Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.18
      1 /* $NetBSD: acpi_cpu_md.c,v 1.18 2010/08/19 21:40:45 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.18 2010/08/19 21:40:45 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #define MSR_0FH_CONTROL		0xc0010041 /* Family 0Fh (and K7).  */
     52 #define MSR_0FH_STATUS		0xc0010042
     53 
     54 #define MSR_10H_LIMIT		0xc0010061 /* Families 10h and 11h. */
     55 #define MSR_10H_CONTROL		0xc0010062
     56 #define MSR_10H_STATUS		0xc0010063
     57 #define MSR_10H_CONFIG		0xc0010064
     58 
     59 static char	  native_idle_text[16];
     60 void		(*native_idle)(void) = NULL;
     61 void		(*native_cpu_freq_init)(int) = NULL;
     62 
     63 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
     64 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
     65 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
     66 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
     67 static void	 acpicpu_md_pstate_status(void *, void *);
     68 static void	 acpicpu_md_tstate_status(void *, void *);
     69 
     70 extern uint32_t cpus_running;
     71 extern struct acpicpu_softc **acpicpu_sc;
     72 
     73 uint32_t
     74 acpicpu_md_cap(void)
     75 {
     76 	struct cpu_info *ci = curcpu();
     77 	uint32_t val = 0;
     78 
     79 	if (cpu_vendor != CPUVENDOR_IDT &&
     80 	    cpu_vendor != CPUVENDOR_INTEL)
     81 		return val;
     82 
     83 	/*
     84 	 * Basic SMP C-states (required for _CST).
     85 	 */
     86 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
     87 
     88         /*
     89 	 * If MONITOR/MWAIT is available, announce
     90 	 * support for native instructions in all C-states.
     91 	 */
     92         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
     93 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
     94 
     95 	/*
     96 	 * Set native P- and T-states, if available.
     97 	 */
     98         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
     99 		val |= ACPICPU_PDC_P_FFH;
    100 
    101 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    102 		val |= ACPICPU_PDC_T_FFH;
    103 
    104 	return val;
    105 }
    106 
    107 uint32_t
    108 acpicpu_md_quirks(void)
    109 {
    110 	struct cpu_info *ci = curcpu();
    111 	struct pci_attach_args pa;
    112 	uint32_t family, val = 0;
    113 
    114 	if (acpicpu_md_cpus_running() == 1)
    115 		val |= ACPICPU_FLAG_C_BM;
    116 
    117 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    118 		val |= ACPICPU_FLAG_C_FFH;
    119 
    120 	switch (cpu_vendor) {
    121 
    122 	case CPUVENDOR_IDT:
    123 	case CPUVENDOR_INTEL:
    124 
    125 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    126 			val |= ACPICPU_FLAG_P_FFH;
    127 
    128 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    129 			val |= ACPICPU_FLAG_T_FFH;
    130 
    131 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    132 		break;
    133 
    134 	case CPUVENDOR_AMD:
    135 
    136 		family = CPUID2FAMILY(ci->ci_signature);
    137 
    138 		if (family == 0xf)
    139 			family += CPUID2EXTFAMILY(ci->ci_signature);
    140 
    141 		switch (family) {
    142 
    143 		case 0x10:
    144 		case 0x11:
    145 
    146 			if ((ci->ci_feat_val[2] & CPUID_APM_HWP) != 0)
    147 				val |= ACPICPU_FLAG_P_FFH;
    148 		}
    149 
    150 		break;
    151 	}
    152 
    153 	/*
    154 	 * There are several erratums for PIIX4.
    155 	 */
    156 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    157 		val |= ACPICPU_FLAG_PIIX4;
    158 
    159 	return val;
    160 }
    161 
    162 static int
    163 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    164 {
    165 
    166 	/*
    167 	 * XXX: The pci_find_device(9) function only
    168 	 *	deals with attached devices. Change this
    169 	 *	to use something like pci_device_foreach().
    170 	 */
    171 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    172 		return 0;
    173 
    174 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    175 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    176 		return 1;
    177 
    178 	return 0;
    179 }
    180 
    181 uint32_t
    182 acpicpu_md_cpus_running(void)
    183 {
    184 
    185 	return popcount32(cpus_running);
    186 }
    187 
    188 int
    189 acpicpu_md_idle_start(void)
    190 {
    191 	const size_t size = sizeof(native_idle_text);
    192 
    193 	x86_disable_intr();
    194 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    195 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi");
    196 	x86_enable_intr();
    197 
    198 	return 0;
    199 }
    200 
    201 int
    202 acpicpu_md_idle_stop(void)
    203 {
    204 	uint64_t xc;
    205 
    206 	x86_disable_intr();
    207 	x86_cpu_idle_set(native_idle, native_idle_text);
    208 	x86_enable_intr();
    209 
    210 	/*
    211 	 * Run a cross-call to ensure that all CPUs are
    212 	 * out from the ACPI idle-loop before detachment.
    213 	 */
    214 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    215 	xc_wait(xc);
    216 
    217 	return 0;
    218 }
    219 
    220 /*
    221  * The MD idle loop. Called with interrupts disabled.
    222  */
    223 void
    224 acpicpu_md_idle_enter(int method, int state)
    225 {
    226 	struct cpu_info *ci = curcpu();
    227 
    228 	switch (method) {
    229 
    230 	case ACPICPU_C_STATE_FFH:
    231 
    232 		x86_enable_intr();
    233 		x86_monitor(&ci->ci_want_resched, 0, 0);
    234 
    235 		if (__predict_false(ci->ci_want_resched) != 0)
    236 			return;
    237 
    238 		x86_mwait((state - 1) << 4, 0);
    239 		break;
    240 
    241 	case ACPICPU_C_STATE_HALT:
    242 
    243 		if (__predict_false(ci->ci_want_resched) != 0) {
    244 			x86_enable_intr();
    245 			return;
    246 		}
    247 
    248 		x86_stihlt();
    249 		break;
    250 	}
    251 }
    252 
    253 int
    254 acpicpu_md_pstate_start(void)
    255 {
    256 	const struct sysctlnode	*fnode, *mnode, *rnode;
    257 	const char *str;
    258 	int rv;
    259 
    260 	switch (cpu_vendor) {
    261 
    262 	case CPUVENDOR_INTEL:
    263 	case CPUVENDOR_IDT:
    264 		str = "est";
    265 		break;
    266 
    267 	case CPUVENDOR_AMD:
    268 		str = "powernow";
    269 		break;
    270 
    271 	default:
    272 		return ENODEV;
    273 	}
    274 
    275 	/*
    276 	 * A kludge for backwards compatibility.
    277 	 */
    278 	native_cpu_freq_init = cpu_freq_init;
    279 
    280 	if (cpu_freq_sysctllog != NULL) {
    281 		sysctl_teardown(&cpu_freq_sysctllog);
    282 		cpu_freq_sysctllog = NULL;
    283 	}
    284 
    285 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, NULL, &rnode,
    286 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    287 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    288 
    289 	if (rv != 0)
    290 		goto fail;
    291 
    292 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &rnode, &mnode,
    293 	    0, CTLTYPE_NODE, str, NULL,
    294 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    295 
    296 	if (rv != 0)
    297 		goto fail;
    298 
    299 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &mnode, &fnode,
    300 	    0, CTLTYPE_NODE, "frequency", NULL,
    301 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    302 
    303 	if (rv != 0)
    304 		goto fail;
    305 
    306 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    307 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    308 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    309 
    310 	if (rv != 0)
    311 		goto fail;
    312 
    313 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    314 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
    315 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    316 
    317 	if (rv != 0)
    318 		goto fail;
    319 
    320 	rv = sysctl_createv(&cpu_freq_sysctllog, 0, &fnode, &rnode,
    321 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
    322 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    323 
    324 	if (rv != 0)
    325 		goto fail;
    326 
    327 	return 0;
    328 
    329 fail:
    330 	if (cpu_freq_sysctllog != NULL) {
    331 		sysctl_teardown(&cpu_freq_sysctllog);
    332 		cpu_freq_sysctllog = NULL;
    333 	}
    334 
    335 	if (native_cpu_freq_init != NULL)
    336 		(*native_cpu_freq_init)(cpu_vendor);
    337 
    338 	return rv;
    339 }
    340 
    341 int
    342 acpicpu_md_pstate_stop(void)
    343 {
    344 
    345 	if (cpu_freq_sysctllog != NULL) {
    346 		sysctl_teardown(&cpu_freq_sysctllog);
    347 		cpu_freq_sysctllog = NULL;
    348 	}
    349 
    350 	if (native_cpu_freq_init != NULL)
    351 		(*native_cpu_freq_init)(cpu_vendor);
    352 
    353 	return 0;
    354 }
    355 
    356 static int
    357 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
    358 {
    359 	struct cpu_info *ci = curcpu();
    360 	struct acpicpu_softc *sc;
    361 	struct sysctlnode node;
    362 	uint32_t freq;
    363 	int err;
    364 
    365 	sc = acpicpu_sc[ci->ci_acpiid];
    366 
    367 	if (sc == NULL)
    368 		return ENXIO;
    369 
    370 	err = acpicpu_pstate_get(sc, &freq);
    371 
    372 	if (err != 0)
    373 		return err;
    374 
    375 	node = *rnode;
    376 	node.sysctl_data = &freq;
    377 
    378 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    379 
    380 	if (err != 0 || newp == NULL)
    381 		return err;
    382 
    383 	return 0;
    384 }
    385 
    386 static int
    387 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
    388 {
    389 	struct cpu_info *ci = curcpu();
    390 	struct acpicpu_softc *sc;
    391 	struct sysctlnode node;
    392 	uint32_t freq;
    393 	int err;
    394 
    395 	sc = acpicpu_sc[ci->ci_acpiid];
    396 
    397 	if (sc == NULL)
    398 		return ENXIO;
    399 
    400 	err = acpicpu_pstate_get(sc, &freq);
    401 
    402 	if (err != 0)
    403 		return err;
    404 
    405 	node = *rnode;
    406 	node.sysctl_data = &freq;
    407 
    408 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    409 
    410 	if (err != 0 || newp == NULL)
    411 		return err;
    412 
    413 	err = acpicpu_pstate_set(sc, freq);
    414 
    415 	if (err != 0)
    416 		return err;
    417 
    418 	return 0;
    419 }
    420 
    421 static int
    422 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
    423 {
    424 	struct cpu_info *ci = curcpu();
    425 	struct acpicpu_softc *sc;
    426 	struct sysctlnode node;
    427 	char buf[1024];
    428 	size_t len;
    429 	uint32_t i;
    430 	int err;
    431 
    432 	sc = acpicpu_sc[ci->ci_acpiid];
    433 
    434 	if (sc == NULL)
    435 		return ENXIO;
    436 
    437 	(void)memset(&buf, 0, sizeof(buf));
    438 
    439 	mutex_enter(&sc->sc_mtx);
    440 
    441 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
    442 
    443 		if (sc->sc_pstate[i].ps_freq == 0)
    444 			continue;
    445 
    446 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
    447 		    sc->sc_pstate[i].ps_freq,
    448 		    i < (sc->sc_pstate_count - 1) ? " " : "");
    449 	}
    450 
    451 	mutex_exit(&sc->sc_mtx);
    452 
    453 	node = *rnode;
    454 	node.sysctl_data = buf;
    455 
    456 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    457 
    458 	if (err != 0 || newp == NULL)
    459 		return err;
    460 
    461 	return 0;
    462 }
    463 
    464 int
    465 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    466 {
    467 	struct acpicpu_pstate *ps, msr;
    468 	struct cpu_info *ci = curcpu();
    469 	uint32_t family, i = 0;
    470 
    471 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    472 
    473 	switch (cpu_vendor) {
    474 
    475 	case CPUVENDOR_IDT:
    476 	case CPUVENDOR_INTEL:
    477 		msr.ps_control_addr = MSR_PERF_CTL;
    478 		msr.ps_control_mask = __BITS(0, 15);
    479 
    480 		msr.ps_status_addr  = MSR_PERF_STATUS;
    481 		msr.ps_status_mask  = __BITS(0, 15);
    482 		break;
    483 
    484 	case CPUVENDOR_AMD:
    485 
    486 		family = CPUID2FAMILY(ci->ci_signature);
    487 
    488 		if (family == 0xf)
    489 			family += CPUID2EXTFAMILY(ci->ci_signature);
    490 
    491 		switch (family) {
    492 
    493 		case 0x10:
    494 		case 0x11:
    495 			msr.ps_control_addr = MSR_10H_CONTROL;
    496 			msr.ps_control_mask = __BITS(0, 2);
    497 
    498 			msr.ps_status_addr  = MSR_10H_STATUS;
    499 			msr.ps_status_mask  = __BITS(0, 2);
    500 			break;
    501 
    502 		default:
    503 
    504 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    505 				return EOPNOTSUPP;
    506 		}
    507 
    508 		break;
    509 
    510 	default:
    511 		return ENODEV;
    512 	}
    513 
    514 	while (i < sc->sc_pstate_count) {
    515 
    516 		ps = &sc->sc_pstate[i];
    517 
    518 		if (ps->ps_status_addr == 0)
    519 			ps->ps_status_addr = msr.ps_status_addr;
    520 
    521 		if (ps->ps_status_mask == 0)
    522 			ps->ps_status_mask = msr.ps_status_mask;
    523 
    524 		if (ps->ps_control_addr == 0)
    525 			ps->ps_control_addr = msr.ps_control_addr;
    526 
    527 		if (ps->ps_control_mask == 0)
    528 			ps->ps_control_mask = msr.ps_control_mask;
    529 
    530 		i++;
    531 	}
    532 
    533 	return 0;
    534 }
    535 
    536 int
    537 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    538 {
    539 	struct acpicpu_pstate *ps = NULL;
    540 	uint64_t val;
    541 	uint32_t i;
    542 
    543 	for (i = 0; i < sc->sc_pstate_count; i++) {
    544 
    545 		ps = &sc->sc_pstate[i];
    546 
    547 		if (ps->ps_freq != 0)
    548 			break;
    549 	}
    550 
    551 	if (__predict_false(ps == NULL))
    552 		return ENODEV;
    553 
    554 	if (ps->ps_status_addr == 0)
    555 		return EINVAL;
    556 
    557 	val = rdmsr(ps->ps_status_addr);
    558 
    559 	if (ps->ps_status_mask != 0)
    560 		val = val & ps->ps_status_mask;
    561 
    562 	for (i = 0; i < sc->sc_pstate_count; i++) {
    563 
    564 		ps = &sc->sc_pstate[i];
    565 
    566 		if (ps->ps_freq == 0)
    567 			continue;
    568 
    569 		if (val == ps->ps_status) {
    570 			*freq = ps->ps_freq;
    571 			return 0;
    572 		}
    573 	}
    574 
    575 	return EIO;
    576 }
    577 
    578 int
    579 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    580 {
    581 	struct msr_rw_info msr;
    582 	uint64_t xc;
    583 	int rv = 0;
    584 
    585 	msr.msr_read  = false;
    586 	msr.msr_type  = ps->ps_control_addr;
    587 	msr.msr_value = ps->ps_control;
    588 
    589 	if (ps->ps_control_mask != 0) {
    590 		msr.msr_mask = ps->ps_control_mask;
    591 		msr.msr_read = true;
    592 	}
    593 
    594 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    595 	xc_wait(xc);
    596 
    597 	if (ps->ps_status_addr == 0)
    598 		return 0;
    599 
    600 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    601 	xc_wait(xc);
    602 
    603 	return rv;
    604 }
    605 
    606 static void
    607 acpicpu_md_pstate_status(void *arg1, void *arg2)
    608 {
    609 	struct acpicpu_pstate *ps = arg1;
    610 	uint64_t val;
    611 	int i;
    612 
    613 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    614 
    615 		val = rdmsr(ps->ps_status_addr);
    616 
    617 		if (ps->ps_status_mask != 0)
    618 			val = val & ps->ps_status_mask;
    619 
    620 		if (val == ps->ps_status)
    621 			return;
    622 
    623 		DELAY(ps->ps_latency);
    624 	}
    625 
    626 	*(uintptr_t *)arg2 = EAGAIN;
    627 }
    628 
    629 int
    630 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    631 {
    632 	struct acpicpu_tstate *ts;
    633 	uint64_t val;
    634 	uint32_t i;
    635 
    636 	val = rdmsr(MSR_THERM_CONTROL);
    637 
    638 	for (i = 0; i < sc->sc_tstate_count; i++) {
    639 
    640 		ts = &sc->sc_tstate[i];
    641 
    642 		if (ts->ts_percent == 0)
    643 			continue;
    644 
    645 		if (val == ts->ts_control || val == ts->ts_status) {
    646 			*percent = ts->ts_percent;
    647 			return 0;
    648 		}
    649 	}
    650 
    651 	return EIO;
    652 }
    653 
    654 int
    655 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    656 {
    657 	struct msr_rw_info msr;
    658 	uint64_t xc;
    659 	int rv = 0;
    660 
    661 	msr.msr_read  = true;
    662 	msr.msr_type  = MSR_THERM_CONTROL;
    663 	msr.msr_value = ts->ts_control;
    664 	msr.msr_mask = __BITS(1, 4);
    665 
    666 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    667 	xc_wait(xc);
    668 
    669 	if (ts->ts_status == 0)
    670 		return 0;
    671 
    672 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    673 	xc_wait(xc);
    674 
    675 	return rv;
    676 }
    677 
    678 static void
    679 acpicpu_md_tstate_status(void *arg1, void *arg2)
    680 {
    681 	struct acpicpu_tstate *ts = arg1;
    682 	uint64_t val;
    683 	int i;
    684 
    685 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    686 
    687 		val = rdmsr(MSR_THERM_CONTROL);
    688 
    689 		if (val == ts->ts_status)
    690 			return;
    691 
    692 		DELAY(ts->ts_latency);
    693 	}
    694 
    695 	*(uintptr_t *)arg2 = EAGAIN;
    696 }
    697