Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.17
      1 /* $NetBSD: acpi_cpu_md.c,v 1.17 2010/08/19 18:30:24 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.17 2010/08/19 18:30:24 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #define MSR_0FH_CONTROL		0xc0010041 /* Family 0Fh (and K7).  */
     52 #define MSR_0FH_STATUS		0xc0010042
     53 
     54 #define MSR_10H_LIMIT		0xc0010061 /* Families 10h and 11h. */
     55 #define MSR_10H_CONTROL		0xc0010062
     56 #define MSR_10H_STATUS		0xc0010063
     57 #define MSR_10H_CONFIG		0xc0010064
     58 
     59 static char	  native_idle_text[16];
     60 void		(*native_idle)(void) = NULL;
     61 void		(*native_cpu_freq_init)(int) = NULL;
     62 
     63 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
     64 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
     65 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
     66 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
     67 static void	 acpicpu_md_pstate_status(void *, void *);
     68 static void	 acpicpu_md_tstate_status(void *, void *);
     69 
     70 extern uint32_t cpus_running;
     71 extern struct acpicpu_softc **acpicpu_sc;
     72 
     73 uint32_t
     74 acpicpu_md_cap(void)
     75 {
     76 	struct cpu_info *ci = curcpu();
     77 	uint32_t val = 0;
     78 
     79 	if (cpu_vendor != CPUVENDOR_IDT &&
     80 	    cpu_vendor != CPUVENDOR_INTEL)
     81 		return val;
     82 
     83 	/*
     84 	 * Basic SMP C-states (required for _CST).
     85 	 */
     86 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
     87 
     88         /*
     89 	 * If MONITOR/MWAIT is available, announce
     90 	 * support for native instructions in all C-states.
     91 	 */
     92         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
     93 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
     94 
     95 	/*
     96 	 * Set native P- and T-states, if available.
     97 	 */
     98         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
     99 		val |= ACPICPU_PDC_P_FFH;
    100 
    101 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    102 		val |= ACPICPU_PDC_T_FFH;
    103 
    104 	return val;
    105 }
    106 
    107 uint32_t
    108 acpicpu_md_quirks(void)
    109 {
    110 	struct cpu_info *ci = curcpu();
    111 	struct pci_attach_args pa;
    112 	uint32_t val = 0;
    113 
    114 	if (acpicpu_md_cpus_running() == 1)
    115 		val |= ACPICPU_FLAG_C_BM;
    116 
    117 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    118 		val |= ACPICPU_FLAG_C_FFH;
    119 
    120 	switch (cpu_vendor) {
    121 
    122 	case CPUVENDOR_IDT:
    123 	case CPUVENDOR_INTEL:
    124 
    125 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    126 			val |= ACPICPU_FLAG_P_FFH;
    127 
    128 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    129 			val |= ACPICPU_FLAG_T_FFH;
    130 
    131 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    132 		break;
    133 
    134 	case CPUVENDOR_AMD:
    135 
    136 		switch (CPUID2FAMILY(ci->ci_signature)) {
    137 
    138 		case 0x10:
    139 		case 0x11:
    140 
    141 			if ((ci->ci_feat_val[2] & CPUID_APM_HWP) != 0)
    142 				val |= ACPICPU_FLAG_P_FFH;
    143 		}
    144 
    145 		break;
    146 	}
    147 
    148 	/*
    149 	 * There are several erratums for PIIX4.
    150 	 */
    151 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    152 		val |= ACPICPU_FLAG_PIIX4;
    153 
    154 	return val;
    155 }
    156 
    157 static int
    158 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    159 {
    160 
    161 	/*
    162 	 * XXX: The pci_find_device(9) function only
    163 	 *	deals with attached devices. Change this
    164 	 *	to use something like pci_device_foreach().
    165 	 */
    166 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    167 		return 0;
    168 
    169 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    170 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    171 		return 1;
    172 
    173 	return 0;
    174 }
    175 
    176 uint32_t
    177 acpicpu_md_cpus_running(void)
    178 {
    179 
    180 	return popcount32(cpus_running);
    181 }
    182 
    183 int
    184 acpicpu_md_idle_start(void)
    185 {
    186 	const size_t size = sizeof(native_idle_text);
    187 
    188 	x86_disable_intr();
    189 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    190 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi");
    191 	x86_enable_intr();
    192 
    193 	return 0;
    194 }
    195 
    196 int
    197 acpicpu_md_idle_stop(void)
    198 {
    199 	uint64_t xc;
    200 
    201 	x86_disable_intr();
    202 	x86_cpu_idle_set(native_idle, native_idle_text);
    203 	x86_enable_intr();
    204 
    205 	/*
    206 	 * Run a cross-call to ensure that all CPUs are
    207 	 * out from the ACPI idle-loop before detachment.
    208 	 */
    209 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    210 	xc_wait(xc);
    211 
    212 	return 0;
    213 }
    214 
    215 /*
    216  * The MD idle loop. Called with interrupts disabled.
    217  */
    218 void
    219 acpicpu_md_idle_enter(int method, int state)
    220 {
    221 	struct cpu_info *ci = curcpu();
    222 
    223 	switch (method) {
    224 
    225 	case ACPICPU_C_STATE_FFH:
    226 
    227 		x86_enable_intr();
    228 		x86_monitor(&ci->ci_want_resched, 0, 0);
    229 
    230 		if (__predict_false(ci->ci_want_resched) != 0)
    231 			return;
    232 
    233 		x86_mwait((state - 1) << 4, 0);
    234 		break;
    235 
    236 	case ACPICPU_C_STATE_HALT:
    237 
    238 		if (__predict_false(ci->ci_want_resched) != 0) {
    239 			x86_enable_intr();
    240 			return;
    241 		}
    242 
    243 		x86_stihlt();
    244 		break;
    245 	}
    246 }
    247 
    248 int
    249 acpicpu_md_pstate_start(void)
    250 {
    251 	const struct sysctlnode	*fnode, *mnode, *rnode;
    252 	const char *str;
    253 	int rv;
    254 
    255 	switch (cpu_vendor) {
    256 
    257 	case CPUVENDOR_INTEL:
    258 	case CPUVENDOR_IDT:
    259 		str = "est";
    260 		break;
    261 
    262 	case CPUVENDOR_AMD:
    263 		str = "powernow";
    264 		break;
    265 
    266 	default:
    267 		return ENODEV;
    268 	}
    269 
    270 	/*
    271 	 * A kludge for backwards compatibility.
    272 	 */
    273 	native_cpu_freq_init = cpu_freq_init;
    274 
    275 	if (cpu_freq_sysctllog != NULL) {
    276 		sysctl_teardown(&cpu_freq_sysctllog);
    277 		cpu_freq_sysctllog = NULL;
    278 	}
    279 
    280 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, NULL, &rnode,
    281 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    282 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    283 
    284 	if (rv != 0)
    285 		goto fail;
    286 
    287 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &rnode, &mnode,
    288 	    0, CTLTYPE_NODE, str, NULL,
    289 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    290 
    291 	if (rv != 0)
    292 		goto fail;
    293 
    294 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &mnode, &fnode,
    295 	    0, CTLTYPE_NODE, "frequency", NULL,
    296 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    297 
    298 	if (rv != 0)
    299 		goto fail;
    300 
    301 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    302 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    303 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    304 
    305 	if (rv != 0)
    306 		goto fail;
    307 
    308 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    309 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
    310 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    311 
    312 	if (rv != 0)
    313 		goto fail;
    314 
    315 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    316 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
    317 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    318 
    319 	if (rv != 0)
    320 		goto fail;
    321 
    322 	return 0;
    323 
    324 fail:
    325 	if (cpu_freq_sysctllog != NULL) {
    326 		sysctl_teardown(&cpu_freq_sysctllog);
    327 		cpu_freq_sysctllog = NULL;
    328 	}
    329 
    330 	if (native_cpu_freq_init != NULL)
    331 		(*native_cpu_freq_init)(cpu_vendor);
    332 
    333 	return rv;
    334 }
    335 
    336 int
    337 acpicpu_md_pstate_stop(void)
    338 {
    339 
    340 	if (cpu_freq_sysctllog != NULL) {
    341 		sysctl_teardown(&cpu_freq_sysctllog);
    342 		cpu_freq_sysctllog = NULL;
    343 	}
    344 
    345 	if (native_cpu_freq_init != NULL)
    346 		(*native_cpu_freq_init)(cpu_vendor);
    347 
    348 	return 0;
    349 }
    350 
    351 static int
    352 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
    353 {
    354 	struct cpu_info *ci = curcpu();
    355 	struct acpicpu_softc *sc;
    356 	struct sysctlnode node;
    357 	uint32_t freq;
    358 	int err;
    359 
    360 	sc = acpicpu_sc[ci->ci_acpiid];
    361 
    362 	if (sc == NULL)
    363 		return ENXIO;
    364 
    365 	err = acpicpu_pstate_get(sc, &freq);
    366 
    367 	if (err != 0)
    368 		return err;
    369 
    370 	node = *rnode;
    371 	node.sysctl_data = &freq;
    372 
    373 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    374 
    375 	if (err != 0 || newp == NULL)
    376 		return err;
    377 
    378 	return 0;
    379 }
    380 
    381 static int
    382 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
    383 {
    384 	struct cpu_info *ci = curcpu();
    385 	struct acpicpu_softc *sc;
    386 	struct sysctlnode node;
    387 	uint32_t freq;
    388 	int err;
    389 
    390 	sc = acpicpu_sc[ci->ci_acpiid];
    391 
    392 	if (sc == NULL)
    393 		return ENXIO;
    394 
    395 	err = acpicpu_pstate_get(sc, &freq);
    396 
    397 	if (err != 0)
    398 		return err;
    399 
    400 	node = *rnode;
    401 	node.sysctl_data = &freq;
    402 
    403 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    404 
    405 	if (err != 0 || newp == NULL)
    406 		return err;
    407 
    408 	err = acpicpu_pstate_set(sc, freq);
    409 
    410 	if (err != 0)
    411 		return err;
    412 
    413 	return 0;
    414 }
    415 
    416 static int
    417 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
    418 {
    419 	struct cpu_info *ci = curcpu();
    420 	struct acpicpu_softc *sc;
    421 	struct sysctlnode node;
    422 	char buf[1024];
    423 	size_t len;
    424 	uint32_t i;
    425 	int err;
    426 
    427 	sc = acpicpu_sc[ci->ci_acpiid];
    428 
    429 	if (sc == NULL)
    430 		return ENXIO;
    431 
    432 	(void)memset(&buf, 0, sizeof(buf));
    433 
    434 	mutex_enter(&sc->sc_mtx);
    435 
    436 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
    437 
    438 		if (sc->sc_pstate[i].ps_freq == 0)
    439 			continue;
    440 
    441 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
    442 		    sc->sc_pstate[i].ps_freq,
    443 		    i < (sc->sc_pstate_count - 1) ? " " : "");
    444 	}
    445 
    446 	mutex_exit(&sc->sc_mtx);
    447 
    448 	node = *rnode;
    449 	node.sysctl_data = buf;
    450 
    451 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    452 
    453 	if (err != 0 || newp == NULL)
    454 		return err;
    455 
    456 	return 0;
    457 }
    458 
    459 int
    460 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    461 {
    462 	struct acpicpu_pstate *ps, msr;
    463 	struct cpu_info *ci = curcpu();
    464 	uint32_t i = 0;
    465 
    466 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    467 
    468 	switch (cpu_vendor) {
    469 
    470 	case CPUVENDOR_IDT:
    471 	case CPUVENDOR_INTEL:
    472 		msr.ps_control_addr = MSR_PERF_CTL;
    473 		msr.ps_control_mask = __BITS(0, 15);
    474 
    475 		msr.ps_status_addr  = MSR_PERF_STATUS;
    476 		msr.ps_status_mask  = __BITS(0, 15);
    477 		break;
    478 
    479 	case CPUVENDOR_AMD:
    480 
    481 		switch (CPUID2FAMILY(ci->ci_signature)) {
    482 
    483 		case 0x10:
    484 		case 0x11:
    485 			msr.ps_control_addr = MSR_10H_CONTROL;
    486 			msr.ps_control_mask = __BITS(0, 2);
    487 
    488 			msr.ps_status_addr  = MSR_10H_STATUS;
    489 			msr.ps_status_mask  = __BITS(0, 2);
    490 			break;
    491 
    492 		default:
    493 
    494 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    495 				return EOPNOTSUPP;
    496 		}
    497 
    498 		break;
    499 
    500 	default:
    501 		return ENODEV;
    502 	}
    503 
    504 	while (i < sc->sc_pstate_count) {
    505 
    506 		ps = &sc->sc_pstate[i];
    507 
    508 		if (ps->ps_status_addr == 0)
    509 			ps->ps_status_addr = msr.ps_status_addr;
    510 
    511 		if (ps->ps_status_mask == 0)
    512 			ps->ps_status_mask = msr.ps_status_mask;
    513 
    514 		if (ps->ps_control_addr == 0)
    515 			ps->ps_control_addr = msr.ps_control_addr;
    516 
    517 		if (ps->ps_control_mask == 0)
    518 			ps->ps_control_mask = msr.ps_control_mask;
    519 
    520 		i++;
    521 	}
    522 
    523 	return 0;
    524 }
    525 
    526 int
    527 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    528 {
    529 	struct acpicpu_pstate *ps = NULL;
    530 	uint64_t val;
    531 	uint32_t i;
    532 
    533 	for (i = 0; i < sc->sc_pstate_count; i++) {
    534 
    535 		ps = &sc->sc_pstate[i];
    536 
    537 		if (ps->ps_freq != 0)
    538 			break;
    539 	}
    540 
    541 	if (__predict_false(ps == NULL))
    542 		return ENODEV;
    543 
    544 	if (ps->ps_status_addr == 0)
    545 		return EINVAL;
    546 
    547 	val = rdmsr(ps->ps_status_addr);
    548 
    549 	if (ps->ps_status_mask != 0)
    550 		val = val & ps->ps_status_mask;
    551 
    552 	for (i = 0; i < sc->sc_pstate_count; i++) {
    553 
    554 		ps = &sc->sc_pstate[i];
    555 
    556 		if (ps->ps_freq == 0)
    557 			continue;
    558 
    559 		if (val == ps->ps_status) {
    560 			*freq = ps->ps_freq;
    561 			return 0;
    562 		}
    563 	}
    564 
    565 	return EIO;
    566 }
    567 
    568 int
    569 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    570 {
    571 	struct msr_rw_info msr;
    572 	uint64_t xc;
    573 	int rv = 0;
    574 
    575 	msr.msr_read  = false;
    576 	msr.msr_type  = ps->ps_control_addr;
    577 	msr.msr_value = ps->ps_control;
    578 
    579 	if (ps->ps_control_mask != 0) {
    580 		msr.msr_mask = ps->ps_control_mask;
    581 		msr.msr_read = true;
    582 	}
    583 
    584 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    585 	xc_wait(xc);
    586 
    587 	if (ps->ps_status_addr == 0)
    588 		return 0;
    589 
    590 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    591 	xc_wait(xc);
    592 
    593 	return rv;
    594 }
    595 
    596 static void
    597 acpicpu_md_pstate_status(void *arg1, void *arg2)
    598 {
    599 	struct acpicpu_pstate *ps = arg1;
    600 	uint64_t val;
    601 	int i;
    602 
    603 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    604 
    605 		val = rdmsr(ps->ps_status_addr);
    606 
    607 		if (ps->ps_status_mask != 0)
    608 			val = val & ps->ps_status_mask;
    609 
    610 		if (val == ps->ps_status)
    611 			return;
    612 
    613 		DELAY(ps->ps_latency);
    614 	}
    615 
    616 	*(uintptr_t *)arg2 = EAGAIN;
    617 }
    618 
    619 int
    620 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    621 {
    622 	struct acpicpu_tstate *ts;
    623 	uint64_t val;
    624 	uint32_t i;
    625 
    626 	val = rdmsr(MSR_THERM_CONTROL);
    627 
    628 	for (i = 0; i < sc->sc_tstate_count; i++) {
    629 
    630 		ts = &sc->sc_tstate[i];
    631 
    632 		if (ts->ts_percent == 0)
    633 			continue;
    634 
    635 		if (val == ts->ts_control || val == ts->ts_status) {
    636 			*percent = ts->ts_percent;
    637 			return 0;
    638 		}
    639 	}
    640 
    641 	return EIO;
    642 }
    643 
    644 int
    645 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    646 {
    647 	struct msr_rw_info msr;
    648 	uint64_t xc;
    649 	int rv = 0;
    650 
    651 	msr.msr_read  = true;
    652 	msr.msr_type  = MSR_THERM_CONTROL;
    653 	msr.msr_value = ts->ts_control;
    654 	msr.msr_mask = __BITS(1, 4);
    655 
    656 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    657 	xc_wait(xc);
    658 
    659 	if (ts->ts_status == 0)
    660 		return 0;
    661 
    662 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    663 	xc_wait(xc);
    664 
    665 	return rv;
    666 }
    667 
    668 static void
    669 acpicpu_md_tstate_status(void *arg1, void *arg2)
    670 {
    671 	struct acpicpu_tstate *ts = arg1;
    672 	uint64_t val;
    673 	int i;
    674 
    675 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    676 
    677 		val = rdmsr(MSR_THERM_CONTROL);
    678 
    679 		if (val == ts->ts_status)
    680 			return;
    681 
    682 		DELAY(ts->ts_latency);
    683 	}
    684 
    685 	*(uintptr_t *)arg2 = EAGAIN;
    686 }
    687