acpi_cpu_md.c revision 1.34.2.2 1 /* $NetBSD: acpi_cpu_md.c,v 1.34.2.2 2010/10/24 22:48:16 jym Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.34.2.2 2010/10/24 22:48:16 jym Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #define ACPICPU_P_STATE_STATUS 0
52
53 /*
54 * AMD families 10h and 11h.
55 */
56 #define MSR_10H_LIMIT 0xc0010061
57 #define MSR_10H_CONTROL 0xc0010062
58 #define MSR_10H_STATUS 0xc0010063
59 #define MSR_10H_CONFIG 0xc0010064
60
61 /*
62 * AMD family 0Fh.
63 */
64 #define MSR_0FH_CONTROL 0xc0010041
65 #define MSR_0FH_STATUS 0xc0010042
66
67 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
68 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
69 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
70
71 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
72 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
73 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
74 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
75
76 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
77 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
78
79 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
80 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
81 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
82 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
83 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
84 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
85 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
86
87 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
88
89 static char native_idle_text[16];
90 void (*native_idle)(void) = NULL;
91
92 static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
93 static void acpicpu_md_pstate_status(void *, void *);
94 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
95 uint32_t *);
96 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
97 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
98 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
99 uint32_t, uint32_t);
100 static void acpicpu_md_tstate_status(void *, void *);
101 static int acpicpu_md_pstate_sysctl_init(void);
102 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
103 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
104 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
105
106 extern uint32_t cpus_running;
107 extern struct acpicpu_softc **acpicpu_sc;
108 static struct sysctllog *acpicpu_log = NULL;
109
110 uint32_t
111 acpicpu_md_cap(void)
112 {
113 struct cpu_info *ci = curcpu();
114 uint32_t val = 0;
115
116 if (cpu_vendor != CPUVENDOR_IDT &&
117 cpu_vendor != CPUVENDOR_INTEL)
118 return val;
119
120 /*
121 * Basic SMP C-states (required for _CST).
122 */
123 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
124
125 /*
126 * If MONITOR/MWAIT is available, announce
127 * support for native instructions in all C-states.
128 */
129 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
130 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
131
132 /*
133 * Set native P- and T-states, if available.
134 */
135 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
136 val |= ACPICPU_PDC_P_FFH;
137
138 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
139 val |= ACPICPU_PDC_T_FFH;
140
141 return val;
142 }
143
144 uint32_t
145 acpicpu_md_quirks(void)
146 {
147 struct cpu_info *ci = curcpu();
148 struct pci_attach_args pa;
149 uint32_t family, val = 0;
150 uint32_t regs[4];
151
152 if (acpicpu_md_cpus_running() == 1)
153 val |= ACPICPU_FLAG_C_BM;
154
155 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
156 val |= ACPICPU_FLAG_C_FFH;
157
158 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
159
160 switch (cpu_vendor) {
161
162 case CPUVENDOR_IDT:
163
164 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
165 val |= ACPICPU_FLAG_P_FFH;
166
167 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
168 val |= ACPICPU_FLAG_T_FFH;
169
170 break;
171
172 case CPUVENDOR_INTEL:
173
174 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
175
176 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
177 val |= ACPICPU_FLAG_P_FFH;
178
179 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
180 val |= ACPICPU_FLAG_T_FFH;
181
182 /*
183 * Check whether MSR_APERF, MSR_MPERF, and Turbo
184 * Boost are available. Also see if we might have
185 * an invariant local APIC timer ("ARAT").
186 */
187 if (cpuid_level >= 0x06) {
188
189 x86_cpuid(0x06, regs);
190
191 if ((regs[2] & CPUID_DSPM_HWF) != 0)
192 val |= ACPICPU_FLAG_P_HW;
193
194 if ((regs[0] & CPUID_DSPM_IDA) != 0)
195 val |= ACPICPU_FLAG_P_TURBO;
196
197 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
198 val &= ~ACPICPU_FLAG_C_APIC;
199 }
200
201 /*
202 * Detect whether TSC is invariant. If it is not,
203 * we keep the flag to note that TSC will not run
204 * at constant rate. Depending on the CPU, this may
205 * affect P- and T-state changes, but especially
206 * relevant are C-states; with variant TSC, states
207 * larger than C1 may completely stop the counter.
208 */
209 x86_cpuid(0x80000000, regs);
210
211 if (regs[0] >= 0x80000007) {
212
213 x86_cpuid(0x80000007, regs);
214
215 if ((regs[3] & __BIT(8)) != 0)
216 val &= ~ACPICPU_FLAG_C_TSC;
217 }
218
219 break;
220
221 case CPUVENDOR_AMD:
222
223 x86_cpuid(0x80000000, regs);
224
225 if (regs[0] < 0x80000007)
226 break;
227
228 x86_cpuid(0x80000007, regs);
229
230 family = CPUID2FAMILY(ci->ci_signature);
231
232 if (family == 0xf)
233 family += CPUID2EXTFAMILY(ci->ci_signature);
234
235 switch (family) {
236
237 case 0x0f:
238
239 if ((regs[3] & CPUID_APM_FID) == 0)
240 break;
241
242 if ((regs[3] & CPUID_APM_VID) == 0)
243 break;
244
245 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
246 break;
247
248 case 0x10:
249 case 0x11:
250
251 if ((regs[3] & CPUID_APM_TSC) != 0)
252 val &= ~ACPICPU_FLAG_C_TSC;
253
254 if ((regs[3] & CPUID_APM_HWP) != 0)
255 val |= ACPICPU_FLAG_P_FFH;
256
257 if ((regs[3] & CPUID_APM_CPB) != 0)
258 val |= ACPICPU_FLAG_P_TURBO;
259 }
260
261 break;
262 }
263
264 /*
265 * There are several erratums for PIIX4.
266 */
267 if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
268 val |= ACPICPU_FLAG_PIIX4;
269
270 return val;
271 }
272
273 static int
274 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
275 {
276
277 /*
278 * XXX: The pci_find_device(9) function only
279 * deals with attached devices. Change this
280 * to use something like pci_device_foreach().
281 */
282 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
283 return 0;
284
285 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
286 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
287 return 1;
288
289 return 0;
290 }
291
292 uint32_t
293 acpicpu_md_cpus_running(void)
294 {
295
296 return popcount32(cpus_running);
297 }
298
299 int
300 acpicpu_md_idle_start(struct acpicpu_softc *sc)
301 {
302 const size_t size = sizeof(native_idle_text);
303 struct acpicpu_cstate *cs;
304 bool ipi = false;
305 int i;
306
307 x86_cpu_idle_get(&native_idle, native_idle_text, size);
308
309 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
310
311 cs = &sc->sc_cstate[i];
312
313 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
314 ipi = true;
315 break;
316 }
317 }
318
319 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
320
321 return 0;
322 }
323
324 int
325 acpicpu_md_idle_stop(void)
326 {
327 uint64_t xc;
328 bool ipi;
329
330 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
331 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
332
333 /*
334 * Run a cross-call to ensure that all CPUs are
335 * out from the ACPI idle-loop before detachment.
336 */
337 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
338 xc_wait(xc);
339
340 return 0;
341 }
342
343 /*
344 * Called with interrupts disabled.
345 * Caller should enable interrupts after return.
346 */
347 void
348 acpicpu_md_idle_enter(int method, int state)
349 {
350 struct cpu_info *ci = curcpu();
351
352 switch (method) {
353
354 case ACPICPU_C_STATE_FFH:
355
356 x86_enable_intr();
357 x86_monitor(&ci->ci_want_resched, 0, 0);
358
359 if (__predict_false(ci->ci_want_resched != 0))
360 return;
361
362 x86_mwait((state - 1) << 4, 0);
363 break;
364
365 case ACPICPU_C_STATE_HALT:
366
367 if (__predict_false(ci->ci_want_resched != 0))
368 return;
369
370 x86_stihlt();
371 break;
372 }
373 }
374
375 int
376 acpicpu_md_pstate_start(void)
377 {
378 const uint64_t est = __BIT(16);
379 uint64_t val;
380
381 switch (cpu_vendor) {
382
383 case CPUVENDOR_IDT:
384 case CPUVENDOR_INTEL:
385
386 val = rdmsr(MSR_MISC_ENABLE);
387
388 if ((val & est) == 0) {
389
390 val |= est;
391
392 wrmsr(MSR_MISC_ENABLE, val);
393 val = rdmsr(MSR_MISC_ENABLE);
394
395 if ((val & est) == 0)
396 return ENOTTY;
397 }
398 }
399
400 return acpicpu_md_pstate_sysctl_init();
401 }
402
403 int
404 acpicpu_md_pstate_stop(void)
405 {
406
407 if (acpicpu_log != NULL)
408 sysctl_teardown(&acpicpu_log);
409
410 return 0;
411 }
412
413 int
414 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
415 {
416 struct acpicpu_pstate *ps, msr;
417 struct cpu_info *ci = curcpu();
418 uint32_t family, i = 0;
419
420 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
421
422 switch (cpu_vendor) {
423
424 case CPUVENDOR_IDT:
425 case CPUVENDOR_INTEL:
426
427 /*
428 * If the so-called Turbo Boost is present,
429 * the P0-state is always the "turbo state".
430 *
431 * For discussion, see:
432 *
433 * Intel Corporation: Intel Turbo Boost Technology
434 * in Intel Core(tm) Microarchitectures (Nehalem)
435 * Based Processors. White Paper, November 2008.
436 */
437 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
438 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
439
440 msr.ps_control_addr = MSR_PERF_CTL;
441 msr.ps_control_mask = __BITS(0, 15);
442
443 msr.ps_status_addr = MSR_PERF_STATUS;
444 msr.ps_status_mask = __BITS(0, 15);
445 break;
446
447 case CPUVENDOR_AMD:
448
449 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
450 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
451
452 family = CPUID2FAMILY(ci->ci_signature);
453
454 if (family == 0xf)
455 family += CPUID2EXTFAMILY(ci->ci_signature);
456
457 switch (family) {
458
459 case 0x0f:
460 msr.ps_control_addr = MSR_0FH_CONTROL;
461 msr.ps_status_addr = MSR_0FH_STATUS;
462 break;
463
464 case 0x10:
465 case 0x11:
466 msr.ps_control_addr = MSR_10H_CONTROL;
467 msr.ps_control_mask = __BITS(0, 2);
468
469 msr.ps_status_addr = MSR_10H_STATUS;
470 msr.ps_status_mask = __BITS(0, 2);
471 break;
472
473 default:
474
475 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
476 return EOPNOTSUPP;
477 }
478
479 break;
480
481 default:
482 return ENODEV;
483 }
484
485 /*
486 * Fill the P-state structures with MSR addresses that are
487 * known to be correct. If we do not know the addresses,
488 * leave the values intact. If a vendor uses XPSS, we do
489 * not necessary need to do anything to support new CPUs.
490 */
491 while (i < sc->sc_pstate_count) {
492
493 ps = &sc->sc_pstate[i];
494
495 if (msr.ps_flags != 0)
496 ps->ps_flags |= msr.ps_flags;
497
498 if (msr.ps_status_addr != 0)
499 ps->ps_status_addr = msr.ps_status_addr;
500
501 if (msr.ps_status_mask != 0)
502 ps->ps_status_mask = msr.ps_status_mask;
503
504 if (msr.ps_control_addr != 0)
505 ps->ps_control_addr = msr.ps_control_addr;
506
507 if (msr.ps_control_mask != 0)
508 ps->ps_control_mask = msr.ps_control_mask;
509
510 i++;
511 }
512
513 return 0;
514 }
515
516 int
517 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
518 {
519 struct acpicpu_pstate *ps = NULL;
520 uint64_t val;
521 uint32_t i;
522
523 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
524 return acpicpu_md_pstate_fidvid_get(sc, freq);
525
526 for (i = 0; i < sc->sc_pstate_count; i++) {
527
528 ps = &sc->sc_pstate[i];
529
530 if (__predict_true(ps->ps_freq != 0))
531 break;
532 }
533
534 if (__predict_false(ps == NULL))
535 return ENODEV;
536
537 if (__predict_false(ps->ps_status_addr == 0))
538 return EINVAL;
539
540 val = rdmsr(ps->ps_status_addr);
541
542 if (__predict_true(ps->ps_status_mask != 0))
543 val = val & ps->ps_status_mask;
544
545 for (i = 0; i < sc->sc_pstate_count; i++) {
546
547 ps = &sc->sc_pstate[i];
548
549 if (__predict_false(ps->ps_freq == 0))
550 continue;
551
552 if (val == ps->ps_status) {
553 *freq = ps->ps_freq;
554 return 0;
555 }
556 }
557
558 return EIO;
559 }
560
561 int
562 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
563 {
564 struct msr_rw_info msr;
565 uint64_t xc;
566 int rv = 0;
567
568 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
569 return acpicpu_md_pstate_fidvid_set(ps);
570
571 msr.msr_read = false;
572 msr.msr_type = ps->ps_control_addr;
573 msr.msr_value = ps->ps_control;
574
575 if (__predict_true(ps->ps_control_mask != 0)) {
576 msr.msr_mask = ps->ps_control_mask;
577 msr.msr_read = true;
578 }
579
580 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
581 xc_wait(xc);
582
583 if (ACPICPU_P_STATE_STATUS == 0) {
584 DELAY(ps->ps_latency);
585 return 0;
586 }
587
588 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
589 xc_wait(xc);
590
591 return rv;
592 }
593
594 static void
595 acpicpu_md_pstate_status(void *arg1, void *arg2)
596 {
597 struct acpicpu_pstate *ps = arg1;
598 uint64_t val;
599 int i;
600
601 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
602
603 val = rdmsr(ps->ps_status_addr);
604
605 if (__predict_true(ps->ps_status_mask != 0))
606 val = val & ps->ps_status_mask;
607
608 if (val == ps->ps_status)
609 return;
610
611 DELAY(ps->ps_latency);
612 }
613
614 *(uintptr_t *)arg2 = EAGAIN;
615 }
616
617 static int
618 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
619 {
620 struct acpicpu_pstate *ps;
621 uint32_t fid, i, vid;
622 uint32_t cfid, cvid;
623 int rv;
624
625 /*
626 * AMD family 0Fh needs special treatment.
627 * While it wants to use ACPI, it does not
628 * comply with the ACPI specifications.
629 */
630 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
631
632 if (rv != 0)
633 return rv;
634
635 for (i = 0; i < sc->sc_pstate_count; i++) {
636
637 ps = &sc->sc_pstate[i];
638
639 if (__predict_false(ps->ps_freq == 0))
640 continue;
641
642 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
643 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
644
645 if (cfid == fid && cvid == vid) {
646 *freq = ps->ps_freq;
647 return 0;
648 }
649 }
650
651 return EIO;
652 }
653
654 static int
655 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
656 {
657 const uint64_t ctrl = ps->ps_control;
658 uint32_t cfid, cvid, fid, i, irt;
659 uint32_t pll, vco_cfid, vco_fid;
660 uint32_t val, vid, vst;
661 int rv;
662
663 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
664
665 if (rv != 0)
666 return rv;
667
668 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
669 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
670 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
671 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
672 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
673
674 vst = vst * 20;
675 pll = pll * 1000 / 5;
676 irt = 10 * __BIT(irt);
677
678 /*
679 * Phase 1.
680 */
681 while (cvid > vid) {
682
683 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
684 val = (val > cvid) ? 0 : cvid - val;
685
686 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
687 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
688
689 if (rv != 0)
690 return rv;
691 }
692
693 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
694
695 for (; i > 0 && cvid > 0; --i) {
696
697 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
698 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
699
700 if (rv != 0)
701 return rv;
702 }
703
704 /*
705 * Phase 2.
706 */
707 if (cfid != fid) {
708
709 vco_fid = FID_TO_VCO_FID(fid);
710 vco_cfid = FID_TO_VCO_FID(cfid);
711
712 while (abs(vco_fid - vco_cfid) > 2) {
713
714 if (fid <= cfid)
715 val = cfid - 2;
716 else {
717 val = (cfid > 6) ? cfid + 2 :
718 FID_TO_VCO_FID(cfid) + 2;
719 }
720
721 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
722 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
723
724 if (rv != 0)
725 return rv;
726
727 vco_cfid = FID_TO_VCO_FID(cfid);
728 }
729
730 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
731 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
732
733 if (rv != 0)
734 return rv;
735 }
736
737 /*
738 * Phase 3.
739 */
740 if (cvid != vid) {
741
742 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
743 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
744
745 if (rv != 0)
746 return rv;
747 }
748
749 if (cfid != fid || cvid != vid)
750 return EIO;
751
752 return 0;
753 }
754
755 static int
756 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
757 {
758 int i = ACPICPU_P_STATE_RETRY * 100;
759 uint64_t val;
760
761 do {
762 val = rdmsr(MSR_0FH_STATUS);
763
764 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
765
766 if (i == 0)
767 return EAGAIN;
768
769 if (cfid != NULL)
770 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
771
772 if (cvid != NULL)
773 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
774
775 return 0;
776 }
777
778 static void
779 acpicpu_md_pstate_fidvid_write(uint32_t fid,
780 uint32_t vid, uint32_t cnt, uint32_t tmo)
781 {
782 struct msr_rw_info msr;
783 uint64_t xc;
784
785 msr.msr_read = false;
786 msr.msr_type = MSR_0FH_CONTROL;
787 msr.msr_value = 0;
788
789 msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
790 msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
791 msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
792 msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
793
794 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
795 xc_wait(xc);
796
797 DELAY(tmo);
798 }
799
800 int
801 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
802 {
803 struct acpicpu_tstate *ts;
804 uint64_t val;
805 uint32_t i;
806
807 val = rdmsr(MSR_THERM_CONTROL);
808
809 for (i = 0; i < sc->sc_tstate_count; i++) {
810
811 ts = &sc->sc_tstate[i];
812
813 if (ts->ts_percent == 0)
814 continue;
815
816 if (val == ts->ts_status) {
817 *percent = ts->ts_percent;
818 return 0;
819 }
820 }
821
822 return EIO;
823 }
824
825 int
826 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
827 {
828 struct msr_rw_info msr;
829 uint64_t xc;
830 int rv = 0;
831
832 msr.msr_read = true;
833 msr.msr_type = MSR_THERM_CONTROL;
834 msr.msr_value = ts->ts_control;
835 msr.msr_mask = __BITS(1, 4);
836
837 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
838 xc_wait(xc);
839
840 if (ts->ts_status == 0) {
841 DELAY(ts->ts_latency);
842 return 0;
843 }
844
845 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
846 xc_wait(xc);
847
848 return rv;
849 }
850
851 static void
852 acpicpu_md_tstate_status(void *arg1, void *arg2)
853 {
854 struct acpicpu_tstate *ts = arg1;
855 uint64_t val;
856 int i;
857
858 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
859
860 val = rdmsr(MSR_THERM_CONTROL);
861
862 if (val == ts->ts_status)
863 return;
864
865 DELAY(ts->ts_latency);
866 }
867
868 *(uintptr_t *)arg2 = EAGAIN;
869 }
870
871 /*
872 * A kludge for backwards compatibility.
873 */
874 static int
875 acpicpu_md_pstate_sysctl_init(void)
876 {
877 const struct sysctlnode *fnode, *mnode, *rnode;
878 const char *str;
879 int rv;
880
881 switch (cpu_vendor) {
882
883 case CPUVENDOR_IDT:
884 case CPUVENDOR_INTEL:
885 str = "est";
886 break;
887
888 case CPUVENDOR_AMD:
889 str = "powernow";
890 break;
891
892 default:
893 return ENODEV;
894 }
895
896
897 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
898 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
899 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
900
901 if (rv != 0)
902 goto fail;
903
904 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
905 0, CTLTYPE_NODE, str, NULL,
906 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
907
908 if (rv != 0)
909 goto fail;
910
911 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
912 0, CTLTYPE_NODE, "frequency", NULL,
913 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
914
915 if (rv != 0)
916 goto fail;
917
918 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
919 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
920 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
921
922 if (rv != 0)
923 goto fail;
924
925 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
926 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
927 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
928
929 if (rv != 0)
930 goto fail;
931
932 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
933 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
934 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
935
936 if (rv != 0)
937 goto fail;
938
939 return 0;
940
941 fail:
942 if (acpicpu_log != NULL) {
943 sysctl_teardown(&acpicpu_log);
944 acpicpu_log = NULL;
945 }
946
947 return rv;
948 }
949
950 static int
951 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
952 {
953 struct cpu_info *ci = curcpu();
954 struct acpicpu_softc *sc;
955 struct sysctlnode node;
956 uint32_t freq;
957 int err;
958
959 sc = acpicpu_sc[ci->ci_acpiid];
960
961 if (sc == NULL)
962 return ENXIO;
963
964 err = acpicpu_pstate_get(sc, &freq);
965
966 if (err != 0)
967 return err;
968
969 node = *rnode;
970 node.sysctl_data = &freq;
971
972 err = sysctl_lookup(SYSCTLFN_CALL(&node));
973
974 if (err != 0 || newp == NULL)
975 return err;
976
977 return 0;
978 }
979
980 static int
981 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
982 {
983 struct cpu_info *ci = curcpu();
984 struct acpicpu_softc *sc;
985 struct sysctlnode node;
986 uint32_t freq;
987 int err;
988
989 sc = acpicpu_sc[ci->ci_acpiid];
990
991 if (sc == NULL)
992 return ENXIO;
993
994 err = acpicpu_pstate_get(sc, &freq);
995
996 if (err != 0)
997 return err;
998
999 node = *rnode;
1000 node.sysctl_data = &freq;
1001
1002 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1003
1004 if (err != 0 || newp == NULL)
1005 return err;
1006
1007 err = acpicpu_pstate_set(sc, freq);
1008
1009 if (err != 0)
1010 return err;
1011
1012 return 0;
1013 }
1014
1015 static int
1016 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1017 {
1018 struct cpu_info *ci = curcpu();
1019 struct acpicpu_softc *sc;
1020 struct sysctlnode node;
1021 char buf[1024];
1022 size_t len;
1023 uint32_t i;
1024 int err;
1025
1026 sc = acpicpu_sc[ci->ci_acpiid];
1027
1028 if (sc == NULL)
1029 return ENXIO;
1030
1031 (void)memset(&buf, 0, sizeof(buf));
1032
1033 mutex_enter(&sc->sc_mtx);
1034
1035 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1036
1037 if (sc->sc_pstate[i].ps_freq == 0)
1038 continue;
1039
1040 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1041 sc->sc_pstate[i].ps_freq,
1042 i < (sc->sc_pstate_count - 1) ? " " : "");
1043 }
1044
1045 mutex_exit(&sc->sc_mtx);
1046
1047 node = *rnode;
1048 node.sysctl_data = buf;
1049
1050 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1051
1052 if (err != 0 || newp == NULL)
1053 return err;
1054
1055 return 0;
1056 }
1057
1058