acpi_cpu_md.c revision 1.34.2.6 1 /* $NetBSD: acpi_cpu_md.c,v 1.34.2.6 2011/08/27 15:37:29 jym Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.34.2.6 2011/08/27 15:37:29 jym Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * Intel IA32_MISC_ENABLE.
56 */
57 #define MSR_MISC_ENABLE_EST __BIT(16)
58 #define MSR_MISC_ENABLE_TURBO __BIT(38)
59
60 /*
61 * AMD C1E.
62 */
63 #define MSR_CMPHALT 0xc0010055
64
65 #define MSR_CMPHALT_SMI __BIT(27)
66 #define MSR_CMPHALT_C1E __BIT(28)
67 #define MSR_CMPHALT_BMSTS __BIT(29)
68
69 /*
70 * AMD families 10h, 11h, and 14h
71 */
72 #define MSR_10H_LIMIT 0xc0010061
73 #define MSR_10H_CONTROL 0xc0010062
74 #define MSR_10H_STATUS 0xc0010063
75 #define MSR_10H_CONFIG 0xc0010064
76
77 /*
78 * AMD family 0Fh.
79 */
80 #define MSR_0FH_CONTROL 0xc0010041
81 #define MSR_0FH_STATUS 0xc0010042
82
83 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86
87 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91
92 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94
95 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102
103 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104
105 static char native_idle_text[16];
106 void (*native_idle)(void) = NULL;
107
108 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
109 static void acpicpu_md_pstate_hwf_reset(void *, void *);
110 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
111 uint32_t *);
112 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
113 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
114 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
115 uint32_t, uint32_t);
116 static int acpicpu_md_pstate_sysctl_init(void);
117 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
118 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
119 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
120
121 extern struct acpicpu_softc **acpicpu_sc;
122 static struct sysctllog *acpicpu_log = NULL;
123
124 struct cpu_info *
125 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
126 {
127 struct cpufeature_attach_args *cfaa = aux;
128
129 if (strcmp(cfaa->name, "frequency") != 0)
130 return NULL;
131
132 return cfaa->ci;
133 }
134
135 struct cpu_info *
136 acpicpu_md_attach(device_t parent, device_t self, void *aux)
137 {
138 struct cpufeature_attach_args *cfaa = aux;
139
140 return cfaa->ci;
141 }
142
143 uint32_t
144 acpicpu_md_flags(void)
145 {
146 struct cpu_info *ci = curcpu();
147 struct pci_attach_args pa;
148 uint32_t family, val = 0;
149 uint32_t regs[4];
150
151 if (acpi_md_ncpus() == 1)
152 val |= ACPICPU_FLAG_C_BM;
153
154 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
155 val |= ACPICPU_FLAG_C_FFH;
156
157 /*
158 * By default, assume that the local APIC timer
159 * as well as TSC are stalled during C3 sleep.
160 */
161 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
162
163 switch (cpu_vendor) {
164
165 case CPUVENDOR_IDT:
166
167 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
168 val |= ACPICPU_FLAG_P_FFH;
169
170 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
171 val |= ACPICPU_FLAG_T_FFH;
172
173 break;
174
175 case CPUVENDOR_INTEL:
176
177 /*
178 * Bus master control and arbitration should be
179 * available on all supported Intel CPUs (to be
180 * sure, this is double-checked later from the
181 * firmware data). These flags imply that it is
182 * not necessary to flush caches before C3 state.
183 */
184 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
185
186 /*
187 * Check if we can use "native", MSR-based,
188 * access. If not, we have to resort to I/O.
189 */
190 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
191 val |= ACPICPU_FLAG_P_FFH;
192
193 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
194 val |= ACPICPU_FLAG_T_FFH;
195
196 /*
197 * Check whether MSR_APERF, MSR_MPERF, and Turbo
198 * Boost are available. Also see if we might have
199 * an invariant local APIC timer ("ARAT").
200 */
201 if (cpuid_level >= 0x06) {
202
203 x86_cpuid(0x00000006, regs);
204
205 if ((regs[2] & CPUID_DSPM_HWF) != 0)
206 val |= ACPICPU_FLAG_P_HWF;
207
208 if ((regs[0] & CPUID_DSPM_IDA) != 0)
209 val |= ACPICPU_FLAG_P_TURBO;
210
211 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
212 val &= ~ACPICPU_FLAG_C_APIC;
213 }
214
215 /*
216 * Detect whether TSC is invariant. If it is not,
217 * we keep the flag to note that TSC will not run
218 * at constant rate. Depending on the CPU, this may
219 * affect P- and T-state changes, but especially
220 * relevant are C-states; with variant TSC, states
221 * larger than C1 may completely stop the counter.
222 */
223 x86_cpuid(0x80000000, regs);
224
225 if (regs[0] >= 0x80000007) {
226
227 x86_cpuid(0x80000007, regs);
228
229 if ((regs[3] & __BIT(8)) != 0)
230 val &= ~ACPICPU_FLAG_C_TSC;
231 }
232
233 break;
234
235 case CPUVENDOR_AMD:
236
237 x86_cpuid(0x80000000, regs);
238
239 if (regs[0] < 0x80000007)
240 break;
241
242 x86_cpuid(0x80000007, regs);
243
244 family = CPUID2FAMILY(ci->ci_signature);
245
246 if (family == 0xf)
247 family += CPUID2EXTFAMILY(ci->ci_signature);
248
249 switch (family) {
250
251 case 0x0f:
252
253 /*
254 * Evaluate support for the "FID/VID
255 * algorithm" also used by powernow(4).
256 */
257 if ((regs[3] & CPUID_APM_FID) == 0)
258 break;
259
260 if ((regs[3] & CPUID_APM_VID) == 0)
261 break;
262
263 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
264 break;
265
266 case 0x10:
267 case 0x11:
268 val |= ACPICPU_FLAG_C_C1E;
269 /* FALLTHROUGH */
270
271 case 0x14: /* AMD Fusion */
272
273 /*
274 * Like with Intel, detect invariant TSC,
275 * MSR-based P-states, and AMD's "turbo"
276 * (Core Performance Boost), respectively.
277 */
278 if ((regs[3] & CPUID_APM_TSC) != 0)
279 val &= ~ACPICPU_FLAG_C_TSC;
280
281 if ((regs[3] & CPUID_APM_HWP) != 0)
282 val |= ACPICPU_FLAG_P_FFH;
283
284 if ((regs[3] & CPUID_APM_CPB) != 0)
285 val |= ACPICPU_FLAG_P_TURBO;
286
287 /*
288 * Also check for APERF and MPERF,
289 * first available in the family 10h.
290 */
291 if (cpuid_level >= 0x06) {
292
293 x86_cpuid(0x00000006, regs);
294
295 if ((regs[2] & CPUID_DSPM_HWF) != 0)
296 val |= ACPICPU_FLAG_P_HWF;
297 }
298
299 break;
300 }
301
302 break;
303 }
304
305 /*
306 * There are several erratums for PIIX4.
307 */
308 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
309 val |= ACPICPU_FLAG_PIIX4;
310
311 return val;
312 }
313
314 static int
315 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
316 {
317
318 /*
319 * XXX: The pci_find_device(9) function only
320 * deals with attached devices. Change this
321 * to use something like pci_device_foreach().
322 */
323 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
324 return 0;
325
326 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
327 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
328 return 1;
329
330 return 0;
331 }
332
333 void
334 acpicpu_md_quirk_c1e(void)
335 {
336 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
337 uint64_t val;
338
339 val = rdmsr(MSR_CMPHALT);
340
341 if ((val & c1e) != 0)
342 wrmsr(MSR_CMPHALT, val & ~c1e);
343 }
344
345 int
346 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
347 {
348 const size_t size = sizeof(native_idle_text);
349 struct acpicpu_cstate *cs;
350 bool ipi = false;
351 int i;
352
353 /*
354 * Save the cpu_idle(9) loop used by default.
355 */
356 x86_cpu_idle_get(&native_idle, native_idle_text, size);
357
358 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
359
360 cs = &sc->sc_cstate[i];
361
362 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
363 ipi = true;
364 break;
365 }
366 }
367
368 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
369
370 return 0;
371 }
372
373 int
374 acpicpu_md_cstate_stop(void)
375 {
376 static char text[16];
377 void (*func)(void);
378 uint64_t xc;
379 bool ipi;
380
381 x86_cpu_idle_get(&func, text, sizeof(text));
382
383 if (func == native_idle)
384 return EALREADY;
385
386 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
387 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
388
389 /*
390 * Run a cross-call to ensure that all CPUs are
391 * out from the ACPI idle-loop before detachment.
392 */
393 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
394 xc_wait(xc);
395
396 return 0;
397 }
398
399 /*
400 * Called with interrupts enabled.
401 */
402 void
403 acpicpu_md_cstate_enter(int method, int state)
404 {
405 struct cpu_info *ci = curcpu();
406
407 KASSERT(ci->ci_ilevel == IPL_NONE);
408
409 switch (method) {
410
411 case ACPICPU_C_STATE_FFH:
412
413 x86_monitor(&ci->ci_want_resched, 0, 0);
414
415 if (__predict_false(ci->ci_want_resched != 0))
416 return;
417
418 x86_mwait((state - 1) << 4, 0);
419 break;
420
421 case ACPICPU_C_STATE_HALT:
422
423 x86_disable_intr();
424
425 if (__predict_false(ci->ci_want_resched != 0)) {
426 x86_enable_intr();
427 return;
428 }
429
430 x86_stihlt();
431 break;
432 }
433 }
434
435 int
436 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
437 {
438 uint64_t xc, val;
439
440 switch (cpu_vendor) {
441
442 case CPUVENDOR_IDT:
443 case CPUVENDOR_INTEL:
444
445 /*
446 * Make sure EST is enabled.
447 */
448 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
449
450 val = rdmsr(MSR_MISC_ENABLE);
451
452 if ((val & MSR_MISC_ENABLE_EST) == 0) {
453
454 val |= MSR_MISC_ENABLE_EST;
455 wrmsr(MSR_MISC_ENABLE, val);
456 val = rdmsr(MSR_MISC_ENABLE);
457
458 if ((val & MSR_MISC_ENABLE_EST) == 0)
459 return ENOTTY;
460 }
461 }
462 }
463
464 /*
465 * Reset the APERF and MPERF counters.
466 */
467 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
468 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
469 xc_wait(xc);
470 }
471
472 return acpicpu_md_pstate_sysctl_init();
473 }
474
475 int
476 acpicpu_md_pstate_stop(void)
477 {
478
479 if (acpicpu_log == NULL)
480 return EALREADY;
481
482 sysctl_teardown(&acpicpu_log);
483 acpicpu_log = NULL;
484
485 return 0;
486 }
487
488 int
489 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
490 {
491 struct cpu_info *ci = sc->sc_ci;
492 struct acpicpu_pstate *ps, msr;
493 uint32_t family, i = 0;
494
495 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
496
497 switch (cpu_vendor) {
498
499 case CPUVENDOR_IDT:
500 case CPUVENDOR_INTEL:
501
502 /*
503 * If the so-called Turbo Boost is present,
504 * the P0-state is always the "turbo state".
505 * It is shown as the P1 frequency + 1 MHz.
506 *
507 * For discussion, see:
508 *
509 * Intel Corporation: Intel Turbo Boost Technology
510 * in Intel Core(tm) Microarchitectures (Nehalem)
511 * Based Processors. White Paper, November 2008.
512 */
513 if (sc->sc_pstate_count >= 2 &&
514 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
515
516 ps = &sc->sc_pstate[0];
517
518 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
519 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
520 }
521
522 msr.ps_control_addr = MSR_PERF_CTL;
523 msr.ps_control_mask = __BITS(0, 15);
524
525 msr.ps_status_addr = MSR_PERF_STATUS;
526 msr.ps_status_mask = __BITS(0, 15);
527 break;
528
529 case CPUVENDOR_AMD:
530
531 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
532 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
533
534 family = CPUID2FAMILY(ci->ci_signature);
535
536 if (family == 0xf)
537 family += CPUID2EXTFAMILY(ci->ci_signature);
538
539 switch (family) {
540
541 case 0x0f:
542 msr.ps_control_addr = MSR_0FH_CONTROL;
543 msr.ps_status_addr = MSR_0FH_STATUS;
544 break;
545
546 case 0x10:
547 case 0x11:
548 case 0x14: /* AMD Fusion */
549 msr.ps_control_addr = MSR_10H_CONTROL;
550 msr.ps_control_mask = __BITS(0, 2);
551
552 msr.ps_status_addr = MSR_10H_STATUS;
553 msr.ps_status_mask = __BITS(0, 2);
554 break;
555
556 default:
557 /*
558 * If we have an unknown AMD CPU, rely on XPSS.
559 */
560 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
561 return EOPNOTSUPP;
562 }
563
564 break;
565
566 default:
567 return ENODEV;
568 }
569
570 /*
571 * Fill the P-state structures with MSR addresses that are
572 * known to be correct. If we do not know the addresses,
573 * leave the values intact. If a vendor uses XPSS, we do
574 * not necessarily need to do anything to support new CPUs.
575 */
576 while (i < sc->sc_pstate_count) {
577
578 ps = &sc->sc_pstate[i];
579
580 if (msr.ps_flags != 0)
581 ps->ps_flags |= msr.ps_flags;
582
583 if (msr.ps_status_addr != 0)
584 ps->ps_status_addr = msr.ps_status_addr;
585
586 if (msr.ps_status_mask != 0)
587 ps->ps_status_mask = msr.ps_status_mask;
588
589 if (msr.ps_control_addr != 0)
590 ps->ps_control_addr = msr.ps_control_addr;
591
592 if (msr.ps_control_mask != 0)
593 ps->ps_control_mask = msr.ps_control_mask;
594
595 i++;
596 }
597
598 return 0;
599 }
600
601 /*
602 * Read the IA32_APERF and IA32_MPERF counters. The first
603 * increments at the rate of the fixed maximum frequency
604 * configured during the boot, whereas APERF counts at the
605 * rate of the actual frequency. Note that the MSRs must be
606 * read without delay, and that only the ratio between
607 * IA32_APERF and IA32_MPERF is architecturally defined.
608 *
609 * The function thus returns the percentage of the actual
610 * frequency in terms of the maximum frequency of the calling
611 * CPU since the last call. A value zero implies an error.
612 *
613 * For further details, refer to:
614 *
615 * Intel Corporation: Intel 64 and IA-32 Architectures
616 * Software Developer's Manual. Section 13.2, Volume 3A:
617 * System Programming Guide, Part 1. July, 2008.
618 *
619 * Advanced Micro Devices: BIOS and Kernel Developer's
620 * Guide (BKDG) for AMD Family 10h Processors. Section
621 * 2.4.5, Revision 3.48, April 2010.
622 */
623 uint8_t
624 acpicpu_md_pstate_hwf(struct cpu_info *ci)
625 {
626 struct acpicpu_softc *sc;
627 uint64_t aperf, mperf;
628 uint8_t rv = 0;
629
630 sc = acpicpu_sc[ci->ci_acpiid];
631
632 if (__predict_false(sc == NULL))
633 return 0;
634
635 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
636 return 0;
637
638 aperf = sc->sc_pstate_aperf;
639 mperf = sc->sc_pstate_mperf;
640
641 x86_disable_intr();
642
643 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
644 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
645
646 x86_enable_intr();
647
648 aperf = sc->sc_pstate_aperf - aperf;
649 mperf = sc->sc_pstate_mperf - mperf;
650
651 if (__predict_true(mperf != 0))
652 rv = (aperf * 100) / mperf;
653
654 return rv;
655 }
656
657 static void
658 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
659 {
660 struct cpu_info *ci = curcpu();
661 struct acpicpu_softc *sc;
662
663 sc = acpicpu_sc[ci->ci_acpiid];
664
665 if (__predict_false(sc == NULL))
666 return;
667
668 x86_disable_intr();
669
670 wrmsr(MSR_APERF, 0);
671 wrmsr(MSR_MPERF, 0);
672
673 x86_enable_intr();
674
675 sc->sc_pstate_aperf = 0;
676 sc->sc_pstate_mperf = 0;
677 }
678
679 int
680 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
681 {
682 struct acpicpu_pstate *ps = NULL;
683 uint64_t val;
684 uint32_t i;
685
686 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
687 return acpicpu_md_pstate_fidvid_get(sc, freq);
688
689 /*
690 * Pick any P-state for the status address.
691 */
692 for (i = 0; i < sc->sc_pstate_count; i++) {
693
694 ps = &sc->sc_pstate[i];
695
696 if (__predict_true(ps->ps_freq != 0))
697 break;
698 }
699
700 if (__predict_false(ps == NULL))
701 return ENODEV;
702
703 if (__predict_false(ps->ps_status_addr == 0))
704 return EINVAL;
705
706 val = rdmsr(ps->ps_status_addr);
707
708 if (__predict_true(ps->ps_status_mask != 0))
709 val = val & ps->ps_status_mask;
710
711 /*
712 * Search for the value from known P-states.
713 */
714 for (i = 0; i < sc->sc_pstate_count; i++) {
715
716 ps = &sc->sc_pstate[i];
717
718 if (__predict_false(ps->ps_freq == 0))
719 continue;
720
721 if (val == ps->ps_status) {
722 *freq = ps->ps_freq;
723 return 0;
724 }
725 }
726
727 /*
728 * If the value was not found, try APERF/MPERF.
729 * The state is P0 if the return value is 100 %.
730 */
731 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
732
733 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
734 *freq = sc->sc_pstate[0].ps_freq;
735 return 0;
736 }
737 }
738
739 return EIO;
740 }
741
742 int
743 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
744 {
745 uint64_t val = 0;
746
747 if (__predict_false(ps->ps_control_addr == 0))
748 return EINVAL;
749
750 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
751 return acpicpu_md_pstate_fidvid_set(ps);
752
753 /*
754 * If the mask is set, do a read-modify-write.
755 */
756 if (__predict_true(ps->ps_control_mask != 0)) {
757 val = rdmsr(ps->ps_control_addr);
758 val &= ~ps->ps_control_mask;
759 }
760
761 val |= ps->ps_control;
762
763 wrmsr(ps->ps_control_addr, val);
764 DELAY(ps->ps_latency);
765
766 return 0;
767 }
768
769 static int
770 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
771 {
772 struct acpicpu_pstate *ps;
773 uint32_t fid, i, vid;
774 uint32_t cfid, cvid;
775 int rv;
776
777 /*
778 * AMD family 0Fh needs special treatment.
779 * While it wants to use ACPI, it does not
780 * comply with the ACPI specifications.
781 */
782 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
783
784 if (rv != 0)
785 return rv;
786
787 for (i = 0; i < sc->sc_pstate_count; i++) {
788
789 ps = &sc->sc_pstate[i];
790
791 if (__predict_false(ps->ps_freq == 0))
792 continue;
793
794 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
795 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
796
797 if (cfid == fid && cvid == vid) {
798 *freq = ps->ps_freq;
799 return 0;
800 }
801 }
802
803 return EIO;
804 }
805
806 static int
807 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
808 {
809 const uint64_t ctrl = ps->ps_control;
810 uint32_t cfid, cvid, fid, i, irt;
811 uint32_t pll, vco_cfid, vco_fid;
812 uint32_t val, vid, vst;
813 int rv;
814
815 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
816
817 if (rv != 0)
818 return rv;
819
820 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
821 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
822 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
823 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
824 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
825
826 vst = vst * 20;
827 pll = pll * 1000 / 5;
828 irt = 10 * __BIT(irt);
829
830 /*
831 * Phase 1.
832 */
833 while (cvid > vid) {
834
835 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
836 val = (val > cvid) ? 0 : cvid - val;
837
838 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
839 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
840
841 if (rv != 0)
842 return rv;
843 }
844
845 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
846
847 for (; i > 0 && cvid > 0; --i) {
848
849 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
850 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
851
852 if (rv != 0)
853 return rv;
854 }
855
856 /*
857 * Phase 2.
858 */
859 if (cfid != fid) {
860
861 vco_fid = FID_TO_VCO_FID(fid);
862 vco_cfid = FID_TO_VCO_FID(cfid);
863
864 while (abs(vco_fid - vco_cfid) > 2) {
865
866 if (fid <= cfid)
867 val = cfid - 2;
868 else {
869 val = (cfid > 6) ? cfid + 2 :
870 FID_TO_VCO_FID(cfid) + 2;
871 }
872
873 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
874 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
875
876 if (rv != 0)
877 return rv;
878
879 vco_cfid = FID_TO_VCO_FID(cfid);
880 }
881
882 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
883 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
884
885 if (rv != 0)
886 return rv;
887 }
888
889 /*
890 * Phase 3.
891 */
892 if (cvid != vid) {
893
894 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
895 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
896
897 if (rv != 0)
898 return rv;
899 }
900
901 return 0;
902 }
903
904 static int
905 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
906 {
907 int i = ACPICPU_P_STATE_RETRY * 100;
908 uint64_t val;
909
910 do {
911 val = rdmsr(MSR_0FH_STATUS);
912
913 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
914
915 if (i == 0)
916 return EAGAIN;
917
918 if (cfid != NULL)
919 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
920
921 if (cvid != NULL)
922 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
923
924 return 0;
925 }
926
927 static void
928 acpicpu_md_pstate_fidvid_write(uint32_t fid,
929 uint32_t vid, uint32_t cnt, uint32_t tmo)
930 {
931 uint64_t val = 0;
932
933 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
934 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
935 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
936 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
937
938 wrmsr(MSR_0FH_CONTROL, val);
939 DELAY(tmo);
940 }
941
942 int
943 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
944 {
945 struct acpicpu_tstate *ts;
946 uint64_t val;
947 uint32_t i;
948
949 val = rdmsr(MSR_THERM_CONTROL);
950
951 for (i = 0; i < sc->sc_tstate_count; i++) {
952
953 ts = &sc->sc_tstate[i];
954
955 if (ts->ts_percent == 0)
956 continue;
957
958 if (val == ts->ts_status) {
959 *percent = ts->ts_percent;
960 return 0;
961 }
962 }
963
964 return EIO;
965 }
966
967 int
968 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
969 {
970 uint64_t val;
971 uint8_t i;
972
973 val = ts->ts_control;
974 val = val & __BITS(1, 4);
975
976 wrmsr(MSR_THERM_CONTROL, val);
977
978 if (ts->ts_status == 0) {
979 DELAY(ts->ts_latency);
980 return 0;
981 }
982
983 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
984
985 val = rdmsr(MSR_THERM_CONTROL);
986
987 if (val == ts->ts_status)
988 return 0;
989
990 DELAY(ts->ts_latency);
991 }
992
993 return EAGAIN;
994 }
995
996 /*
997 * A kludge for backwards compatibility.
998 */
999 static int
1000 acpicpu_md_pstate_sysctl_init(void)
1001 {
1002 const struct sysctlnode *fnode, *mnode, *rnode;
1003 const char *str;
1004 int rv;
1005
1006 switch (cpu_vendor) {
1007
1008 case CPUVENDOR_IDT:
1009 case CPUVENDOR_INTEL:
1010 str = "est";
1011 break;
1012
1013 case CPUVENDOR_AMD:
1014 str = "powernow";
1015 break;
1016
1017 default:
1018 return ENODEV;
1019 }
1020
1021
1022 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1023 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1024 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1025
1026 if (rv != 0)
1027 goto fail;
1028
1029 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1030 0, CTLTYPE_NODE, str, NULL,
1031 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1032
1033 if (rv != 0)
1034 goto fail;
1035
1036 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1037 0, CTLTYPE_NODE, "frequency", NULL,
1038 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1039
1040 if (rv != 0)
1041 goto fail;
1042
1043 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1044 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1045 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1046
1047 if (rv != 0)
1048 goto fail;
1049
1050 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1051 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1052 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1053
1054 if (rv != 0)
1055 goto fail;
1056
1057 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1058 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1059 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1060
1061 if (rv != 0)
1062 goto fail;
1063
1064 return 0;
1065
1066 fail:
1067 if (acpicpu_log != NULL) {
1068 sysctl_teardown(&acpicpu_log);
1069 acpicpu_log = NULL;
1070 }
1071
1072 return rv;
1073 }
1074
1075 static int
1076 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1077 {
1078 struct cpu_info *ci = curcpu();
1079 struct sysctlnode node;
1080 uint32_t freq;
1081 int err;
1082
1083 err = acpicpu_pstate_get(ci, &freq);
1084
1085 if (err != 0)
1086 return err;
1087
1088 node = *rnode;
1089 node.sysctl_data = &freq;
1090
1091 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1092
1093 if (err != 0 || newp == NULL)
1094 return err;
1095
1096 return 0;
1097 }
1098
1099 static int
1100 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1101 {
1102 struct cpu_info *ci = curcpu();
1103 struct sysctlnode node;
1104 uint32_t freq;
1105 int err;
1106
1107 err = acpicpu_pstate_get(ci, &freq);
1108
1109 if (err != 0)
1110 return err;
1111
1112 node = *rnode;
1113 node.sysctl_data = &freq;
1114
1115 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1116
1117 if (err != 0 || newp == NULL)
1118 return err;
1119
1120 acpicpu_pstate_set(ci, freq);
1121
1122 return 0;
1123 }
1124
1125 static int
1126 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1127 {
1128 struct cpu_info *ci = curcpu();
1129 struct acpicpu_softc *sc;
1130 struct sysctlnode node;
1131 char buf[1024];
1132 size_t len;
1133 uint32_t i;
1134 int err;
1135
1136 sc = acpicpu_sc[ci->ci_acpiid];
1137
1138 if (sc == NULL)
1139 return ENXIO;
1140
1141 (void)memset(&buf, 0, sizeof(buf));
1142
1143 mutex_enter(&sc->sc_mtx);
1144
1145 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1146
1147 if (sc->sc_pstate[i].ps_freq == 0)
1148 continue;
1149
1150 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1151 sc->sc_pstate[i].ps_freq,
1152 i < (sc->sc_pstate_count - 1) ? " " : "");
1153 }
1154
1155 mutex_exit(&sc->sc_mtx);
1156
1157 node = *rnode;
1158 node.sysctl_data = buf;
1159
1160 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1161
1162 if (err != 0 || newp == NULL)
1163 return err;
1164
1165 return 0;
1166 }
1167
1168