Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.34.2.2
      1 /* $NetBSD: acpi_cpu_md.c,v 1.34.2.2 2010/10/24 22:48:16 jym Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.34.2.2 2010/10/24 22:48:16 jym Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #define ACPICPU_P_STATE_STATUS	0
     52 
     53 /*
     54  * AMD families 10h and 11h.
     55  */
     56 #define MSR_10H_LIMIT		0xc0010061
     57 #define MSR_10H_CONTROL		0xc0010062
     58 #define MSR_10H_STATUS		0xc0010063
     59 #define MSR_10H_CONFIG		0xc0010064
     60 
     61 /*
     62  * AMD family 0Fh.
     63  */
     64 #define MSR_0FH_CONTROL		0xc0010041
     65 #define MSR_0FH_STATUS		0xc0010042
     66 
     67 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     68 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     69 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     70 
     71 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     72 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     73 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     74 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     75 
     76 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     77 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     78 
     79 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     80 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     81 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     82 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     83 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
     84 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
     85 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
     86 
     87 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
     88 
     89 static char	  native_idle_text[16];
     90 void		(*native_idle)(void) = NULL;
     91 
     92 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
     93 static void	 acpicpu_md_pstate_status(void *, void *);
     94 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
     95                                               uint32_t *);
     96 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
     97 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
     98 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
     99 					        uint32_t, uint32_t);
    100 static void	 acpicpu_md_tstate_status(void *, void *);
    101 static int	 acpicpu_md_pstate_sysctl_init(void);
    102 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    103 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    104 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    105 
    106 extern uint32_t cpus_running;
    107 extern struct acpicpu_softc **acpicpu_sc;
    108 static struct sysctllog *acpicpu_log = NULL;
    109 
    110 uint32_t
    111 acpicpu_md_cap(void)
    112 {
    113 	struct cpu_info *ci = curcpu();
    114 	uint32_t val = 0;
    115 
    116 	if (cpu_vendor != CPUVENDOR_IDT &&
    117 	    cpu_vendor != CPUVENDOR_INTEL)
    118 		return val;
    119 
    120 	/*
    121 	 * Basic SMP C-states (required for _CST).
    122 	 */
    123 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    124 
    125         /*
    126 	 * If MONITOR/MWAIT is available, announce
    127 	 * support for native instructions in all C-states.
    128 	 */
    129         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    130 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    131 
    132 	/*
    133 	 * Set native P- and T-states, if available.
    134 	 */
    135         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    136 		val |= ACPICPU_PDC_P_FFH;
    137 
    138 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    139 		val |= ACPICPU_PDC_T_FFH;
    140 
    141 	return val;
    142 }
    143 
    144 uint32_t
    145 acpicpu_md_quirks(void)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 	struct pci_attach_args pa;
    149 	uint32_t family, val = 0;
    150 	uint32_t regs[4];
    151 
    152 	if (acpicpu_md_cpus_running() == 1)
    153 		val |= ACPICPU_FLAG_C_BM;
    154 
    155 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    156 		val |= ACPICPU_FLAG_C_FFH;
    157 
    158 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    159 
    160 	switch (cpu_vendor) {
    161 
    162 	case CPUVENDOR_IDT:
    163 
    164 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    165 			val |= ACPICPU_FLAG_P_FFH;
    166 
    167 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    168 			val |= ACPICPU_FLAG_T_FFH;
    169 
    170 		break;
    171 
    172 	case CPUVENDOR_INTEL:
    173 
    174 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    175 
    176 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    177 			val |= ACPICPU_FLAG_P_FFH;
    178 
    179 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    180 			val |= ACPICPU_FLAG_T_FFH;
    181 
    182 		/*
    183 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    184 		 * Boost are available. Also see if we might have
    185 		 * an invariant local APIC timer ("ARAT").
    186 		 */
    187 		if (cpuid_level >= 0x06) {
    188 
    189 			x86_cpuid(0x06, regs);
    190 
    191 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    192 				val |= ACPICPU_FLAG_P_HW;
    193 
    194 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    195 				val |= ACPICPU_FLAG_P_TURBO;
    196 
    197 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    198 				val &= ~ACPICPU_FLAG_C_APIC;
    199 		}
    200 
    201 		/*
    202 		 * Detect whether TSC is invariant. If it is not,
    203 		 * we keep the flag to note that TSC will not run
    204 		 * at constant rate. Depending on the CPU, this may
    205 		 * affect P- and T-state changes, but especially
    206 		 * relevant are C-states; with variant TSC, states
    207 		 * larger than C1 may completely stop the counter.
    208 		 */
    209 		x86_cpuid(0x80000000, regs);
    210 
    211 		if (regs[0] >= 0x80000007) {
    212 
    213 			x86_cpuid(0x80000007, regs);
    214 
    215 			if ((regs[3] & __BIT(8)) != 0)
    216 				val &= ~ACPICPU_FLAG_C_TSC;
    217 		}
    218 
    219 		break;
    220 
    221 	case CPUVENDOR_AMD:
    222 
    223 		x86_cpuid(0x80000000, regs);
    224 
    225 		if (regs[0] < 0x80000007)
    226 			break;
    227 
    228 		x86_cpuid(0x80000007, regs);
    229 
    230 		family = CPUID2FAMILY(ci->ci_signature);
    231 
    232 		if (family == 0xf)
    233 			family += CPUID2EXTFAMILY(ci->ci_signature);
    234 
    235     		switch (family) {
    236 
    237 		case 0x0f:
    238 
    239 			if ((regs[3] & CPUID_APM_FID) == 0)
    240 				break;
    241 
    242 			if ((regs[3] & CPUID_APM_VID) == 0)
    243 				break;
    244 
    245 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    246 			break;
    247 
    248 		case 0x10:
    249 		case 0x11:
    250 
    251 			if ((regs[3] & CPUID_APM_TSC) != 0)
    252 				val &= ~ACPICPU_FLAG_C_TSC;
    253 
    254 			if ((regs[3] & CPUID_APM_HWP) != 0)
    255 				val |= ACPICPU_FLAG_P_FFH;
    256 
    257 			if ((regs[3] & CPUID_APM_CPB) != 0)
    258 				val |= ACPICPU_FLAG_P_TURBO;
    259 		}
    260 
    261 		break;
    262 	}
    263 
    264 	/*
    265 	 * There are several erratums for PIIX4.
    266 	 */
    267 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    268 		val |= ACPICPU_FLAG_PIIX4;
    269 
    270 	return val;
    271 }
    272 
    273 static int
    274 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    275 {
    276 
    277 	/*
    278 	 * XXX: The pci_find_device(9) function only
    279 	 *	deals with attached devices. Change this
    280 	 *	to use something like pci_device_foreach().
    281 	 */
    282 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    283 		return 0;
    284 
    285 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    286 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    287 		return 1;
    288 
    289 	return 0;
    290 }
    291 
    292 uint32_t
    293 acpicpu_md_cpus_running(void)
    294 {
    295 
    296 	return popcount32(cpus_running);
    297 }
    298 
    299 int
    300 acpicpu_md_idle_start(struct acpicpu_softc *sc)
    301 {
    302 	const size_t size = sizeof(native_idle_text);
    303 	struct acpicpu_cstate *cs;
    304 	bool ipi = false;
    305 	int i;
    306 
    307 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    308 
    309 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    310 
    311 		cs = &sc->sc_cstate[i];
    312 
    313 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    314 			ipi = true;
    315 			break;
    316 		}
    317 	}
    318 
    319 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    320 
    321 	return 0;
    322 }
    323 
    324 int
    325 acpicpu_md_idle_stop(void)
    326 {
    327 	uint64_t xc;
    328 	bool ipi;
    329 
    330 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    331 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    332 
    333 	/*
    334 	 * Run a cross-call to ensure that all CPUs are
    335 	 * out from the ACPI idle-loop before detachment.
    336 	 */
    337 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    338 	xc_wait(xc);
    339 
    340 	return 0;
    341 }
    342 
    343 /*
    344  * Called with interrupts disabled.
    345  * Caller should enable interrupts after return.
    346  */
    347 void
    348 acpicpu_md_idle_enter(int method, int state)
    349 {
    350 	struct cpu_info *ci = curcpu();
    351 
    352 	switch (method) {
    353 
    354 	case ACPICPU_C_STATE_FFH:
    355 
    356 		x86_enable_intr();
    357 		x86_monitor(&ci->ci_want_resched, 0, 0);
    358 
    359 		if (__predict_false(ci->ci_want_resched != 0))
    360 			return;
    361 
    362 		x86_mwait((state - 1) << 4, 0);
    363 		break;
    364 
    365 	case ACPICPU_C_STATE_HALT:
    366 
    367 		if (__predict_false(ci->ci_want_resched != 0))
    368 			return;
    369 
    370 		x86_stihlt();
    371 		break;
    372 	}
    373 }
    374 
    375 int
    376 acpicpu_md_pstate_start(void)
    377 {
    378 	const uint64_t est = __BIT(16);
    379 	uint64_t val;
    380 
    381 	switch (cpu_vendor) {
    382 
    383 	case CPUVENDOR_IDT:
    384 	case CPUVENDOR_INTEL:
    385 
    386 		val = rdmsr(MSR_MISC_ENABLE);
    387 
    388 		if ((val & est) == 0) {
    389 
    390 			val |= est;
    391 
    392 			wrmsr(MSR_MISC_ENABLE, val);
    393 			val = rdmsr(MSR_MISC_ENABLE);
    394 
    395 			if ((val & est) == 0)
    396 				return ENOTTY;
    397 		}
    398 	}
    399 
    400 	return acpicpu_md_pstate_sysctl_init();
    401 }
    402 
    403 int
    404 acpicpu_md_pstate_stop(void)
    405 {
    406 
    407 	if (acpicpu_log != NULL)
    408 		sysctl_teardown(&acpicpu_log);
    409 
    410 	return 0;
    411 }
    412 
    413 int
    414 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    415 {
    416 	struct acpicpu_pstate *ps, msr;
    417 	struct cpu_info *ci = curcpu();
    418 	uint32_t family, i = 0;
    419 
    420 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    421 
    422 	switch (cpu_vendor) {
    423 
    424 	case CPUVENDOR_IDT:
    425 	case CPUVENDOR_INTEL:
    426 
    427 		/*
    428 		 * If the so-called Turbo Boost is present,
    429 		 * the P0-state is always the "turbo state".
    430 		 *
    431 		 * For discussion, see:
    432 		 *
    433 		 *	Intel Corporation: Intel Turbo Boost Technology
    434 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    435 		 *	Based Processors. White Paper, November 2008.
    436 		 */
    437 		if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
    438 			sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
    439 
    440 		msr.ps_control_addr = MSR_PERF_CTL;
    441 		msr.ps_control_mask = __BITS(0, 15);
    442 
    443 		msr.ps_status_addr  = MSR_PERF_STATUS;
    444 		msr.ps_status_mask  = __BITS(0, 15);
    445 		break;
    446 
    447 	case CPUVENDOR_AMD:
    448 
    449 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    450 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    451 
    452 		family = CPUID2FAMILY(ci->ci_signature);
    453 
    454 		if (family == 0xf)
    455 			family += CPUID2EXTFAMILY(ci->ci_signature);
    456 
    457 		switch (family) {
    458 
    459 		case 0x0f:
    460 			msr.ps_control_addr = MSR_0FH_CONTROL;
    461 			msr.ps_status_addr  = MSR_0FH_STATUS;
    462 			break;
    463 
    464 		case 0x10:
    465 		case 0x11:
    466 			msr.ps_control_addr = MSR_10H_CONTROL;
    467 			msr.ps_control_mask = __BITS(0, 2);
    468 
    469 			msr.ps_status_addr  = MSR_10H_STATUS;
    470 			msr.ps_status_mask  = __BITS(0, 2);
    471 			break;
    472 
    473 		default:
    474 
    475 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    476 				return EOPNOTSUPP;
    477 		}
    478 
    479 		break;
    480 
    481 	default:
    482 		return ENODEV;
    483 	}
    484 
    485 	/*
    486 	 * Fill the P-state structures with MSR addresses that are
    487 	 * known to be correct. If we do not know the addresses,
    488 	 * leave the values intact. If a vendor uses XPSS, we do
    489 	 * not necessary need to do anything to support new CPUs.
    490 	 */
    491 	while (i < sc->sc_pstate_count) {
    492 
    493 		ps = &sc->sc_pstate[i];
    494 
    495 		if (msr.ps_flags != 0)
    496 			ps->ps_flags |= msr.ps_flags;
    497 
    498 		if (msr.ps_status_addr != 0)
    499 			ps->ps_status_addr = msr.ps_status_addr;
    500 
    501 		if (msr.ps_status_mask != 0)
    502 			ps->ps_status_mask = msr.ps_status_mask;
    503 
    504 		if (msr.ps_control_addr != 0)
    505 			ps->ps_control_addr = msr.ps_control_addr;
    506 
    507 		if (msr.ps_control_mask != 0)
    508 			ps->ps_control_mask = msr.ps_control_mask;
    509 
    510 		i++;
    511 	}
    512 
    513 	return 0;
    514 }
    515 
    516 int
    517 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    518 {
    519 	struct acpicpu_pstate *ps = NULL;
    520 	uint64_t val;
    521 	uint32_t i;
    522 
    523 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    524 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    525 
    526 	for (i = 0; i < sc->sc_pstate_count; i++) {
    527 
    528 		ps = &sc->sc_pstate[i];
    529 
    530 		if (__predict_true(ps->ps_freq != 0))
    531 			break;
    532 	}
    533 
    534 	if (__predict_false(ps == NULL))
    535 		return ENODEV;
    536 
    537 	if (__predict_false(ps->ps_status_addr == 0))
    538 		return EINVAL;
    539 
    540 	val = rdmsr(ps->ps_status_addr);
    541 
    542 	if (__predict_true(ps->ps_status_mask != 0))
    543 		val = val & ps->ps_status_mask;
    544 
    545 	for (i = 0; i < sc->sc_pstate_count; i++) {
    546 
    547 		ps = &sc->sc_pstate[i];
    548 
    549 		if (__predict_false(ps->ps_freq == 0))
    550 			continue;
    551 
    552 		if (val == ps->ps_status) {
    553 			*freq = ps->ps_freq;
    554 			return 0;
    555 		}
    556 	}
    557 
    558 	return EIO;
    559 }
    560 
    561 int
    562 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    563 {
    564 	struct msr_rw_info msr;
    565 	uint64_t xc;
    566 	int rv = 0;
    567 
    568 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    569 		return acpicpu_md_pstate_fidvid_set(ps);
    570 
    571 	msr.msr_read  = false;
    572 	msr.msr_type  = ps->ps_control_addr;
    573 	msr.msr_value = ps->ps_control;
    574 
    575 	if (__predict_true(ps->ps_control_mask != 0)) {
    576 		msr.msr_mask = ps->ps_control_mask;
    577 		msr.msr_read = true;
    578 	}
    579 
    580 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    581 	xc_wait(xc);
    582 
    583 	if (ACPICPU_P_STATE_STATUS == 0) {
    584 		DELAY(ps->ps_latency);
    585 		return 0;
    586 	}
    587 
    588 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    589 	xc_wait(xc);
    590 
    591 	return rv;
    592 }
    593 
    594 static void
    595 acpicpu_md_pstate_status(void *arg1, void *arg2)
    596 {
    597 	struct acpicpu_pstate *ps = arg1;
    598 	uint64_t val;
    599 	int i;
    600 
    601 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    602 
    603 		val = rdmsr(ps->ps_status_addr);
    604 
    605 		if (__predict_true(ps->ps_status_mask != 0))
    606 			val = val & ps->ps_status_mask;
    607 
    608 		if (val == ps->ps_status)
    609 			return;
    610 
    611 		DELAY(ps->ps_latency);
    612 	}
    613 
    614 	*(uintptr_t *)arg2 = EAGAIN;
    615 }
    616 
    617 static int
    618 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    619 {
    620 	struct acpicpu_pstate *ps;
    621 	uint32_t fid, i, vid;
    622 	uint32_t cfid, cvid;
    623 	int rv;
    624 
    625 	/*
    626 	 * AMD family 0Fh needs special treatment.
    627 	 * While it wants to use ACPI, it does not
    628 	 * comply with the ACPI specifications.
    629 	 */
    630 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    631 
    632 	if (rv != 0)
    633 		return rv;
    634 
    635 	for (i = 0; i < sc->sc_pstate_count; i++) {
    636 
    637 		ps = &sc->sc_pstate[i];
    638 
    639 		if (__predict_false(ps->ps_freq == 0))
    640 			continue;
    641 
    642 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    643 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    644 
    645 		if (cfid == fid && cvid == vid) {
    646 			*freq = ps->ps_freq;
    647 			return 0;
    648 		}
    649 	}
    650 
    651 	return EIO;
    652 }
    653 
    654 static int
    655 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    656 {
    657 	const uint64_t ctrl = ps->ps_control;
    658 	uint32_t cfid, cvid, fid, i, irt;
    659 	uint32_t pll, vco_cfid, vco_fid;
    660 	uint32_t val, vid, vst;
    661 	int rv;
    662 
    663 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    664 
    665 	if (rv != 0)
    666 		return rv;
    667 
    668 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    669 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    670 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    671 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    672 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    673 
    674 	vst = vst * 20;
    675 	pll = pll * 1000 / 5;
    676 	irt = 10 * __BIT(irt);
    677 
    678 	/*
    679 	 * Phase 1.
    680 	 */
    681 	while (cvid > vid) {
    682 
    683 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    684 		val = (val > cvid) ? 0 : cvid - val;
    685 
    686 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    687 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    688 
    689 		if (rv != 0)
    690 			return rv;
    691 	}
    692 
    693 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    694 
    695 	for (; i > 0 && cvid > 0; --i) {
    696 
    697 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    698 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    699 
    700 		if (rv != 0)
    701 			return rv;
    702 	}
    703 
    704 	/*
    705 	 * Phase 2.
    706 	 */
    707 	if (cfid != fid) {
    708 
    709 		vco_fid  = FID_TO_VCO_FID(fid);
    710 		vco_cfid = FID_TO_VCO_FID(cfid);
    711 
    712 		while (abs(vco_fid - vco_cfid) > 2) {
    713 
    714 			if (fid <= cfid)
    715 				val = cfid - 2;
    716 			else {
    717 				val = (cfid > 6) ? cfid + 2 :
    718 				    FID_TO_VCO_FID(cfid) + 2;
    719 			}
    720 
    721 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    722 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    723 
    724 			if (rv != 0)
    725 				return rv;
    726 
    727 			vco_cfid = FID_TO_VCO_FID(cfid);
    728 		}
    729 
    730 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    731 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    732 
    733 		if (rv != 0)
    734 			return rv;
    735 	}
    736 
    737 	/*
    738 	 * Phase 3.
    739 	 */
    740 	if (cvid != vid) {
    741 
    742 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    743 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    744 
    745 		if (rv != 0)
    746 			return rv;
    747 	}
    748 
    749 	if (cfid != fid || cvid != vid)
    750 		return EIO;
    751 
    752 	return 0;
    753 }
    754 
    755 static int
    756 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    757 {
    758 	int i = ACPICPU_P_STATE_RETRY * 100;
    759 	uint64_t val;
    760 
    761 	do {
    762 		val = rdmsr(MSR_0FH_STATUS);
    763 
    764 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    765 
    766 	if (i == 0)
    767 		return EAGAIN;
    768 
    769 	if (cfid != NULL)
    770 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    771 
    772 	if (cvid != NULL)
    773 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    774 
    775 	return 0;
    776 }
    777 
    778 static void
    779 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    780     uint32_t vid, uint32_t cnt, uint32_t tmo)
    781 {
    782 	struct msr_rw_info msr;
    783 	uint64_t xc;
    784 
    785 	msr.msr_read  = false;
    786 	msr.msr_type  = MSR_0FH_CONTROL;
    787 	msr.msr_value = 0;
    788 
    789 	msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    790 	msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    791 	msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    792 	msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    793 
    794 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    795 	xc_wait(xc);
    796 
    797 	DELAY(tmo);
    798 }
    799 
    800 int
    801 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    802 {
    803 	struct acpicpu_tstate *ts;
    804 	uint64_t val;
    805 	uint32_t i;
    806 
    807 	val = rdmsr(MSR_THERM_CONTROL);
    808 
    809 	for (i = 0; i < sc->sc_tstate_count; i++) {
    810 
    811 		ts = &sc->sc_tstate[i];
    812 
    813 		if (ts->ts_percent == 0)
    814 			continue;
    815 
    816 		if (val == ts->ts_status) {
    817 			*percent = ts->ts_percent;
    818 			return 0;
    819 		}
    820 	}
    821 
    822 	return EIO;
    823 }
    824 
    825 int
    826 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    827 {
    828 	struct msr_rw_info msr;
    829 	uint64_t xc;
    830 	int rv = 0;
    831 
    832 	msr.msr_read  = true;
    833 	msr.msr_type  = MSR_THERM_CONTROL;
    834 	msr.msr_value = ts->ts_control;
    835 	msr.msr_mask = __BITS(1, 4);
    836 
    837 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    838 	xc_wait(xc);
    839 
    840 	if (ts->ts_status == 0) {
    841 		DELAY(ts->ts_latency);
    842 		return 0;
    843 	}
    844 
    845 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    846 	xc_wait(xc);
    847 
    848 	return rv;
    849 }
    850 
    851 static void
    852 acpicpu_md_tstate_status(void *arg1, void *arg2)
    853 {
    854 	struct acpicpu_tstate *ts = arg1;
    855 	uint64_t val;
    856 	int i;
    857 
    858 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    859 
    860 		val = rdmsr(MSR_THERM_CONTROL);
    861 
    862 		if (val == ts->ts_status)
    863 			return;
    864 
    865 		DELAY(ts->ts_latency);
    866 	}
    867 
    868 	*(uintptr_t *)arg2 = EAGAIN;
    869 }
    870 
    871 /*
    872  * A kludge for backwards compatibility.
    873  */
    874 static int
    875 acpicpu_md_pstate_sysctl_init(void)
    876 {
    877 	const struct sysctlnode	*fnode, *mnode, *rnode;
    878 	const char *str;
    879 	int rv;
    880 
    881 	switch (cpu_vendor) {
    882 
    883 	case CPUVENDOR_IDT:
    884 	case CPUVENDOR_INTEL:
    885 		str = "est";
    886 		break;
    887 
    888 	case CPUVENDOR_AMD:
    889 		str = "powernow";
    890 		break;
    891 
    892 	default:
    893 		return ENODEV;
    894 	}
    895 
    896 
    897 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
    898 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    899 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    900 
    901 	if (rv != 0)
    902 		goto fail;
    903 
    904 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
    905 	    0, CTLTYPE_NODE, str, NULL,
    906 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    907 
    908 	if (rv != 0)
    909 		goto fail;
    910 
    911 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
    912 	    0, CTLTYPE_NODE, "frequency", NULL,
    913 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    914 
    915 	if (rv != 0)
    916 		goto fail;
    917 
    918 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
    919 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    920 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    921 
    922 	if (rv != 0)
    923 		goto fail;
    924 
    925 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
    926 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
    927 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    928 
    929 	if (rv != 0)
    930 		goto fail;
    931 
    932 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
    933 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
    934 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    935 
    936 	if (rv != 0)
    937 		goto fail;
    938 
    939 	return 0;
    940 
    941 fail:
    942 	if (acpicpu_log != NULL) {
    943 		sysctl_teardown(&acpicpu_log);
    944 		acpicpu_log = NULL;
    945 	}
    946 
    947 	return rv;
    948 }
    949 
    950 static int
    951 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
    952 {
    953 	struct cpu_info *ci = curcpu();
    954 	struct acpicpu_softc *sc;
    955 	struct sysctlnode node;
    956 	uint32_t freq;
    957 	int err;
    958 
    959 	sc = acpicpu_sc[ci->ci_acpiid];
    960 
    961 	if (sc == NULL)
    962 		return ENXIO;
    963 
    964 	err = acpicpu_pstate_get(sc, &freq);
    965 
    966 	if (err != 0)
    967 		return err;
    968 
    969 	node = *rnode;
    970 	node.sysctl_data = &freq;
    971 
    972 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
    973 
    974 	if (err != 0 || newp == NULL)
    975 		return err;
    976 
    977 	return 0;
    978 }
    979 
    980 static int
    981 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
    982 {
    983 	struct cpu_info *ci = curcpu();
    984 	struct acpicpu_softc *sc;
    985 	struct sysctlnode node;
    986 	uint32_t freq;
    987 	int err;
    988 
    989 	sc = acpicpu_sc[ci->ci_acpiid];
    990 
    991 	if (sc == NULL)
    992 		return ENXIO;
    993 
    994 	err = acpicpu_pstate_get(sc, &freq);
    995 
    996 	if (err != 0)
    997 		return err;
    998 
    999 	node = *rnode;
   1000 	node.sysctl_data = &freq;
   1001 
   1002 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1003 
   1004 	if (err != 0 || newp == NULL)
   1005 		return err;
   1006 
   1007 	err = acpicpu_pstate_set(sc, freq);
   1008 
   1009 	if (err != 0)
   1010 		return err;
   1011 
   1012 	return 0;
   1013 }
   1014 
   1015 static int
   1016 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1017 {
   1018 	struct cpu_info *ci = curcpu();
   1019 	struct acpicpu_softc *sc;
   1020 	struct sysctlnode node;
   1021 	char buf[1024];
   1022 	size_t len;
   1023 	uint32_t i;
   1024 	int err;
   1025 
   1026 	sc = acpicpu_sc[ci->ci_acpiid];
   1027 
   1028 	if (sc == NULL)
   1029 		return ENXIO;
   1030 
   1031 	(void)memset(&buf, 0, sizeof(buf));
   1032 
   1033 	mutex_enter(&sc->sc_mtx);
   1034 
   1035 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1036 
   1037 		if (sc->sc_pstate[i].ps_freq == 0)
   1038 			continue;
   1039 
   1040 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1041 		    sc->sc_pstate[i].ps_freq,
   1042 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1043 	}
   1044 
   1045 	mutex_exit(&sc->sc_mtx);
   1046 
   1047 	node = *rnode;
   1048 	node.sysctl_data = buf;
   1049 
   1050 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1051 
   1052 	if (err != 0 || newp == NULL)
   1053 		return err;
   1054 
   1055 	return 0;
   1056 }
   1057 
   1058