break;
     75 	default:
     76 		return val;
     77 	}
     78 
     79 	/*
     80 	 * Basic SMP C-states (required for _CST).
     81 	 */
     82 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
     83 
     84         /*
     85 	 * If MONITOR/MWAIT is available, announce
     86 	 * support for native instructions in all C-states.
     87 	 */
     88         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
     89 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
     90 
     91 	/*
     92 	 * Set native P- and T-states, if available.
     93 	 */
     94         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
     95 		val |= ACPICPU_PDC_P_FFH;
     96 
     97 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
     98 		val |= ACPICPU_PDC_T_FFH;
     99 
    100 	return val;
    101 }
    102 
    103 uint32_t
    104 acpicpu_md_quirks(void)
    105 {
    106 	struct cpu_info *ci = curcpu();
    107 	struct pci_attach_args pa;
    108 	uint32_t val = 0;
    109 
    110 	if (acpicpu_md_cpus_running() == 1)
    111 		val |= ACPICPU_FLAG_C_BM;
    112 
    113 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    114 		val |= ACPICPU_FLAG_C_FFH;
    115 
    116 	switch (cpu_vendor) {
    117 
    118 	case CPUVENDOR_INTEL:
    119 	case CPUVENDOR_IDT:
    120 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    121 			val |= ACPICPU_FLAG_P_FFH;
    122 
    123 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    124 			val |= ACPICPU_FLAG_T_FFH;
    125 
    126 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    127 
    128 		/*
    129 		 * Bus master arbitration is not
    130 		 * needed on some recent Intel CPUs.
    131 		 */
    132 		if (cpu_vendor == CPUVENDOR_INTEL &&
    133 		    CPUID2FAMILY(ci->ci_signature) > 15)
    134 			val &= ~ACPICPU_FLAG_C_ARB;
    135 
    136 		if (cpu_vendor == CPUVENDOR_INTEL &&
    137 		    CPUID2FAMILY(ci->ci_signature) == 6 &&
    138 		    CPUID2MODEL(ci->ci_signature) >= 15)
    139 			val &= ~ACPICPU_FLAG_C_ARB;
    140 
    141 		break;
    142 
    143 	case CPUVENDOR_AMD:
    144 
    145 		/*
    146 		 * XXX: Deal with (non-XPSS) PowerNow! and C1E.
    147 		 */
    148 		break;
    149 	}
    150 
    151 	/*
    152 	 * There are several erratums for PIIX4.
    153 	 */
    154 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    155 		val |= ACPICPU_FLAG_PIIX4;
    156 
    157 	return val;
    158 }
    159 
    160 static int
    161 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    162 {
    163 
    164 	/*
    165 	 * XXX: The pci_find_device(9) function only
    166 	 *	deals with attached devices. Change this
    167 	 *	to use something like pci_device_foreach().
    168 	 */
    169 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    170 		return 0;
    171 
    172 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    173 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    174 		return 1;
    175 
    176 	return 0;
    177 }
    178 
    179 uint32_t
    180 acpicpu_md_cpus_running(void)
    181 {
    182 
    183 	return popcount32(cpus_running);
    184 }
    185 
    186 int
    187 acpicpu_md_idle_start(void)
    188 {
    189 	const size_t size = sizeof(native_idle_text);
    190 
    191 	x86_disable_intr();
    192 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    193 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi");
    194 	x86_enable_intr();
    195 
    196 	return 0;
    197 }
    198 
    199 int
    200 acpicpu_md_idle_stop(void)
    201 {
    202 	uint64_t xc;
    203 
    204 	x86_disable_intr();
    205 	x86_cpu_idle_set(native_idle, native_idle_text);
    206 	x86_enable_intr();
    207 
    208 	/*
    209 	 * Run a cross-call to ensure that all CPUs are
    210 	 * out from the ACPI idle-loop before detachment.
    211 	 */
    212 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    213 	xc_wait(xc);
    214 
    215 	return 0;
    216 }
    217 
    218 /*
    219  * The MD idle loop. Called with interrupts disabled.
    220  */
    221 void
    222 acpicpu_md_idle_enter(int method, int state)
    223 {
    224 	struct cpu_info *ci = curcpu();
    225 
    226 	switch (method) {
    227 
    228 	case ACPICPU_C_STATE_FFH:
    229 
    230 		x86_enable_intr();
    231 		x86_monitor(&ci->ci_want_resched, 0, 0);
    232 
    233 		if (__predict_false(ci->ci_want_resched) != 0)
    234 			return;
    235 
    236 		x86_mwait((state - 1) << 4, 0);
    237 		break;
    238 
    239 	case ACPICPU_C_STATE_HALT:
    240 
    241 		if (__predict_false(ci->ci_want_resched) != 0) {
    242 			x86_enable_intr();
    243 			return;
    244 		}
    245 
    246 		x86_stihlt();
    247 		break;
    248 	}
    249 }
    250 
    251 int
    252 acpicpu_md_pstate_start(void)
    253 {
    254 	const struct sysctlnode	*fnode, *mnode, *rnode;
    255 	const char *str;
    256 	int rv;
    257 
    258 	switch (cpu_vendor) {
    259 
    260 	case CPUVENDOR_INTEL:
    261 	case CPUVENDOR_IDT:
    262 		str = "est";
    263 		break;
    264 
    265 	case CPUVENDOR_AMD:
    266 		str = "powernow";
    267 		break;
    268 
    269 	default:
    270 		return ENODEV;
    271 	}
    272 
    273 	/*
    274 	 * A kludge for backwards compatibility.
    275 	 */
    276 	native_cpu_freq_init = cpu_freq_init;
    277 
    278 	if (cpu_freq_sysctllog != NULL) {
    279 		sysctl_teardown(&cpu_freq_sysctllog);
    280 		cpu_freq_sysctllog = NULL;
    281 	}
    282 
    283 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, NULL, &rnode,
    284 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    285 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    286 
    287 	if (rv != 0)
    288 		goto fail;
    289 
    290 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &rnode, &mnode,
    291 	    0, CTLTYPE_NODE, str, NULL,
    292 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    293 
    294 	if (rv != 0)
    295 		goto fail;
    296 
    297 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &mnode, &fnode,
    298 	    0, CTLTYPE_NODE, "frequency", NULL,
    299 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    300 
    301 	if (rv != 0)
    302 		goto fail;
    303 
    304 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    305 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    306 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    307 
    308 	if (rv != 0)
    309 		goto fail;
    310 
    311 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    312 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
    313 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    314 
    315 	if (rv != 0)
    316 		goto fail;
    317 
    318 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    319 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
    320 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    321 
    322 	if (rv != 0)
    323 		goto fail;
    324 
    325 	return 0;
    326 
    327 fail:
    328 	if (cpu_freq_sysctllog != NULL) {
    329 		sysctl_teardown(&cpu_freq_sysctllog);
    330 		cpu_freq_sysctllog = NULL;
    331 	}
    332 
    333 	if (native_cpu_freq_init != NULL)
    334 		(*native_cpu_freq_init)(cpu_vendor);
    335 
    336 	return rv;
    337 }
    338 
    339 int
    340 acpicpu_md_pstate_stop(void)
    341 {
    342 
    343 	if (cpu_freq_sysctllog != NULL) {
    344 		sysctl_teardown(&cpu_freq_sysctllog);
    345 		cpu_freq_sysctllog = NULL;
    346 	}
    347 
    348 	if (native_cpu_freq_init != NULL)
    349 		(*native_cpu_freq_init)(cpu_vendor);
    350 
    351 	return 0;
    352 }
    353 
    354 static int
    355 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
    356 {
    357 	struct cpu_info *ci = curcpu();
    358 	struct acpicpu_softc *sc;
    359 	struct sysctlnode node;
    360 	uint32_t freq;
    361 	int err;
    362 
    363 	sc = acpicpu_sc[ci->ci_acpiid];
    364 
    365 	if (sc == NULL)
    366 		return ENXIO;
    367 
    368 	err = acpicpu_pstate_get(sc, &freq);
    369 
    370 	if (err != 0)
    371 		return err;
    372 
    373 	node = *rnode;
    374 	node.sysctl_data = &freq;
    375 
    376 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    377 
    378 	if (err != 0 || newp == NULL)
    379 		return err;
    380 
    381 	return 0;
    382 }
    383 
    384 static int
    385 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
    386 {
    387 	struct cpu_info *ci = curcpu();
    388 	struct acpicpu_softc *sc;
    389 	struct sysctlnode node;
    390 	uint32_t freq;
    391 	int err;
    392 
    393 	sc = acpicpu_sc[ci->ci_acpiid];
    394 
    395 	if (sc == NULL)
    396 		return ENXIO;
    397 
    398 	err = acpicpu_pstate_get(sc, &freq);
    399 
    400 	if (err != 0)
    401 		return err;
    402 
    403 	node = *rnode;
    404 	node.sysctl_data = &freq;
    405 
    406 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    407 
    408 	if (err != 0 || newp == NULL)
    409 		return err;
    410 
    411 	err = acpicpu_pstate_set(sc, freq);
    412 
    413 	if (err != 0)
    414 		return err;
    415 
    416 	return 0;
    417 }
    418 
    419 static int
    420 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
    421 {
    422 	struct cpu_info *ci = curcpu();
    423 	struct acpicpu_softc *sc;
    424 	struct sysctlnode node;
    425 	char buf[1024];
    426 	size_t len;
    427 	uint32_t i;
    428 	int err;
    429 
    430 	sc = acpicpu_sc[ci->ci_acpiid];
    431 
    432 	if (sc == NULL)
    433 		return ENXIO;
    434 
    435 	(void)memset(&buf, 0, sizeof(buf));
    436 
    437 	mutex_enter(&sc->sc_mtx);
    438 
    439 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
    440 
    441 		if (sc->sc_pstate[i].ps_freq == 0)
    442 			continue;
    443 
    444 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
    445 		    sc->sc_pstate[i].ps_freq,
    446 		    i < (sc->sc_pstate_count - 1) ? " " : "");
    447 	}
    448 
    449 	mutex_exit(&sc->sc_mtx);
    450 
    451 	node = *rnode;
    452 	node.sysctl_data = buf;
    453 
    454 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    455 
    456 	if (err != 0 || newp == NULL)
    457 		return err;
    458 
    459 	return 0;
    460 }
    461 
    462 int
    463 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    464 {
    465 	struct acpicpu_pstate *ps, msr;
    466 	uint32_t i = 0;
    467 
    468 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    469 
    470 	switch (cpu_vendor) {
    471 
    472 	case CPUVENDOR_INTEL:
    473 	case CPUVENDOR_IDT:
    474 		msr.ps_control_addr = MSR_PERF_CTL;
    475 		msr.ps_control_mask = __BITS(0, 15);
    476 
    477 		msr.ps_status_addr  = MSR_PERF_STATUS;
    478 		msr.ps_status_mask  = __BITS(0, 15);
    479 		break;
    480 
    481 	case CPUVENDOR_AMD:
    482 
    483 		if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    484 			return EOPNOTSUPP;
    485 
    486 		break;
    487 
    488 	default:
    489 		return ENODEV;
    490 	}
    491 
    492 	while (i < sc->sc_pstate_count) {
    493 
    494 		ps = &sc->sc_pstate[i];
    495 
    496 		if (ps->ps_status_addr == 0)
    497 			ps->ps_status_addr = msr.ps_status_addr;
    498 
    499 		if (ps->ps_status_mask == 0)
    500 			ps->ps_status_mask = msr.ps_status_mask;
    501 
    502 		if (ps->ps_control_addr == 0)
    503 			ps->ps_control_addr = msr.ps_control_addr;
    504 
    505 		if (ps->ps_control_mask == 0)
    506 			ps->ps_control_mask = msr.ps_control_mask;
    507 
    508 		i++;
    509 	}
    510 
    511 	return 0;
    512 }
    513 
    514 int
    515 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    516 {
    517 	struct acpicpu_pstate *ps = NULL;
    518 	uint64_t val;
    519 	uint32_t i;
    520 
    521 	for (i = 0; i < sc->sc_pstate_count; i++) {
    522 
    523 		ps = &sc->sc_pstate[i];
    524 
    525 		if (ps->ps_freq != 0)
    526 			break;
    527 	}
    528 
    529 	if (__predict_false(ps == NULL))
    530 		return EINVAL;
    531 
    532 	if (ps->ps_status_addr == 0)
    533 		return EINVAL;
    534 
    535 	val = rdmsr(ps->ps_status_addr);
    536 
    537 	if (ps->ps_status_mask != 0)
    538 		val = val & ps->ps_status_mask;
    539 
    540 	for (i = 0; i < sc->sc_pstate_count; i++) {
    541 
    542 		ps = &sc->sc_pstate[i];
    543 
    544 		if (ps->ps_freq == 0)
    545 			continue;
    546 
    547 		if (val == ps->ps_status) {
    548 			*freq = ps->ps_freq;
    549 			return 0;
    550 		}
    551 	}
    552 
    553 	return EIO;
    554 }
    555 
    556 int
    557 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    558 {
    559 	struct msr_rw_info msr;
    560 	uint64_t xc;
    561 	int rv = 0;
    562 
    563 	msr.msr_read  = false;
    564 	msr.msr_type  = ps->ps_control_addr;
    565 	msr.msr_value = ps->ps_control;
    566 
    567 	if (ps->ps_control_mask != 0) {
    568 		msr.msr_mask = ps->ps_control_mask;
    569 		msr.msr_read = true;
    570 	}
    571 
    572 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    573 	xc_wait(xc);
    574 
    575 	if (ps->ps_status_addr == 0)
    576 		return 0;
    577 
    578 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    579 	xc_wait(xc);
    580 
    581 	return rv;
    582 }
    583 
    584 static void
    585 acpicpu_md_pstate_status(void *arg1, void *arg2)
    586 {
    587 	struct acpicpu_pstate *ps = arg1;
    588 	uint64_t val;
    589 	int i;
    590 
    591 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    592 
    593 		val = rdmsr(ps->ps_status_addr);
    594 
    595 		if (ps->ps_status_mask != 0)
    596 			val = val & ps->ps_status_mask;
    597 
    598 		if (val == ps->ps_status)
    599 			return;
    600 
    601 		DELAY(ps->ps_latency);
    602 	}
    603 
    604 	*(uintptr_t *)arg2 = EAGAIN;
    605 }
    606 
    607 int
    608 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    609 {
    610 	struct acpicpu_tstate *ts;
    611 	uint64_t val;
    612 	uint32_t i;
    613 
    614 	if (cpu_vendor != CPUVENDOR_INTEL &&
    615 	    cpu_vendor != CPUVENDOR_IDT)
    616 		return ENODEV;
    617 
    618 	val = rdmsr(MSR_THERM_CONTROL);
    619 
    620 	for (i = 0; i < sc->sc_tstate_count; i++) {
    621 
    622 		ts = &sc->sc_tstate[i];
    623 
    624 		if (ts->ts_percent == 0)
    625 			continue;
    626 
    627 		if (val == ts->ts_control || val == ts->ts_status) {
    628 			*percent = ts->ts_percent;
    629 			return 0;
    630 		}
    631 	}
    632 
    633 	return EIO;
    634 }
    635 
    636 int
    637 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    638 {
    639 	struct msr_rw_info msr;
    640 	uint64_t xc;
    641 	int rv = 0;
    642 
    643 	if (cpu_vendor != CPUVENDOR_INTEL &&
    644 	    cpu_vendor != CPUVENDOR_IDT)
    645 		return ENODEV;
    646 
    647 	msr.msr_read  = true;
    648 	msr.msr_type  = MSR_THERM_CONTROL;
    649 	msr.msr_value = ts->ts_control;
    650 	msr.msr_mask = __BITS(1, 4);
    651 
    652 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    653 	xc_wait(xc);
    654 
    655 	if (ts->ts_status == 0)
    656 		return 0;
    657 
    658 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    659 	xc_wait(xc);
    660 
    661 	return rv;
    662 }
    663 
    664 static void
    665 acpicpu_md_tstate_status(void *arg1, void *arg2)
    666 {
    667 	struct acpicpu_tstate *ts = arg1;
    668 	uint64_t val;
    669 	int i;
    670 
    671 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    672 
    673 		val = rdmsr(MSR_THERM_CONTROL);
    674 
    675 		if (val == ts->ts_status)
    676 			return;
    677 
    678 		DELAY(ts->ts_latency);
    679 	}
    680 
    681 	*(uintptr_t *)arg2 = EAGAIN;
    682 }
    683