acpi_cpu_md.c revision 1.31 1 /* $NetBSD: acpi_cpu_md.c,v 1.31 2010/08/23 16:20:44 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.31 2010/08/23 16:20:44 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #define CPUID_INTEL_TSC __BIT(8)
52
53 #define MSR_0FH_CONTROL 0xc0010041 /* Family 0Fh (and K7). */
54 #define MSR_0FH_STATUS 0xc0010042
55
56 #define MSR_10H_LIMIT 0xc0010061 /* Families 10h and 11h. */
57 #define MSR_10H_CONTROL 0xc0010062
58 #define MSR_10H_STATUS 0xc0010063
59 #define MSR_10H_CONFIG 0xc0010064
60
61 static char native_idle_text[16];
62 void (*native_idle)(void) = NULL;
63
64 static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
65 static void acpicpu_md_pstate_status(void *, void *);
66 static void acpicpu_md_tstate_status(void *, void *);
67 static int acpicpu_md_pstate_sysctl_init(void);
68 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
69 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
70 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
71
72 extern uint32_t cpus_running;
73 extern struct acpicpu_softc **acpicpu_sc;
74 static struct sysctllog *acpicpu_log = NULL;
75
76 uint32_t
77 acpicpu_md_cap(void)
78 {
79 struct cpu_info *ci = curcpu();
80 uint32_t val = 0;
81
82 if (cpu_vendor != CPUVENDOR_IDT &&
83 cpu_vendor != CPUVENDOR_INTEL)
84 return val;
85
86 /*
87 * Basic SMP C-states (required for _CST).
88 */
89 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
90
91 /*
92 * If MONITOR/MWAIT is available, announce
93 * support for native instructions in all C-states.
94 */
95 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
96 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
97
98 /*
99 * Set native P- and T-states, if available.
100 */
101 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
102 val |= ACPICPU_PDC_P_FFH;
103
104 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
105 val |= ACPICPU_PDC_T_FFH;
106
107 return val;
108 }
109
110 uint32_t
111 acpicpu_md_quirks(void)
112 {
113 struct cpu_info *ci = curcpu();
114 struct pci_attach_args pa;
115 uint32_t family, val = 0;
116 uint32_t regs[4];
117
118 if (acpicpu_md_cpus_running() == 1)
119 val |= ACPICPU_FLAG_C_BM;
120
121 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
122 val |= ACPICPU_FLAG_C_FFH;
123
124 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
125
126 switch (cpu_vendor) {
127
128 case CPUVENDOR_IDT:
129
130 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
131 val |= ACPICPU_FLAG_P_FFH;
132
133 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
134 val |= ACPICPU_FLAG_T_FFH;
135
136 break;
137
138 case CPUVENDOR_INTEL:
139
140 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
141
142 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
143 val |= ACPICPU_FLAG_P_FFH;
144
145 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
146 val |= ACPICPU_FLAG_T_FFH;
147
148 /*
149 * Check whether MSR_APERF, MSR_MPERF, and Turbo
150 * Boost are available. Also see if we might have
151 * an invariant local APIC timer ("ARAT").
152 */
153 if (cpuid_level >= 0x06) {
154
155 x86_cpuid(0x06, regs);
156
157 if ((regs[2] & __BIT(0)) != 0) /* ECX.06[0] */
158 val |= ACPICPU_FLAG_P_HW;
159
160 if ((regs[0] & __BIT(1)) != 0) /* EAX.06[1] */
161 val |= ACPICPU_FLAG_P_TURBO;
162
163 if ((regs[0] & __BIT(2)) != 0) /* EAX.06[2] */
164 val &= ~ACPICPU_FLAG_C_APIC;
165 }
166
167 /*
168 * Detect whether TSC is invariant. If it is not,
169 * we keep the flag to note that TSC will not run
170 * at constant rate. Depending on the CPU, this may
171 * affect P- and T-state changes, but especially
172 * relevant are C-states; with variant TSC, states
173 * larger than C1 may completely stop the counter.
174 */
175 x86_cpuid(0x80000000, regs);
176
177 if (regs[0] >= 0x80000007) {
178
179 x86_cpuid(0x80000007, regs);
180
181 if ((regs[3] & CPUID_INTEL_TSC) != 0)
182 val &= ~ACPICPU_FLAG_C_TSC;
183 }
184
185 break;
186
187 case CPUVENDOR_AMD:
188
189 family = CPUID2FAMILY(ci->ci_signature);
190
191 if (family == 0xf)
192 family += CPUID2EXTFAMILY(ci->ci_signature);
193
194 switch (family) {
195
196 case 0x0f:
197 case 0x10:
198 case 0x11:
199
200 x86_cpuid(0x80000007, regs);
201
202 if ((regs[3] & CPUID_APM_TSC) != 0)
203 val &= ~ACPICPU_FLAG_C_TSC;
204
205 if ((regs[3] & CPUID_APM_HWP) != 0)
206 val |= ACPICPU_FLAG_P_FFH;
207
208 if ((regs[3] & CPUID_APM_CPB) != 0)
209 val |= ACPICPU_FLAG_P_TURBO;
210 }
211
212 break;
213 }
214
215 /*
216 * There are several erratums for PIIX4.
217 */
218 if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
219 val |= ACPICPU_FLAG_PIIX4;
220
221 return val;
222 }
223
224 static int
225 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
226 {
227
228 /*
229 * XXX: The pci_find_device(9) function only
230 * deals with attached devices. Change this
231 * to use something like pci_device_foreach().
232 */
233 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
234 return 0;
235
236 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
237 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
238 return 1;
239
240 return 0;
241 }
242
243 uint32_t
244 acpicpu_md_cpus_running(void)
245 {
246
247 return popcount32(cpus_running);
248 }
249
250 int
251 acpicpu_md_idle_start(struct acpicpu_softc *sc)
252 {
253 const size_t size = sizeof(native_idle_text);
254 struct acpicpu_cstate *cs;
255 bool ipi = false;
256 int i;
257
258 x86_cpu_idle_get(&native_idle, native_idle_text, size);
259
260 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
261
262 cs = &sc->sc_cstate[i];
263
264 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
265 ipi = true;
266 break;
267 }
268 }
269
270 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
271
272 return 0;
273 }
274
275 int
276 acpicpu_md_idle_stop(void)
277 {
278 uint64_t xc;
279 bool ipi;
280
281 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
282 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
283
284 /*
285 * Run a cross-call to ensure that all CPUs are
286 * out from the ACPI idle-loop before detachment.
287 */
288 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
289 xc_wait(xc);
290
291 return 0;
292 }
293
294 /*
295 * Called with interrupts disabled.
296 * Caller should enable interrupts after return.
297 */
298 void
299 acpicpu_md_idle_enter(int method, int state)
300 {
301 struct cpu_info *ci = curcpu();
302
303 switch (method) {
304
305 case ACPICPU_C_STATE_FFH:
306
307 x86_enable_intr();
308 x86_monitor(&ci->ci_want_resched, 0, 0);
309
310 if (__predict_false(ci->ci_want_resched != 0))
311 return;
312
313 x86_mwait((state - 1) << 4, 0);
314 break;
315
316 case ACPICPU_C_STATE_HALT:
317
318 if (__predict_false(ci->ci_want_resched != 0))
319 return;
320
321 x86_stihlt();
322 break;
323 }
324 }
325
326 int
327 acpicpu_md_pstate_start(void)
328 {
329 const uint64_t est = __BIT(16);
330 uint64_t val;
331
332 switch (cpu_vendor) {
333
334 case CPUVENDOR_IDT:
335 case CPUVENDOR_INTEL:
336
337 val = rdmsr(MSR_MISC_ENABLE);
338
339 if ((val & est) == 0) {
340
341 val |= est;
342
343 wrmsr(MSR_MISC_ENABLE, val);
344 val = rdmsr(MSR_MISC_ENABLE);
345
346 if ((val & est) == 0)
347 return ENOTTY;
348 }
349 }
350
351 return acpicpu_md_pstate_sysctl_init();
352 }
353
354 int
355 acpicpu_md_pstate_stop(void)
356 {
357
358 if (acpicpu_log != NULL)
359 sysctl_teardown(&acpicpu_log);
360
361 return 0;
362 }
363
364 int
365 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
366 {
367 struct acpicpu_pstate *ps, msr;
368 struct cpu_info *ci = curcpu();
369 uint32_t family, i = 0;
370
371 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
372
373 switch (cpu_vendor) {
374
375 case CPUVENDOR_IDT:
376 case CPUVENDOR_INTEL:
377 msr.ps_control_addr = MSR_PERF_CTL;
378 msr.ps_control_mask = __BITS(0, 15);
379
380 msr.ps_status_addr = MSR_PERF_STATUS;
381 msr.ps_status_mask = __BITS(0, 15);
382 break;
383
384 case CPUVENDOR_AMD:
385
386 family = CPUID2FAMILY(ci->ci_signature);
387
388 if (family == 0xf)
389 family += CPUID2EXTFAMILY(ci->ci_signature);
390
391 switch (family) {
392
393 case 0x10:
394 case 0x11:
395 msr.ps_control_addr = MSR_10H_CONTROL;
396 msr.ps_control_mask = __BITS(0, 2);
397
398 msr.ps_status_addr = MSR_10H_STATUS;
399 msr.ps_status_mask = __BITS(0, 2);
400 break;
401
402 default:
403
404 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
405 return EOPNOTSUPP;
406 }
407
408 break;
409
410 default:
411 return ENODEV;
412 }
413
414 /*
415 * Fill the P-state structures with MSR addresses that are
416 * known to be correct. If we do not know the addresses,
417 * leave the values intact. If a vendor uses XPSS, we do
418 * not necessary need to do anything to support new CPUs.
419 */
420 while (i < sc->sc_pstate_count) {
421
422 ps = &sc->sc_pstate[i];
423
424 if (msr.ps_status_addr != 0)
425 ps->ps_status_addr = msr.ps_status_addr;
426
427 if (msr.ps_status_mask != 0)
428 ps->ps_status_mask = msr.ps_status_mask;
429
430 if (msr.ps_control_addr != 0)
431 ps->ps_control_addr = msr.ps_control_addr;
432
433 if (msr.ps_control_mask != 0)
434 ps->ps_control_mask = msr.ps_control_mask;
435
436 i++;
437 }
438
439 /*
440 * When the state is P0 and Turbo Boost has been
441 * detected, we need to skip the status check as
442 * BIOS may not report right comparison values for
443 * the IA32_PERF_STATUS register. Note that this
444 * issue is specific to Intel. For discussion, see:
445 *
446 * Intel Corporation: Intel Turbo Boost Technology
447 * in Intel Core(tm) Microarchitectures (Nehalem)
448 * Based Processors. White Paper, November 2008.
449 */
450 if (cpu_vendor != CPUVENDOR_INTEL)
451 return 0;
452
453 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) == 0)
454 return 0;
455
456 if (sc->sc_pstate[1].ps_freq + 1 == sc->sc_pstate[0].ps_freq)
457 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
458
459 return 0;
460 }
461
462 int
463 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
464 {
465 struct acpicpu_pstate *ps = NULL;
466 uint64_t val;
467 uint32_t i;
468
469 for (i = 0; i < sc->sc_pstate_count; i++) {
470
471 ps = &sc->sc_pstate[i];
472
473 if (ps->ps_freq != 0)
474 break;
475 }
476
477 if (__predict_false(ps == NULL))
478 return ENODEV;
479
480 if (__predict_false(ps->ps_status_addr == 0))
481 return EINVAL;
482
483 val = rdmsr(ps->ps_status_addr);
484
485 if (__predict_true(ps->ps_status_mask != 0))
486 val = val & ps->ps_status_mask;
487
488 for (i = 0; i < sc->sc_pstate_count; i++) {
489
490 ps = &sc->sc_pstate[i];
491
492 if (ps->ps_freq == 0)
493 continue;
494
495 if (val == ps->ps_status) {
496 *freq = ps->ps_freq;
497 return 0;
498 }
499 }
500
501 return EIO;
502 }
503
504 int
505 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
506 {
507 struct msr_rw_info msr;
508 uint64_t xc;
509 int rv = 0;
510
511 msr.msr_read = false;
512 msr.msr_type = ps->ps_control_addr;
513 msr.msr_value = ps->ps_control;
514
515 if (__predict_true(ps->ps_control_mask != 0)) {
516 msr.msr_mask = ps->ps_control_mask;
517 msr.msr_read = true;
518 }
519
520 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
521 xc_wait(xc);
522
523 if (__predict_false(ps->ps_status == 0))
524 goto out;
525
526 if (__predict_false(ps->ps_status_addr == 0))
527 goto out;
528
529 if ((ps->ps_flags & ACPICPU_FLAG_P_TURBO) != 0)
530 goto out;
531
532 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
533 xc_wait(xc);
534
535 return rv;
536
537 out:
538 DELAY(ps->ps_latency);
539
540 return 0;
541 }
542
543 static void
544 acpicpu_md_pstate_status(void *arg1, void *arg2)
545 {
546 struct acpicpu_pstate *ps = arg1;
547 uint64_t val;
548 int i;
549
550 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
551
552 val = rdmsr(ps->ps_status_addr);
553
554 if (__predict_true(ps->ps_status_mask != 0))
555 val = val & ps->ps_status_mask;
556
557 if (val == ps->ps_status)
558 return;
559
560 DELAY(ps->ps_latency);
561 }
562
563 *(uintptr_t *)arg2 = EAGAIN;
564 }
565
566 int
567 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
568 {
569 struct acpicpu_tstate *ts;
570 uint64_t val;
571 uint32_t i;
572
573 val = rdmsr(MSR_THERM_CONTROL);
574
575 for (i = 0; i < sc->sc_tstate_count; i++) {
576
577 ts = &sc->sc_tstate[i];
578
579 if (ts->ts_percent == 0)
580 continue;
581
582 if (val == ts->ts_status) {
583 *percent = ts->ts_percent;
584 return 0;
585 }
586 }
587
588 return EIO;
589 }
590
591 int
592 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
593 {
594 struct msr_rw_info msr;
595 uint64_t xc;
596 int rv = 0;
597
598 msr.msr_read = true;
599 msr.msr_type = MSR_THERM_CONTROL;
600 msr.msr_value = ts->ts_control;
601 msr.msr_mask = __BITS(1, 4);
602
603 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
604 xc_wait(xc);
605
606 if (ts->ts_status == 0) {
607 DELAY(ts->ts_latency);
608 return 0;
609 }
610
611 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
612 xc_wait(xc);
613
614 return rv;
615 }
616
617 static void
618 acpicpu_md_tstate_status(void *arg1, void *arg2)
619 {
620 struct acpicpu_tstate *ts = arg1;
621 uint64_t val;
622 int i;
623
624 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
625
626 val = rdmsr(MSR_THERM_CONTROL);
627
628 if (val == ts->ts_status)
629 return;
630
631 DELAY(ts->ts_latency);
632 }
633
634 *(uintptr_t *)arg2 = EAGAIN;
635 }
636
637 /*
638 * A kludge for backwards compatibility.
639 */
640 static int
641 acpicpu_md_pstate_sysctl_init(void)
642 {
643 const struct sysctlnode *fnode, *mnode, *rnode;
644 const char *str;
645 int rv;
646
647 switch (cpu_vendor) {
648
649 case CPUVENDOR_IDT:
650 case CPUVENDOR_INTEL:
651 str = "est";
652 break;
653
654 case CPUVENDOR_AMD:
655 str = "powernow";
656 break;
657
658 default:
659 return ENODEV;
660 }
661
662
663 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
664 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
665 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
666
667 if (rv != 0)
668 goto fail;
669
670 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
671 0, CTLTYPE_NODE, str, NULL,
672 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
673
674 if (rv != 0)
675 goto fail;
676
677 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
678 0, CTLTYPE_NODE, "frequency", NULL,
679 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
680
681 if (rv != 0)
682 goto fail;
683
684 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
685 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
686 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
687
688 if (rv != 0)
689 goto fail;
690
691 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
692 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
693 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
694
695 if (rv != 0)
696 goto fail;
697
698 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
699 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
700 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
701
702 if (rv != 0)
703 goto fail;
704
705 return 0;
706
707 fail:
708 if (acpicpu_log != NULL) {
709 sysctl_teardown(&acpicpu_log);
710 acpicpu_log = NULL;
711 }
712
713 return rv;
714 }
715
716 static int
717 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
718 {
719 struct cpu_info *ci = curcpu();
720 struct acpicpu_softc *sc;
721 struct sysctlnode node;
722 uint32_t freq;
723 int err;
724
725 sc = acpicpu_sc[ci->ci_acpiid];
726
727 if (sc == NULL)
728 return ENXIO;
729
730 err = acpicpu_pstate_get(sc, &freq);
731
732 if (err != 0)
733 return err;
734
735 node = *rnode;
736 node.sysctl_data = &freq;
737
738 err = sysctl_lookup(SYSCTLFN_CALL(&node));
739
740 if (err != 0 || newp == NULL)
741 return err;
742
743 return 0;
744 }
745
746 static int
747 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
748 {
749 struct cpu_info *ci = curcpu();
750 struct acpicpu_softc *sc;
751 struct sysctlnode node;
752 uint32_t freq;
753 int err;
754
755 sc = acpicpu_sc[ci->ci_acpiid];
756
757 if (sc == NULL)
758 return ENXIO;
759
760 err = acpicpu_pstate_get(sc, &freq);
761
762 if (err != 0)
763 return err;
764
765 node = *rnode;
766 node.sysctl_data = &freq;
767
768 err = sysctl_lookup(SYSCTLFN_CALL(&node));
769
770 if (err != 0 || newp == NULL)
771 return err;
772
773 err = acpicpu_pstate_set(sc, freq);
774
775 if (err != 0)
776 return err;
777
778 return 0;
779 }
780
781 static int
782 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
783 {
784 struct cpu_info *ci = curcpu();
785 struct acpicpu_softc *sc;
786 struct sysctlnode node;
787 char buf[1024];
788 size_t len;
789 uint32_t i;
790 int err;
791
792 sc = acpicpu_sc[ci->ci_acpiid];
793
794 if (sc == NULL)
795 return ENXIO;
796
797 (void)memset(&buf, 0, sizeof(buf));
798
799 mutex_enter(&sc->sc_mtx);
800
801 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
802
803 if (sc->sc_pstate[i].ps_freq == 0)
804 continue;
805
806 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
807 sc->sc_pstate[i].ps_freq,
808 i < (sc->sc_pstate_count - 1) ? " " : "");
809 }
810
811 mutex_exit(&sc->sc_mtx);
812
813 node = *rnode;
814 node.sysctl_data = buf;
815
816 err = sysctl_lookup(SYSCTLFN_CALL(&node));
817
818 if (err != 0 || newp == NULL)
819 return err;
820
821 return 0;
822 }
823
824