acpi_cpu_md.c revision 1.32 1 /* $NetBSD: acpi_cpu_md.c,v 1.32 2010/08/24 07:28:00 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.32 2010/08/24 07:28:00 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 /*
52 * AMD families 10h and 11h.
53 */
54 #define MSR_10H_LIMIT 0xc0010061
55 #define MSR_10H_CONTROL 0xc0010062
56 #define MSR_10H_STATUS 0xc0010063
57 #define MSR_10H_CONFIG 0xc0010064
58
59 /*
60 * AMD family 0Fh.
61 */
62 #define MSR_0FH_CONTROL 0xc0010041
63 #define MSR_0FH_STATUS 0xc0010042
64
65 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
66 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
67 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
68
69 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
70 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
71 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
72 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
73
74 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
75 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
76
77 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
78 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
79 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
80 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
81 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
82 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
83 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
84
85 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
86
87 static char native_idle_text[16];
88 void (*native_idle)(void) = NULL;
89
90 static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
91 static void acpicpu_md_pstate_status(void *, void *);
92 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
93 uint32_t *);
94 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
95 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
96 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
97 uint32_t, uint32_t);
98 static void acpicpu_md_tstate_status(void *, void *);
99 static int acpicpu_md_pstate_sysctl_init(void);
100 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
101 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
102 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
103
104 extern uint32_t cpus_running;
105 extern struct acpicpu_softc **acpicpu_sc;
106 static struct sysctllog *acpicpu_log = NULL;
107
108 uint32_t
109 acpicpu_md_cap(void)
110 {
111 struct cpu_info *ci = curcpu();
112 uint32_t val = 0;
113
114 if (cpu_vendor != CPUVENDOR_IDT &&
115 cpu_vendor != CPUVENDOR_INTEL)
116 return val;
117
118 /*
119 * Basic SMP C-states (required for _CST).
120 */
121 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
122
123 /*
124 * If MONITOR/MWAIT is available, announce
125 * support for native instructions in all C-states.
126 */
127 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
128 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
129
130 /*
131 * Set native P- and T-states, if available.
132 */
133 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
134 val |= ACPICPU_PDC_P_FFH;
135
136 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
137 val |= ACPICPU_PDC_T_FFH;
138
139 return val;
140 }
141
142 uint32_t
143 acpicpu_md_quirks(void)
144 {
145 struct cpu_info *ci = curcpu();
146 struct pci_attach_args pa;
147 uint32_t family, val = 0;
148 uint32_t regs[4];
149
150 if (acpicpu_md_cpus_running() == 1)
151 val |= ACPICPU_FLAG_C_BM;
152
153 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
154 val |= ACPICPU_FLAG_C_FFH;
155
156 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
157
158 switch (cpu_vendor) {
159
160 case CPUVENDOR_IDT:
161
162 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
163 val |= ACPICPU_FLAG_P_FFH;
164
165 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
166 val |= ACPICPU_FLAG_T_FFH;
167
168 break;
169
170 case CPUVENDOR_INTEL:
171
172 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
173
174 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
175 val |= ACPICPU_FLAG_P_FFH;
176
177 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
178 val |= ACPICPU_FLAG_T_FFH;
179
180 /*
181 * Check whether MSR_APERF, MSR_MPERF, and Turbo
182 * Boost are available. Also see if we might have
183 * an invariant local APIC timer ("ARAT").
184 */
185 if (cpuid_level >= 0x06) {
186
187 x86_cpuid(0x06, regs);
188
189 if ((regs[2] & __BIT(0)) != 0) /* ECX.06[0] */
190 val |= ACPICPU_FLAG_P_HW;
191
192 if ((regs[0] & __BIT(1)) != 0) /* EAX.06[1] */
193 val |= ACPICPU_FLAG_P_TURBO;
194
195 if ((regs[0] & __BIT(2)) != 0) /* EAX.06[2] */
196 val &= ~ACPICPU_FLAG_C_APIC;
197 }
198
199 /*
200 * Detect whether TSC is invariant. If it is not,
201 * we keep the flag to note that TSC will not run
202 * at constant rate. Depending on the CPU, this may
203 * affect P- and T-state changes, but especially
204 * relevant are C-states; with variant TSC, states
205 * larger than C1 may completely stop the counter.
206 */
207 x86_cpuid(0x80000000, regs);
208
209 if (regs[0] >= 0x80000007) {
210
211 x86_cpuid(0x80000007, regs);
212
213 if ((regs[3] & __BIT(8)) != 0)
214 val &= ~ACPICPU_FLAG_C_TSC;
215 }
216
217 break;
218
219 case CPUVENDOR_AMD:
220
221 x86_cpuid(0x80000000, regs);
222
223 if (regs[0] < 0x80000007)
224 break;
225
226 x86_cpuid(0x80000007, regs);
227
228 family = CPUID2FAMILY(ci->ci_signature);
229
230 if (family == 0xf)
231 family += CPUID2EXTFAMILY(ci->ci_signature);
232
233 switch (family) {
234
235 case 0x0f:
236
237 if ((regs[3] & CPUID_APM_FID) == 0)
238 break;
239
240 if ((regs[3] & CPUID_APM_VID) == 0)
241 break;
242
243 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
244 break;
245
246 case 0x10:
247 case 0x11:
248
249 if ((regs[3] & CPUID_APM_TSC) != 0)
250 val &= ~ACPICPU_FLAG_C_TSC;
251
252 if ((regs[3] & CPUID_APM_HWP) != 0)
253 val |= ACPICPU_FLAG_P_FFH;
254
255 if ((regs[3] & CPUID_APM_CPB) != 0)
256 val |= ACPICPU_FLAG_P_TURBO;
257 }
258
259 break;
260 }
261
262 /*
263 * There are several erratums for PIIX4.
264 */
265 if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
266 val |= ACPICPU_FLAG_PIIX4;
267
268 return val;
269 }
270
271 static int
272 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
273 {
274
275 /*
276 * XXX: The pci_find_device(9) function only
277 * deals with attached devices. Change this
278 * to use something like pci_device_foreach().
279 */
280 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
281 return 0;
282
283 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
284 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
285 return 1;
286
287 return 0;
288 }
289
290 uint32_t
291 acpicpu_md_cpus_running(void)
292 {
293
294 return popcount32(cpus_running);
295 }
296
297 int
298 acpicpu_md_idle_start(struct acpicpu_softc *sc)
299 {
300 const size_t size = sizeof(native_idle_text);
301 struct acpicpu_cstate *cs;
302 bool ipi = false;
303 int i;
304
305 x86_cpu_idle_get(&native_idle, native_idle_text, size);
306
307 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
308
309 cs = &sc->sc_cstate[i];
310
311 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
312 ipi = true;
313 break;
314 }
315 }
316
317 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
318
319 return 0;
320 }
321
322 int
323 acpicpu_md_idle_stop(void)
324 {
325 uint64_t xc;
326 bool ipi;
327
328 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
329 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
330
331 /*
332 * Run a cross-call to ensure that all CPUs are
333 * out from the ACPI idle-loop before detachment.
334 */
335 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
336 xc_wait(xc);
337
338 return 0;
339 }
340
341 /*
342 * Called with interrupts disabled.
343 * Caller should enable interrupts after return.
344 */
345 void
346 acpicpu_md_idle_enter(int method, int state)
347 {
348 struct cpu_info *ci = curcpu();
349
350 switch (method) {
351
352 case ACPICPU_C_STATE_FFH:
353
354 x86_enable_intr();
355 x86_monitor(&ci->ci_want_resched, 0, 0);
356
357 if (__predict_false(ci->ci_want_resched != 0))
358 return;
359
360 x86_mwait((state - 1) << 4, 0);
361 break;
362
363 case ACPICPU_C_STATE_HALT:
364
365 if (__predict_false(ci->ci_want_resched != 0))
366 return;
367
368 x86_stihlt();
369 break;
370 }
371 }
372
373 int
374 acpicpu_md_pstate_start(void)
375 {
376 const uint64_t est = __BIT(16);
377 uint64_t val;
378
379 switch (cpu_vendor) {
380
381 case CPUVENDOR_IDT:
382 case CPUVENDOR_INTEL:
383
384 val = rdmsr(MSR_MISC_ENABLE);
385
386 if ((val & est) == 0) {
387
388 val |= est;
389
390 wrmsr(MSR_MISC_ENABLE, val);
391 val = rdmsr(MSR_MISC_ENABLE);
392
393 if ((val & est) == 0)
394 return ENOTTY;
395 }
396 }
397
398 return acpicpu_md_pstate_sysctl_init();
399 }
400
401 int
402 acpicpu_md_pstate_stop(void)
403 {
404
405 if (acpicpu_log != NULL)
406 sysctl_teardown(&acpicpu_log);
407
408 return 0;
409 }
410
411 int
412 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
413 {
414 struct acpicpu_pstate *ps, msr;
415 struct cpu_info *ci = curcpu();
416 uint32_t family, i = 0;
417
418 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
419
420 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
421 msr.ps_flags = ACPICPU_FLAG_P_FIDVID;
422
423 switch (cpu_vendor) {
424
425 case CPUVENDOR_IDT:
426 case CPUVENDOR_INTEL:
427 msr.ps_control_addr = MSR_PERF_CTL;
428 msr.ps_control_mask = __BITS(0, 15);
429
430 msr.ps_status_addr = MSR_PERF_STATUS;
431 msr.ps_status_mask = __BITS(0, 15);
432 break;
433
434 case CPUVENDOR_AMD:
435
436 family = CPUID2FAMILY(ci->ci_signature);
437
438 if (family == 0xf)
439 family += CPUID2EXTFAMILY(ci->ci_signature);
440
441 switch (family) {
442
443 case 0x0f:
444 msr.ps_control_addr = MSR_0FH_CONTROL;
445 msr.ps_status_addr = MSR_0FH_STATUS;
446 break;
447
448 case 0x10:
449 case 0x11:
450 msr.ps_control_addr = MSR_10H_CONTROL;
451 msr.ps_control_mask = __BITS(0, 2);
452
453 msr.ps_status_addr = MSR_10H_STATUS;
454 msr.ps_status_mask = __BITS(0, 2);
455 break;
456
457 default:
458
459 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
460 return EOPNOTSUPP;
461 }
462
463 break;
464
465 default:
466 return ENODEV;
467 }
468
469 /*
470 * Fill the P-state structures with MSR addresses that are
471 * known to be correct. If we do not know the addresses,
472 * leave the values intact. If a vendor uses XPSS, we do
473 * not necessary need to do anything to support new CPUs.
474 */
475 while (i < sc->sc_pstate_count) {
476
477 ps = &sc->sc_pstate[i];
478
479 if (msr.ps_flags != 0)
480 ps->ps_flags |= msr.ps_flags;
481
482 if (msr.ps_status_addr != 0)
483 ps->ps_status_addr = msr.ps_status_addr;
484
485 if (msr.ps_status_mask != 0)
486 ps->ps_status_mask = msr.ps_status_mask;
487
488 if (msr.ps_control_addr != 0)
489 ps->ps_control_addr = msr.ps_control_addr;
490
491 if (msr.ps_control_mask != 0)
492 ps->ps_control_mask = msr.ps_control_mask;
493
494 i++;
495 }
496
497 /*
498 * When the state is P0 and Turbo Boost has been
499 * detected, we need to skip the status check as
500 * BIOS may not report right comparison values for
501 * the IA32_PERF_STATUS register. Note that this
502 * issue is specific to Intel. For discussion, see:
503 *
504 * Intel Corporation: Intel Turbo Boost Technology
505 * in Intel Core(tm) Microarchitectures (Nehalem)
506 * Based Processors. White Paper, November 2008.
507 */
508 if (cpu_vendor != CPUVENDOR_INTEL)
509 return 0;
510
511 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) == 0)
512 return 0;
513
514 if (sc->sc_pstate[1].ps_freq + 1 == sc->sc_pstate[0].ps_freq)
515 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
516
517 return 0;
518 }
519
520 int
521 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
522 {
523 struct acpicpu_pstate *ps = NULL;
524 uint64_t val;
525 uint32_t i;
526
527 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
528 return acpicpu_md_pstate_fidvid_get(sc, freq);
529
530 for (i = 0; i < sc->sc_pstate_count; i++) {
531
532 ps = &sc->sc_pstate[i];
533
534 if (__predict_true(ps->ps_freq != 0))
535 break;
536 }
537
538 if (__predict_false(ps == NULL))
539 return ENODEV;
540
541 if (__predict_false(ps->ps_status_addr == 0))
542 return EINVAL;
543
544 val = rdmsr(ps->ps_status_addr);
545
546 if (__predict_true(ps->ps_status_mask != 0))
547 val = val & ps->ps_status_mask;
548
549 for (i = 0; i < sc->sc_pstate_count; i++) {
550
551 ps = &sc->sc_pstate[i];
552
553 if (__predict_false(ps->ps_freq == 0))
554 continue;
555
556 if (val == ps->ps_status) {
557 *freq = ps->ps_freq;
558 return 0;
559 }
560 }
561
562 return EIO;
563 }
564
565 int
566 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
567 {
568 struct msr_rw_info msr;
569 uint64_t xc;
570 int rv = 0;
571
572 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
573 return acpicpu_md_pstate_fidvid_set(ps);
574
575 msr.msr_read = false;
576 msr.msr_type = ps->ps_control_addr;
577 msr.msr_value = ps->ps_control;
578
579 if (__predict_true(ps->ps_control_mask != 0)) {
580 msr.msr_mask = ps->ps_control_mask;
581 msr.msr_read = true;
582 }
583
584 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
585 xc_wait(xc);
586
587 if (__predict_false(ps->ps_status == 0))
588 goto out;
589
590 if (__predict_false(ps->ps_status_addr == 0))
591 goto out;
592
593 if ((ps->ps_flags & ACPICPU_FLAG_P_TURBO) != 0)
594 goto out;
595
596 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
597 xc_wait(xc);
598
599 return rv;
600
601 out:
602 DELAY(ps->ps_latency);
603
604 return 0;
605 }
606
607 static void
608 acpicpu_md_pstate_status(void *arg1, void *arg2)
609 {
610 struct acpicpu_pstate *ps = arg1;
611 uint64_t val;
612 int i;
613
614 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
615
616 val = rdmsr(ps->ps_status_addr);
617
618 if (__predict_true(ps->ps_status_mask != 0))
619 val = val & ps->ps_status_mask;
620
621 if (val == ps->ps_status)
622 return;
623
624 DELAY(ps->ps_latency);
625 }
626
627 *(uintptr_t *)arg2 = EAGAIN;
628 }
629
630 static int
631 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
632 {
633 struct acpicpu_pstate *ps;
634 uint32_t fid, i, vid;
635 uint32_t cfid, cvid;
636 int rv;
637
638 /*
639 * AMD family 0Fh needs special treatment.
640 * While it wants to use ACPI, it does not
641 * comply with the ACPI specifications.
642 */
643 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
644
645 if (rv != 0)
646 return rv;
647
648 for (i = 0; i < sc->sc_pstate_count; i++) {
649
650 ps = &sc->sc_pstate[i];
651
652 if (__predict_false(ps->ps_freq == 0))
653 continue;
654
655 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
656 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
657
658 if (cfid == fid && cvid == vid) {
659 *freq = ps->ps_freq;
660 return 0;
661 }
662 }
663
664 return EIO;
665 }
666
667 static int
668 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
669 {
670 const uint64_t ctrl = ps->ps_control;
671 uint32_t cfid, cvid, fid, i, irt;
672 uint32_t pll, vco_cfid, vco_fid;
673 uint32_t val, vid, vst;
674 int rv;
675
676 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
677
678 if (rv != 0)
679 return rv;
680
681 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
682 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
683 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
684 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
685 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
686
687 vst = vst * 20;
688 pll = pll * 1000 / 5;
689 irt = 10 * __BIT(irt);
690
691 /*
692 * Phase 1.
693 */
694 while (cvid > vid) {
695
696 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
697 val = (val > cvid) ? 0 : cvid - val;
698
699 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
700 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
701
702 if (rv != 0)
703 return rv;
704 }
705
706 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
707
708 for (; i > 0 && cvid > 0; --i) {
709
710 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
711 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
712
713 if (rv != 0)
714 return rv;
715 }
716
717 /*
718 * Phase 2.
719 */
720 if (cfid != fid) {
721
722 vco_fid = FID_TO_VCO_FID(fid);
723 vco_cfid = FID_TO_VCO_FID(cfid);
724
725 while (abs(vco_fid - vco_cfid) > 2) {
726
727 if (fid <= cfid)
728 val = cfid - 2;
729 else {
730 val = (cfid > 6) ? cfid + 2 :
731 FID_TO_VCO_FID(cfid) + 2;
732 }
733
734 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
735 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
736
737 if (rv != 0)
738 return rv;
739
740 vco_cfid = FID_TO_VCO_FID(cfid);
741 }
742
743 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
744 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
745
746 if (rv != 0)
747 return rv;
748 }
749
750 /*
751 * Phase 3.
752 */
753 if (cvid != vid) {
754
755 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
756 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
757
758 if (rv != 0)
759 return rv;
760 }
761
762 if (cfid != fid || cvid != vid)
763 return EIO;
764
765 return 0;
766 }
767
768 static int
769 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
770 {
771 int i = ACPICPU_P_STATE_RETRY * 100;
772 uint64_t val;
773
774 do {
775 val = rdmsr(MSR_0FH_STATUS);
776
777 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
778
779 if (i == 0)
780 return EAGAIN;
781
782 if (cfid != NULL)
783 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
784
785 if (cvid != NULL)
786 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
787
788 return 0;
789 }
790
791 static void
792 acpicpu_md_pstate_fidvid_write(uint32_t fid,
793 uint32_t vid, uint32_t cnt, uint32_t tmo)
794 {
795 struct msr_rw_info msr;
796 uint64_t xc;
797
798 msr.msr_read = false;
799 msr.msr_type = MSR_0FH_CONTROL;
800 msr.msr_value = 0;
801
802 msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
803 msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
804 msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
805 msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
806
807 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
808 xc_wait(xc);
809
810 DELAY(tmo);
811 }
812
813 int
814 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
815 {
816 struct acpicpu_tstate *ts;
817 uint64_t val;
818 uint32_t i;
819
820 val = rdmsr(MSR_THERM_CONTROL);
821
822 for (i = 0; i < sc->sc_tstate_count; i++) {
823
824 ts = &sc->sc_tstate[i];
825
826 if (ts->ts_percent == 0)
827 continue;
828
829 if (val == ts->ts_status) {
830 *percent = ts->ts_percent;
831 return 0;
832 }
833 }
834
835 return EIO;
836 }
837
838 int
839 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
840 {
841 struct msr_rw_info msr;
842 uint64_t xc;
843 int rv = 0;
844
845 msr.msr_read = true;
846 msr.msr_type = MSR_THERM_CONTROL;
847 msr.msr_value = ts->ts_control;
848 msr.msr_mask = __BITS(1, 4);
849
850 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
851 xc_wait(xc);
852
853 if (ts->ts_status == 0) {
854 DELAY(ts->ts_latency);
855 return 0;
856 }
857
858 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
859 xc_wait(xc);
860
861 return rv;
862 }
863
864 static void
865 acpicpu_md_tstate_status(void *arg1, void *arg2)
866 {
867 struct acpicpu_tstate *ts = arg1;
868 uint64_t val;
869 int i;
870
871 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
872
873 val = rdmsr(MSR_THERM_CONTROL);
874
875 if (val == ts->ts_status)
876 return;
877
878 DELAY(ts->ts_latency);
879 }
880
881 *(uintptr_t *)arg2 = EAGAIN;
882 }
883
884 /*
885 * A kludge for backwards compatibility.
886 */
887 static int
888 acpicpu_md_pstate_sysctl_init(void)
889 {
890 const struct sysctlnode *fnode, *mnode, *rnode;
891 const char *str;
892 int rv;
893
894 switch (cpu_vendor) {
895
896 case CPUVENDOR_IDT:
897 case CPUVENDOR_INTEL:
898 str = "est";
899 break;
900
901 case CPUVENDOR_AMD:
902 str = "powernow";
903 break;
904
905 default:
906 return ENODEV;
907 }
908
909
910 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
911 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
912 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
913
914 if (rv != 0)
915 goto fail;
916
917 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
918 0, CTLTYPE_NODE, str, NULL,
919 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
920
921 if (rv != 0)
922 goto fail;
923
924 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
925 0, CTLTYPE_NODE, "frequency", NULL,
926 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
927
928 if (rv != 0)
929 goto fail;
930
931 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
932 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
933 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
934
935 if (rv != 0)
936 goto fail;
937
938 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
939 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
940 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
941
942 if (rv != 0)
943 goto fail;
944
945 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
946 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
947 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
948
949 if (rv != 0)
950 goto fail;
951
952 return 0;
953
954 fail:
955 if (acpicpu_log != NULL) {
956 sysctl_teardown(&acpicpu_log);
957 acpicpu_log = NULL;
958 }
959
960 return rv;
961 }
962
963 static int
964 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
965 {
966 struct cpu_info *ci = curcpu();
967 struct acpicpu_softc *sc;
968 struct sysctlnode node;
969 uint32_t freq;
970 int err;
971
972 sc = acpicpu_sc[ci->ci_acpiid];
973
974 if (sc == NULL)
975 return ENXIO;
976
977 err = acpicpu_pstate_get(sc, &freq);
978
979 if (err != 0)
980 return err;
981
982 node = *rnode;
983 node.sysctl_data = &freq;
984
985 err = sysctl_lookup(SYSCTLFN_CALL(&node));
986
987 if (err != 0 || newp == NULL)
988 return err;
989
990 return 0;
991 }
992
993 static int
994 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
995 {
996 struct cpu_info *ci = curcpu();
997 struct acpicpu_softc *sc;
998 struct sysctlnode node;
999 uint32_t freq;
1000 int err;
1001
1002 sc = acpicpu_sc[ci->ci_acpiid];
1003
1004 if (sc == NULL)
1005 return ENXIO;
1006
1007 err = acpicpu_pstate_get(sc, &freq);
1008
1009 if (err != 0)
1010 return err;
1011
1012 node = *rnode;
1013 node.sysctl_data = &freq;
1014
1015 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1016
1017 if (err != 0 || newp == NULL)
1018 return err;
1019
1020 err = acpicpu_pstate_set(sc, freq);
1021
1022 if (err != 0)
1023 return err;
1024
1025 return 0;
1026 }
1027
1028 static int
1029 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1030 {
1031 struct cpu_info *ci = curcpu();
1032 struct acpicpu_softc *sc;
1033 struct sysctlnode node;
1034 char buf[1024];
1035 size_t len;
1036 uint32_t i;
1037 int err;
1038
1039 sc = acpicpu_sc[ci->ci_acpiid];
1040
1041 if (sc == NULL)
1042 return ENXIO;
1043
1044 (void)memset(&buf, 0, sizeof(buf));
1045
1046 mutex_enter(&sc->sc_mtx);
1047
1048 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1049
1050 if (sc->sc_pstate[i].ps_freq == 0)
1051 continue;
1052
1053 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1054 sc->sc_pstate[i].ps_freq,
1055 i < (sc->sc_pstate_count - 1) ? " " : "");
1056 }
1057
1058 mutex_exit(&sc->sc_mtx);
1059
1060 node = *rnode;
1061 node.sysctl_data = buf;
1062
1063 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1064
1065 if (err != 0 || newp == NULL)
1066 return err;
1067
1068 return 0;
1069 }
1070
1071