acpi_cpu_md.c revision 1.34.2.3 1 /* $NetBSD: acpi_cpu_md.c,v 1.34.2.3 2011/01/10 00:37:36 jym Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.34.2.3 2011/01/10 00:37:36 jym Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 /*
52 * AMD C1E.
53 */
54 #define MSR_CMPHALT 0xc0010055
55
56 #define MSR_CMPHALT_SMI __BIT(27)
57 #define MSR_CMPHALT_C1E __BIT(28)
58 #define MSR_CMPHALT_BMSTS __BIT(29)
59
60 /*
61 * AMD families 10h and 11h.
62 */
63 #define MSR_10H_LIMIT 0xc0010061
64 #define MSR_10H_CONTROL 0xc0010062
65 #define MSR_10H_STATUS 0xc0010063
66 #define MSR_10H_CONFIG 0xc0010064
67
68 /*
69 * AMD family 0Fh.
70 */
71 #define MSR_0FH_CONTROL 0xc0010041
72 #define MSR_0FH_STATUS 0xc0010042
73
74 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
75 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
76 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
77
78 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
79 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
80 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
81 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
82
83 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
84 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
85
86 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
87 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
88 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
89 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
90 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
91 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
92 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
93
94 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
95
96 static char native_idle_text[16];
97 void (*native_idle)(void) = NULL;
98
99 static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
100 static void acpicpu_md_pstate_status(void *, void *);
101 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
102 uint32_t *);
103 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
104 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
105 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
106 uint32_t, uint32_t);
107 static void acpicpu_md_tstate_status(void *, void *);
108 static int acpicpu_md_pstate_sysctl_init(void);
109 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
110 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
111 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
112
113 extern uint32_t cpus_running;
114 extern struct acpicpu_softc **acpicpu_sc;
115 static bool acpicpu_pstate_status = false;
116 static struct sysctllog *acpicpu_log = NULL;
117
118 uint32_t
119 acpicpu_md_cap(void)
120 {
121 struct cpu_info *ci = curcpu();
122 uint32_t val = 0;
123
124 if (cpu_vendor != CPUVENDOR_IDT &&
125 cpu_vendor != CPUVENDOR_INTEL)
126 return val;
127
128 /*
129 * Basic SMP C-states (required for _CST).
130 */
131 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
132
133 /*
134 * If MONITOR/MWAIT is available, announce
135 * support for native instructions in all C-states.
136 */
137 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
138 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
139
140 /*
141 * Set native P- and T-states, if available.
142 */
143 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
144 val |= ACPICPU_PDC_P_FFH;
145
146 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
147 val |= ACPICPU_PDC_T_FFH;
148
149 return val;
150 }
151
152 uint32_t
153 acpicpu_md_quirks(void)
154 {
155 struct cpu_info *ci = curcpu();
156 struct pci_attach_args pa;
157 uint32_t family, val = 0;
158 uint32_t regs[4];
159
160 if (acpicpu_md_cpus_running() == 1)
161 val |= ACPICPU_FLAG_C_BM;
162
163 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
164 val |= ACPICPU_FLAG_C_FFH;
165
166 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
167
168 switch (cpu_vendor) {
169
170 case CPUVENDOR_IDT:
171
172 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
173 val |= ACPICPU_FLAG_P_FFH;
174
175 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
176 val |= ACPICPU_FLAG_T_FFH;
177
178 break;
179
180 case CPUVENDOR_INTEL:
181
182 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
183
184 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
185 val |= ACPICPU_FLAG_P_FFH;
186
187 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
188 val |= ACPICPU_FLAG_T_FFH;
189
190 /*
191 * Check whether MSR_APERF, MSR_MPERF, and Turbo
192 * Boost are available. Also see if we might have
193 * an invariant local APIC timer ("ARAT").
194 */
195 if (cpuid_level >= 0x06) {
196
197 x86_cpuid(0x06, regs);
198
199 if ((regs[2] & CPUID_DSPM_HWF) != 0)
200 val |= ACPICPU_FLAG_P_HW;
201
202 if ((regs[0] & CPUID_DSPM_IDA) != 0)
203 val |= ACPICPU_FLAG_P_TURBO;
204
205 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
206 val &= ~ACPICPU_FLAG_C_APIC;
207 }
208
209 /*
210 * Detect whether TSC is invariant. If it is not,
211 * we keep the flag to note that TSC will not run
212 * at constant rate. Depending on the CPU, this may
213 * affect P- and T-state changes, but especially
214 * relevant are C-states; with variant TSC, states
215 * larger than C1 may completely stop the counter.
216 */
217 x86_cpuid(0x80000000, regs);
218
219 if (regs[0] >= 0x80000007) {
220
221 x86_cpuid(0x80000007, regs);
222
223 if ((regs[3] & __BIT(8)) != 0)
224 val &= ~ACPICPU_FLAG_C_TSC;
225 }
226
227 break;
228
229 case CPUVENDOR_AMD:
230
231 x86_cpuid(0x80000000, regs);
232
233 if (regs[0] < 0x80000007)
234 break;
235
236 x86_cpuid(0x80000007, regs);
237
238 family = CPUID2FAMILY(ci->ci_signature);
239
240 if (family == 0xf)
241 family += CPUID2EXTFAMILY(ci->ci_signature);
242
243 switch (family) {
244
245 case 0x0f:
246
247 if ((regs[3] & CPUID_APM_FID) == 0)
248 break;
249
250 if ((regs[3] & CPUID_APM_VID) == 0)
251 break;
252
253 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
254 break;
255
256 case 0x10:
257 case 0x11:
258
259 if ((regs[3] & CPUID_APM_TSC) != 0)
260 val &= ~ACPICPU_FLAG_C_TSC;
261
262 if ((regs[3] & CPUID_APM_HWP) != 0)
263 val |= ACPICPU_FLAG_P_FFH;
264
265 if ((regs[3] & CPUID_APM_CPB) != 0)
266 val |= ACPICPU_FLAG_P_TURBO;
267
268 val |= ACPICPU_FLAG_C_C1E;
269 break;
270 }
271
272 break;
273 }
274
275 /*
276 * There are several erratums for PIIX4.
277 */
278 if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
279 val |= ACPICPU_FLAG_PIIX4;
280
281 return val;
282 }
283
284 static int
285 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
286 {
287
288 /*
289 * XXX: The pci_find_device(9) function only
290 * deals with attached devices. Change this
291 * to use something like pci_device_foreach().
292 */
293 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
294 return 0;
295
296 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
297 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
298 return 1;
299
300 return 0;
301 }
302
303 void
304 acpicpu_md_quirks_c1e(void)
305 {
306 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
307 uint64_t val;
308
309 val = rdmsr(MSR_CMPHALT);
310
311 if ((val & c1e) != 0)
312 wrmsr(MSR_CMPHALT, val & ~c1e);
313 }
314
315 uint32_t
316 acpicpu_md_cpus_running(void)
317 {
318
319 return popcount32(cpus_running);
320 }
321
322 int
323 acpicpu_md_idle_start(struct acpicpu_softc *sc)
324 {
325 const size_t size = sizeof(native_idle_text);
326 struct acpicpu_cstate *cs;
327 bool ipi = false;
328 int i;
329
330 x86_cpu_idle_get(&native_idle, native_idle_text, size);
331
332 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
333
334 cs = &sc->sc_cstate[i];
335
336 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
337 ipi = true;
338 break;
339 }
340 }
341
342 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
343
344 return 0;
345 }
346
347 int
348 acpicpu_md_idle_stop(void)
349 {
350 uint64_t xc;
351 bool ipi;
352
353 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
354 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
355
356 /*
357 * Run a cross-call to ensure that all CPUs are
358 * out from the ACPI idle-loop before detachment.
359 */
360 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
361 xc_wait(xc);
362
363 return 0;
364 }
365
366 /*
367 * Called with interrupts disabled.
368 * Caller should enable interrupts after return.
369 */
370 void
371 acpicpu_md_idle_enter(int method, int state)
372 {
373 struct cpu_info *ci = curcpu();
374
375 switch (method) {
376
377 case ACPICPU_C_STATE_FFH:
378
379 x86_enable_intr();
380 x86_monitor(&ci->ci_want_resched, 0, 0);
381
382 if (__predict_false(ci->ci_want_resched != 0))
383 return;
384
385 x86_mwait((state - 1) << 4, 0);
386 break;
387
388 case ACPICPU_C_STATE_HALT:
389
390 if (__predict_false(ci->ci_want_resched != 0))
391 return;
392
393 x86_stihlt();
394 break;
395 }
396 }
397
398 int
399 acpicpu_md_pstate_start(void)
400 {
401 const uint64_t est = __BIT(16);
402 uint64_t val;
403
404 switch (cpu_vendor) {
405
406 case CPUVENDOR_IDT:
407 case CPUVENDOR_INTEL:
408
409 val = rdmsr(MSR_MISC_ENABLE);
410
411 if ((val & est) == 0) {
412
413 val |= est;
414
415 wrmsr(MSR_MISC_ENABLE, val);
416 val = rdmsr(MSR_MISC_ENABLE);
417
418 if ((val & est) == 0)
419 return ENOTTY;
420 }
421 }
422
423 return acpicpu_md_pstate_sysctl_init();
424 }
425
426 int
427 acpicpu_md_pstate_stop(void)
428 {
429
430 if (acpicpu_log != NULL)
431 sysctl_teardown(&acpicpu_log);
432
433 return 0;
434 }
435
436 int
437 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
438 {
439 struct acpicpu_pstate *ps, msr;
440 struct cpu_info *ci = curcpu();
441 uint32_t family, i = 0;
442
443 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
444
445 switch (cpu_vendor) {
446
447 case CPUVENDOR_IDT:
448 case CPUVENDOR_INTEL:
449
450 /*
451 * If the so-called Turbo Boost is present,
452 * the P0-state is always the "turbo state".
453 *
454 * For discussion, see:
455 *
456 * Intel Corporation: Intel Turbo Boost Technology
457 * in Intel Core(tm) Microarchitectures (Nehalem)
458 * Based Processors. White Paper, November 2008.
459 */
460 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
461 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
462
463 msr.ps_control_addr = MSR_PERF_CTL;
464 msr.ps_control_mask = __BITS(0, 15);
465
466 msr.ps_status_addr = MSR_PERF_STATUS;
467 msr.ps_status_mask = __BITS(0, 15);
468 break;
469
470 case CPUVENDOR_AMD:
471
472 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
473 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
474
475 family = CPUID2FAMILY(ci->ci_signature);
476
477 if (family == 0xf)
478 family += CPUID2EXTFAMILY(ci->ci_signature);
479
480 switch (family) {
481
482 case 0x0f:
483 msr.ps_control_addr = MSR_0FH_CONTROL;
484 msr.ps_status_addr = MSR_0FH_STATUS;
485 break;
486
487 case 0x10:
488 case 0x11:
489 msr.ps_control_addr = MSR_10H_CONTROL;
490 msr.ps_control_mask = __BITS(0, 2);
491
492 msr.ps_status_addr = MSR_10H_STATUS;
493 msr.ps_status_mask = __BITS(0, 2);
494 break;
495
496 default:
497
498 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
499 return EOPNOTSUPP;
500 }
501
502 break;
503
504 default:
505 return ENODEV;
506 }
507
508 /*
509 * Fill the P-state structures with MSR addresses that are
510 * known to be correct. If we do not know the addresses,
511 * leave the values intact. If a vendor uses XPSS, we do
512 * not necessary need to do anything to support new CPUs.
513 */
514 while (i < sc->sc_pstate_count) {
515
516 ps = &sc->sc_pstate[i];
517
518 if (msr.ps_flags != 0)
519 ps->ps_flags |= msr.ps_flags;
520
521 if (msr.ps_status_addr != 0)
522 ps->ps_status_addr = msr.ps_status_addr;
523
524 if (msr.ps_status_mask != 0)
525 ps->ps_status_mask = msr.ps_status_mask;
526
527 if (msr.ps_control_addr != 0)
528 ps->ps_control_addr = msr.ps_control_addr;
529
530 if (msr.ps_control_mask != 0)
531 ps->ps_control_mask = msr.ps_control_mask;
532
533 i++;
534 }
535
536 return 0;
537 }
538
539 int
540 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
541 {
542 struct acpicpu_pstate *ps = NULL;
543 uint64_t val;
544 uint32_t i;
545
546 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
547 return acpicpu_md_pstate_fidvid_get(sc, freq);
548
549 for (i = 0; i < sc->sc_pstate_count; i++) {
550
551 ps = &sc->sc_pstate[i];
552
553 if (__predict_true(ps->ps_freq != 0))
554 break;
555 }
556
557 if (__predict_false(ps == NULL))
558 return ENODEV;
559
560 if (__predict_false(ps->ps_status_addr == 0))
561 return EINVAL;
562
563 val = rdmsr(ps->ps_status_addr);
564
565 if (__predict_true(ps->ps_status_mask != 0))
566 val = val & ps->ps_status_mask;
567
568 for (i = 0; i < sc->sc_pstate_count; i++) {
569
570 ps = &sc->sc_pstate[i];
571
572 if (__predict_false(ps->ps_freq == 0))
573 continue;
574
575 if (val == ps->ps_status) {
576 *freq = ps->ps_freq;
577 return 0;
578 }
579 }
580
581 return EIO;
582 }
583
584 int
585 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
586 {
587 struct msr_rw_info msr;
588 uint64_t xc;
589 int rv = 0;
590
591 if (__predict_false(ps->ps_control_addr == 0))
592 return EINVAL;
593
594 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
595 return acpicpu_md_pstate_fidvid_set(ps);
596
597 msr.msr_read = false;
598 msr.msr_type = ps->ps_control_addr;
599 msr.msr_value = ps->ps_control;
600
601 if (__predict_true(ps->ps_control_mask != 0)) {
602 msr.msr_mask = ps->ps_control_mask;
603 msr.msr_read = true;
604 }
605
606 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
607 xc_wait(xc);
608
609 /*
610 * Due several problems, we bypass the
611 * relatively expensive status check.
612 */
613 if (acpicpu_pstate_status != true) {
614 DELAY(ps->ps_latency);
615 return 0;
616 }
617
618 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
619 xc_wait(xc);
620
621 return rv;
622 }
623
624 static void
625 acpicpu_md_pstate_status(void *arg1, void *arg2)
626 {
627 struct acpicpu_pstate *ps = arg1;
628 uint64_t val;
629 int i;
630
631 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
632
633 val = rdmsr(ps->ps_status_addr);
634
635 if (__predict_true(ps->ps_status_mask != 0))
636 val = val & ps->ps_status_mask;
637
638 if (val == ps->ps_status)
639 return;
640
641 DELAY(ps->ps_latency);
642 }
643
644 *(uintptr_t *)arg2 = EAGAIN;
645 }
646
647 static int
648 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
649 {
650 struct acpicpu_pstate *ps;
651 uint32_t fid, i, vid;
652 uint32_t cfid, cvid;
653 int rv;
654
655 /*
656 * AMD family 0Fh needs special treatment.
657 * While it wants to use ACPI, it does not
658 * comply with the ACPI specifications.
659 */
660 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
661
662 if (rv != 0)
663 return rv;
664
665 for (i = 0; i < sc->sc_pstate_count; i++) {
666
667 ps = &sc->sc_pstate[i];
668
669 if (__predict_false(ps->ps_freq == 0))
670 continue;
671
672 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
673 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
674
675 if (cfid == fid && cvid == vid) {
676 *freq = ps->ps_freq;
677 return 0;
678 }
679 }
680
681 return EIO;
682 }
683
684 static int
685 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
686 {
687 const uint64_t ctrl = ps->ps_control;
688 uint32_t cfid, cvid, fid, i, irt;
689 uint32_t pll, vco_cfid, vco_fid;
690 uint32_t val, vid, vst;
691 int rv;
692
693 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
694
695 if (rv != 0)
696 return rv;
697
698 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
699 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
700 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
701 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
702 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
703
704 vst = vst * 20;
705 pll = pll * 1000 / 5;
706 irt = 10 * __BIT(irt);
707
708 /*
709 * Phase 1.
710 */
711 while (cvid > vid) {
712
713 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
714 val = (val > cvid) ? 0 : cvid - val;
715
716 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
717 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
718
719 if (rv != 0)
720 return rv;
721 }
722
723 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
724
725 for (; i > 0 && cvid > 0; --i) {
726
727 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
728 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
729
730 if (rv != 0)
731 return rv;
732 }
733
734 /*
735 * Phase 2.
736 */
737 if (cfid != fid) {
738
739 vco_fid = FID_TO_VCO_FID(fid);
740 vco_cfid = FID_TO_VCO_FID(cfid);
741
742 while (abs(vco_fid - vco_cfid) > 2) {
743
744 if (fid <= cfid)
745 val = cfid - 2;
746 else {
747 val = (cfid > 6) ? cfid + 2 :
748 FID_TO_VCO_FID(cfid) + 2;
749 }
750
751 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
752 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
753
754 if (rv != 0)
755 return rv;
756
757 vco_cfid = FID_TO_VCO_FID(cfid);
758 }
759
760 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
761 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
762
763 if (rv != 0)
764 return rv;
765 }
766
767 /*
768 * Phase 3.
769 */
770 if (cvid != vid) {
771
772 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
773 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
774
775 if (rv != 0)
776 return rv;
777 }
778
779 if (cfid != fid || cvid != vid)
780 return EIO;
781
782 return 0;
783 }
784
785 static int
786 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
787 {
788 int i = ACPICPU_P_STATE_RETRY * 100;
789 uint64_t val;
790
791 do {
792 val = rdmsr(MSR_0FH_STATUS);
793
794 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
795
796 if (i == 0)
797 return EAGAIN;
798
799 if (cfid != NULL)
800 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
801
802 if (cvid != NULL)
803 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
804
805 return 0;
806 }
807
808 static void
809 acpicpu_md_pstate_fidvid_write(uint32_t fid,
810 uint32_t vid, uint32_t cnt, uint32_t tmo)
811 {
812 struct msr_rw_info msr;
813 uint64_t xc;
814
815 msr.msr_read = false;
816 msr.msr_type = MSR_0FH_CONTROL;
817 msr.msr_value = 0;
818
819 msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
820 msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
821 msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
822 msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
823
824 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
825 xc_wait(xc);
826
827 DELAY(tmo);
828 }
829
830 int
831 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
832 {
833 struct acpicpu_tstate *ts;
834 uint64_t val;
835 uint32_t i;
836
837 val = rdmsr(MSR_THERM_CONTROL);
838
839 for (i = 0; i < sc->sc_tstate_count; i++) {
840
841 ts = &sc->sc_tstate[i];
842
843 if (ts->ts_percent == 0)
844 continue;
845
846 if (val == ts->ts_status) {
847 *percent = ts->ts_percent;
848 return 0;
849 }
850 }
851
852 return EIO;
853 }
854
855 int
856 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
857 {
858 struct msr_rw_info msr;
859 uint64_t xc;
860 int rv = 0;
861
862 msr.msr_read = true;
863 msr.msr_type = MSR_THERM_CONTROL;
864 msr.msr_value = ts->ts_control;
865 msr.msr_mask = __BITS(1, 4);
866
867 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
868 xc_wait(xc);
869
870 if (ts->ts_status == 0) {
871 DELAY(ts->ts_latency);
872 return 0;
873 }
874
875 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
876 xc_wait(xc);
877
878 return rv;
879 }
880
881 static void
882 acpicpu_md_tstate_status(void *arg1, void *arg2)
883 {
884 struct acpicpu_tstate *ts = arg1;
885 uint64_t val;
886 int i;
887
888 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
889
890 val = rdmsr(MSR_THERM_CONTROL);
891
892 if (val == ts->ts_status)
893 return;
894
895 DELAY(ts->ts_latency);
896 }
897
898 *(uintptr_t *)arg2 = EAGAIN;
899 }
900
901 /*
902 * A kludge for backwards compatibility.
903 */
904 static int
905 acpicpu_md_pstate_sysctl_init(void)
906 {
907 const struct sysctlnode *fnode, *mnode, *rnode;
908 const char *str;
909 int rv;
910
911 switch (cpu_vendor) {
912
913 case CPUVENDOR_IDT:
914 case CPUVENDOR_INTEL:
915 str = "est";
916 break;
917
918 case CPUVENDOR_AMD:
919 str = "powernow";
920 break;
921
922 default:
923 return ENODEV;
924 }
925
926
927 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
928 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
929 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
930
931 if (rv != 0)
932 goto fail;
933
934 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
935 0, CTLTYPE_NODE, str, NULL,
936 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
937
938 if (rv != 0)
939 goto fail;
940
941 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
942 0, CTLTYPE_NODE, "frequency", NULL,
943 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
944
945 if (rv != 0)
946 goto fail;
947
948 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
949 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
950 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
951
952 if (rv != 0)
953 goto fail;
954
955 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
956 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
957 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
958
959 if (rv != 0)
960 goto fail;
961
962 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
963 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
964 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
965
966 if (rv != 0)
967 goto fail;
968
969 return 0;
970
971 fail:
972 if (acpicpu_log != NULL) {
973 sysctl_teardown(&acpicpu_log);
974 acpicpu_log = NULL;
975 }
976
977 return rv;
978 }
979
980 static int
981 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
982 {
983 struct cpu_info *ci = curcpu();
984 struct acpicpu_softc *sc;
985 struct sysctlnode node;
986 uint32_t freq;
987 int err;
988
989 sc = acpicpu_sc[ci->ci_acpiid];
990
991 if (sc == NULL)
992 return ENXIO;
993
994 err = acpicpu_pstate_get(sc, &freq);
995
996 if (err != 0)
997 return err;
998
999 node = *rnode;
1000 node.sysctl_data = &freq;
1001
1002 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1003
1004 if (err != 0 || newp == NULL)
1005 return err;
1006
1007 return 0;
1008 }
1009
1010 static int
1011 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1012 {
1013 struct cpu_info *ci = curcpu();
1014 struct acpicpu_softc *sc;
1015 struct sysctlnode node;
1016 uint32_t freq;
1017 int err;
1018
1019 sc = acpicpu_sc[ci->ci_acpiid];
1020
1021 if (sc == NULL)
1022 return ENXIO;
1023
1024 err = acpicpu_pstate_get(sc, &freq);
1025
1026 if (err != 0)
1027 return err;
1028
1029 node = *rnode;
1030 node.sysctl_data = &freq;
1031
1032 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1033
1034 if (err != 0 || newp == NULL)
1035 return err;
1036
1037 err = acpicpu_pstate_set(sc, freq);
1038
1039 if (err != 0)
1040 return err;
1041
1042 return 0;
1043 }
1044
1045 static int
1046 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1047 {
1048 struct cpu_info *ci = curcpu();
1049 struct acpicpu_softc *sc;
1050 struct sysctlnode node;
1051 char buf[1024];
1052 size_t len;
1053 uint32_t i;
1054 int err;
1055
1056 sc = acpicpu_sc[ci->ci_acpiid];
1057
1058 if (sc == NULL)
1059 return ENXIO;
1060
1061 (void)memset(&buf, 0, sizeof(buf));
1062
1063 mutex_enter(&sc->sc_mtx);
1064
1065 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1066
1067 if (sc->sc_pstate[i].ps_freq == 0)
1068 continue;
1069
1070 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1071 sc->sc_pstate[i].ps_freq,
1072 i < (sc->sc_pstate_count - 1) ? " " : "");
1073 }
1074
1075 mutex_exit(&sc->sc_mtx);
1076
1077 node = *rnode;
1078 node.sysctl_data = buf;
1079
1080 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1081
1082 if (err != 0 || newp == NULL)
1083 return err;
1084
1085 return 0;
1086 }
1087
1088