Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.38.4.1
      1 /* $NetBSD: acpi_cpu_md.c,v 1.38.4.1 2011/02/17 12:00:05 bouyer Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.38.4.1 2011/02/17 12:00:05 bouyer Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #include <machine/acpi_machdep.h>
     52 
     53 /*
     54  * AMD C1E.
     55  */
     56 #define MSR_CMPHALT		0xc0010055
     57 
     58 #define MSR_CMPHALT_SMI		__BIT(27)
     59 #define MSR_CMPHALT_C1E		__BIT(28)
     60 #define MSR_CMPHALT_BMSTS	__BIT(29)
     61 
     62 /*
     63  * AMD families 10h and 11h.
     64  */
     65 #define MSR_10H_LIMIT		0xc0010061
     66 #define MSR_10H_CONTROL		0xc0010062
     67 #define MSR_10H_STATUS		0xc0010063
     68 #define MSR_10H_CONFIG		0xc0010064
     69 
     70 /*
     71  * AMD family 0Fh.
     72  */
     73 #define MSR_0FH_CONTROL		0xc0010041
     74 #define MSR_0FH_STATUS		0xc0010042
     75 
     76 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     77 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     78 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     79 
     80 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     81 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     82 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     83 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     84 
     85 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     86 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     87 
     88 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     90 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     91 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     92 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
     93 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
     94 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
     95 
     96 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
     97 
     98 static char	  native_idle_text[16];
     99 void		(*native_idle)(void) = NULL;
    100 
    101 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
    102 static void	 acpicpu_md_pstate_status(void *, void *);
    103 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    104                                               uint32_t *);
    105 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    106 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    107 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    108 					        uint32_t, uint32_t);
    109 static void	 acpicpu_md_tstate_status(void *, void *);
    110 static int	 acpicpu_md_pstate_sysctl_init(void);
    111 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    112 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    113 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    114 
    115 extern struct acpicpu_softc **acpicpu_sc;
    116 static bool acpicpu_pstate_status = false;
    117 static struct sysctllog *acpicpu_log = NULL;
    118 
    119 uint32_t
    120 acpicpu_md_cap(void)
    121 {
    122 	struct cpu_info *ci = curcpu();
    123 	uint32_t val = 0;
    124 
    125 	if (cpu_vendor != CPUVENDOR_IDT &&
    126 	    cpu_vendor != CPUVENDOR_INTEL)
    127 		return val;
    128 
    129 	/*
    130 	 * Basic SMP C-states (required for _CST).
    131 	 */
    132 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    133 
    134         /*
    135 	 * If MONITOR/MWAIT is available, announce
    136 	 * support for native instructions in all C-states.
    137 	 */
    138         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    139 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    140 
    141 	/*
    142 	 * Set native P- and T-states, if available.
    143 	 */
    144         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    145 		val |= ACPICPU_PDC_P_FFH;
    146 
    147 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    148 		val |= ACPICPU_PDC_T_FFH;
    149 
    150 	return val;
    151 }
    152 
    153 uint32_t
    154 acpicpu_md_quirks(void)
    155 {
    156 	struct cpu_info *ci = curcpu();
    157 	struct pci_attach_args pa;
    158 	uint32_t family, val = 0;
    159 	uint32_t regs[4];
    160 
    161 	if (acpi_md_ncpus() == 1)
    162 		val |= ACPICPU_FLAG_C_BM;
    163 
    164 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    165 		val |= ACPICPU_FLAG_C_FFH;
    166 
    167 	/*
    168 	 * By default, assume that the local APIC timer
    169 	 * as well as TSC are stalled during C3 sleep.
    170 	 */
    171 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    172 
    173 	switch (cpu_vendor) {
    174 
    175 	case CPUVENDOR_IDT:
    176 
    177 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    178 			val |= ACPICPU_FLAG_P_FFH;
    179 
    180 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    181 			val |= ACPICPU_FLAG_T_FFH;
    182 
    183 		break;
    184 
    185 	case CPUVENDOR_INTEL:
    186 
    187 		/*
    188 		 * Bus master control and arbitration should be
    189 		 * available on all supported Intel CPUs (to be
    190 		 * sure, this is double-checked later from the
    191 		 * firmware data). These flags imply that it is
    192 		 * not necessary to flush caches before C3 state.
    193 		 */
    194 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    195 
    196 		/*
    197 		 * Check if we can use "native", MSR-based,
    198 		 * access. If not, we have to resort to I/O.
    199 		 */
    200 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    201 			val |= ACPICPU_FLAG_P_FFH;
    202 
    203 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    204 			val |= ACPICPU_FLAG_T_FFH;
    205 
    206 		/*
    207 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    208 		 * Boost are available. Also see if we might have
    209 		 * an invariant local APIC timer ("ARAT").
    210 		 */
    211 		if (cpuid_level >= 0x06) {
    212 
    213 			x86_cpuid(0x06, regs);
    214 
    215 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    216 				val |= ACPICPU_FLAG_P_HW;
    217 
    218 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    219 				val |= ACPICPU_FLAG_P_TURBO;
    220 
    221 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    222 				val &= ~ACPICPU_FLAG_C_APIC;
    223 		}
    224 
    225 		/*
    226 		 * Detect whether TSC is invariant. If it is not,
    227 		 * we keep the flag to note that TSC will not run
    228 		 * at constant rate. Depending on the CPU, this may
    229 		 * affect P- and T-state changes, but especially
    230 		 * relevant are C-states; with variant TSC, states
    231 		 * larger than C1 may completely stop the counter.
    232 		 */
    233 		x86_cpuid(0x80000000, regs);
    234 
    235 		if (regs[0] >= 0x80000007) {
    236 
    237 			x86_cpuid(0x80000007, regs);
    238 
    239 			if ((regs[3] & __BIT(8)) != 0)
    240 				val &= ~ACPICPU_FLAG_C_TSC;
    241 		}
    242 
    243 		break;
    244 
    245 	case CPUVENDOR_AMD:
    246 
    247 		x86_cpuid(0x80000000, regs);
    248 
    249 		if (regs[0] < 0x80000007)
    250 			break;
    251 
    252 		x86_cpuid(0x80000007, regs);
    253 
    254 		family = CPUID2FAMILY(ci->ci_signature);
    255 
    256 		if (family == 0xf)
    257 			family += CPUID2EXTFAMILY(ci->ci_signature);
    258 
    259     		switch (family) {
    260 
    261 		case 0x0f:
    262 
    263 			if ((regs[3] & CPUID_APM_FID) == 0)
    264 				break;
    265 
    266 			if ((regs[3] & CPUID_APM_VID) == 0)
    267 				break;
    268 
    269 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    270 			break;
    271 
    272 		case 0x10:
    273 		case 0x11:
    274 
    275 			if ((regs[3] & CPUID_APM_TSC) != 0)
    276 				val &= ~ACPICPU_FLAG_C_TSC;
    277 
    278 			if ((regs[3] & CPUID_APM_HWP) != 0)
    279 				val |= ACPICPU_FLAG_P_FFH;
    280 
    281 			if ((regs[3] & CPUID_APM_CPB) != 0)
    282 				val |= ACPICPU_FLAG_P_TURBO;
    283 
    284 			val |= ACPICPU_FLAG_C_C1E;
    285 			break;
    286 		}
    287 
    288 		break;
    289 	}
    290 
    291 	/*
    292 	 * There are several erratums for PIIX4.
    293 	 */
    294 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    295 		val |= ACPICPU_FLAG_PIIX4;
    296 
    297 	return val;
    298 }
    299 
    300 static int
    301 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    302 {
    303 
    304 	/*
    305 	 * XXX: The pci_find_device(9) function only
    306 	 *	deals with attached devices. Change this
    307 	 *	to use something like pci_device_foreach().
    308 	 */
    309 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    310 		return 0;
    311 
    312 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    313 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    314 		return 1;
    315 
    316 	return 0;
    317 }
    318 
    319 void
    320 acpicpu_md_quirks_c1e(void)
    321 {
    322 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    323 	uint64_t val;
    324 
    325 	val = rdmsr(MSR_CMPHALT);
    326 
    327 	if ((val & c1e) != 0)
    328 		wrmsr(MSR_CMPHALT, val & ~c1e);
    329 }
    330 
    331 int
    332 acpicpu_md_idle_start(struct acpicpu_softc *sc)
    333 {
    334 	const size_t size = sizeof(native_idle_text);
    335 	struct acpicpu_cstate *cs;
    336 	bool ipi = false;
    337 	int i;
    338 
    339 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    340 
    341 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    342 
    343 		cs = &sc->sc_cstate[i];
    344 
    345 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    346 			ipi = true;
    347 			break;
    348 		}
    349 	}
    350 
    351 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    352 
    353 	return 0;
    354 }
    355 
    356 int
    357 acpicpu_md_idle_stop(void)
    358 {
    359 	uint64_t xc;
    360 	bool ipi;
    361 
    362 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    363 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    364 
    365 	/*
    366 	 * Run a cross-call to ensure that all CPUs are
    367 	 * out from the ACPI idle-loop before detachment.
    368 	 */
    369 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    370 	xc_wait(xc);
    371 
    372 	return 0;
    373 }
    374 
    375 /*
    376  * Called with interrupts disabled.
    377  * Caller should enable interrupts after return.
    378  */
    379 void
    380 acpicpu_md_idle_enter(int method, int state)
    381 {
    382 	struct cpu_info *ci = curcpu();
    383 
    384 	switch (method) {
    385 
    386 	case ACPICPU_C_STATE_FFH:
    387 
    388 		x86_enable_intr();
    389 		x86_monitor(&ci->ci_want_resched, 0, 0);
    390 
    391 		if (__predict_false(ci->ci_want_resched != 0))
    392 			return;
    393 
    394 		x86_mwait((state - 1) << 4, 0);
    395 		break;
    396 
    397 	case ACPICPU_C_STATE_HALT:
    398 
    399 		if (__predict_false(ci->ci_want_resched != 0))
    400 			return;
    401 
    402 		x86_stihlt();
    403 		break;
    404 	}
    405 }
    406 
    407 int
    408 acpicpu_md_pstate_start(void)
    409 {
    410 	const uint64_t est = __BIT(16);
    411 	uint64_t val;
    412 
    413 	switch (cpu_vendor) {
    414 
    415 	case CPUVENDOR_IDT:
    416 	case CPUVENDOR_INTEL:
    417 
    418 		val = rdmsr(MSR_MISC_ENABLE);
    419 
    420 		if ((val & est) == 0) {
    421 
    422 			val |= est;
    423 
    424 			wrmsr(MSR_MISC_ENABLE, val);
    425 			val = rdmsr(MSR_MISC_ENABLE);
    426 
    427 			if ((val & est) == 0)
    428 				return ENOTTY;
    429 		}
    430 	}
    431 
    432 	return acpicpu_md_pstate_sysctl_init();
    433 }
    434 
    435 int
    436 acpicpu_md_pstate_stop(void)
    437 {
    438 
    439 	if (acpicpu_log != NULL)
    440 		sysctl_teardown(&acpicpu_log);
    441 
    442 	return 0;
    443 }
    444 
    445 int
    446 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    447 {
    448 	struct acpicpu_pstate *ps, msr;
    449 	struct cpu_info *ci = curcpu();
    450 	uint32_t family, i = 0;
    451 
    452 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    453 
    454 	switch (cpu_vendor) {
    455 
    456 	case CPUVENDOR_IDT:
    457 	case CPUVENDOR_INTEL:
    458 
    459 		/*
    460 		 * If the so-called Turbo Boost is present,
    461 		 * the P0-state is always the "turbo state".
    462 		 *
    463 		 * For discussion, see:
    464 		 *
    465 		 *	Intel Corporation: Intel Turbo Boost Technology
    466 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    467 		 *	Based Processors. White Paper, November 2008.
    468 		 */
    469 		if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
    470 			sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
    471 
    472 		msr.ps_control_addr = MSR_PERF_CTL;
    473 		msr.ps_control_mask = __BITS(0, 15);
    474 
    475 		msr.ps_status_addr  = MSR_PERF_STATUS;
    476 		msr.ps_status_mask  = __BITS(0, 15);
    477 		break;
    478 
    479 	case CPUVENDOR_AMD:
    480 
    481 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    482 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    483 
    484 		family = CPUID2FAMILY(ci->ci_signature);
    485 
    486 		if (family == 0xf)
    487 			family += CPUID2EXTFAMILY(ci->ci_signature);
    488 
    489 		switch (family) {
    490 
    491 		case 0x0f:
    492 			msr.ps_control_addr = MSR_0FH_CONTROL;
    493 			msr.ps_status_addr  = MSR_0FH_STATUS;
    494 			break;
    495 
    496 		case 0x10:
    497 		case 0x11:
    498 			msr.ps_control_addr = MSR_10H_CONTROL;
    499 			msr.ps_control_mask = __BITS(0, 2);
    500 
    501 			msr.ps_status_addr  = MSR_10H_STATUS;
    502 			msr.ps_status_mask  = __BITS(0, 2);
    503 			break;
    504 
    505 		default:
    506 
    507 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    508 				return EOPNOTSUPP;
    509 		}
    510 
    511 		break;
    512 
    513 	default:
    514 		return ENODEV;
    515 	}
    516 
    517 	/*
    518 	 * Fill the P-state structures with MSR addresses that are
    519 	 * known to be correct. If we do not know the addresses,
    520 	 * leave the values intact. If a vendor uses XPSS, we do
    521 	 * not necessarily need to do anything to support new CPUs.
    522 	 */
    523 	while (i < sc->sc_pstate_count) {
    524 
    525 		ps = &sc->sc_pstate[i];
    526 
    527 		if (msr.ps_flags != 0)
    528 			ps->ps_flags |= msr.ps_flags;
    529 
    530 		if (msr.ps_status_addr != 0)
    531 			ps->ps_status_addr = msr.ps_status_addr;
    532 
    533 		if (msr.ps_status_mask != 0)
    534 			ps->ps_status_mask = msr.ps_status_mask;
    535 
    536 		if (msr.ps_control_addr != 0)
    537 			ps->ps_control_addr = msr.ps_control_addr;
    538 
    539 		if (msr.ps_control_mask != 0)
    540 			ps->ps_control_mask = msr.ps_control_mask;
    541 
    542 		i++;
    543 	}
    544 
    545 	return 0;
    546 }
    547 
    548 int
    549 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    550 {
    551 	struct acpicpu_pstate *ps = NULL;
    552 	uint64_t val;
    553 	uint32_t i;
    554 
    555 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    556 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    557 
    558 	for (i = 0; i < sc->sc_pstate_count; i++) {
    559 
    560 		ps = &sc->sc_pstate[i];
    561 
    562 		if (__predict_true(ps->ps_freq != 0))
    563 			break;
    564 	}
    565 
    566 	if (__predict_false(ps == NULL))
    567 		return ENODEV;
    568 
    569 	if (__predict_false(ps->ps_status_addr == 0))
    570 		return EINVAL;
    571 
    572 	val = rdmsr(ps->ps_status_addr);
    573 
    574 	if (__predict_true(ps->ps_status_mask != 0))
    575 		val = val & ps->ps_status_mask;
    576 
    577 	for (i = 0; i < sc->sc_pstate_count; i++) {
    578 
    579 		ps = &sc->sc_pstate[i];
    580 
    581 		if (__predict_false(ps->ps_freq == 0))
    582 			continue;
    583 
    584 		if (val == ps->ps_status) {
    585 			*freq = ps->ps_freq;
    586 			return 0;
    587 		}
    588 	}
    589 
    590 	return EIO;
    591 }
    592 
    593 int
    594 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    595 {
    596 	struct msr_rw_info msr;
    597 	uint64_t xc;
    598 	int rv = 0;
    599 
    600 	if (__predict_false(ps->ps_control_addr == 0))
    601 		return EINVAL;
    602 
    603 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    604 		return acpicpu_md_pstate_fidvid_set(ps);
    605 
    606 	msr.msr_read  = false;
    607 	msr.msr_type  = ps->ps_control_addr;
    608 	msr.msr_value = ps->ps_control;
    609 
    610 	if (__predict_true(ps->ps_control_mask != 0)) {
    611 		msr.msr_mask = ps->ps_control_mask;
    612 		msr.msr_read = true;
    613 	}
    614 
    615 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    616 	xc_wait(xc);
    617 
    618 	/*
    619 	 * Due several problems, we bypass the
    620 	 * relatively expensive status check.
    621 	 */
    622 	if (acpicpu_pstate_status != true) {
    623 		DELAY(ps->ps_latency);
    624 		return 0;
    625 	}
    626 
    627 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    628 	xc_wait(xc);
    629 
    630 	return rv;
    631 }
    632 
    633 static void
    634 acpicpu_md_pstate_status(void *arg1, void *arg2)
    635 {
    636 	struct acpicpu_pstate *ps = arg1;
    637 	uint64_t val;
    638 	int i;
    639 
    640 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    641 
    642 		val = rdmsr(ps->ps_status_addr);
    643 
    644 		if (__predict_true(ps->ps_status_mask != 0))
    645 			val = val & ps->ps_status_mask;
    646 
    647 		if (val == ps->ps_status)
    648 			return;
    649 
    650 		DELAY(ps->ps_latency);
    651 	}
    652 
    653 	*(uintptr_t *)arg2 = EAGAIN;
    654 }
    655 
    656 static int
    657 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    658 {
    659 	struct acpicpu_pstate *ps;
    660 	uint32_t fid, i, vid;
    661 	uint32_t cfid, cvid;
    662 	int rv;
    663 
    664 	/*
    665 	 * AMD family 0Fh needs special treatment.
    666 	 * While it wants to use ACPI, it does not
    667 	 * comply with the ACPI specifications.
    668 	 */
    669 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    670 
    671 	if (rv != 0)
    672 		return rv;
    673 
    674 	for (i = 0; i < sc->sc_pstate_count; i++) {
    675 
    676 		ps = &sc->sc_pstate[i];
    677 
    678 		if (__predict_false(ps->ps_freq == 0))
    679 			continue;
    680 
    681 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    682 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    683 
    684 		if (cfid == fid && cvid == vid) {
    685 			*freq = ps->ps_freq;
    686 			return 0;
    687 		}
    688 	}
    689 
    690 	return EIO;
    691 }
    692 
    693 static int
    694 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    695 {
    696 	const uint64_t ctrl = ps->ps_control;
    697 	uint32_t cfid, cvid, fid, i, irt;
    698 	uint32_t pll, vco_cfid, vco_fid;
    699 	uint32_t val, vid, vst;
    700 	int rv;
    701 
    702 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    703 
    704 	if (rv != 0)
    705 		return rv;
    706 
    707 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    708 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    709 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    710 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    711 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    712 
    713 	vst = vst * 20;
    714 	pll = pll * 1000 / 5;
    715 	irt = 10 * __BIT(irt);
    716 
    717 	/*
    718 	 * Phase 1.
    719 	 */
    720 	while (cvid > vid) {
    721 
    722 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    723 		val = (val > cvid) ? 0 : cvid - val;
    724 
    725 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    726 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    727 
    728 		if (rv != 0)
    729 			return rv;
    730 	}
    731 
    732 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    733 
    734 	for (; i > 0 && cvid > 0; --i) {
    735 
    736 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    737 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    738 
    739 		if (rv != 0)
    740 			return rv;
    741 	}
    742 
    743 	/*
    744 	 * Phase 2.
    745 	 */
    746 	if (cfid != fid) {
    747 
    748 		vco_fid  = FID_TO_VCO_FID(fid);
    749 		vco_cfid = FID_TO_VCO_FID(cfid);
    750 
    751 		while (abs(vco_fid - vco_cfid) > 2) {
    752 
    753 			if (fid <= cfid)
    754 				val = cfid - 2;
    755 			else {
    756 				val = (cfid > 6) ? cfid + 2 :
    757 				    FID_TO_VCO_FID(cfid) + 2;
    758 			}
    759 
    760 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    761 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    762 
    763 			if (rv != 0)
    764 				return rv;
    765 
    766 			vco_cfid = FID_TO_VCO_FID(cfid);
    767 		}
    768 
    769 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    770 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    771 
    772 		if (rv != 0)
    773 			return rv;
    774 	}
    775 
    776 	/*
    777 	 * Phase 3.
    778 	 */
    779 	if (cvid != vid) {
    780 
    781 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    782 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    783 
    784 		if (rv != 0)
    785 			return rv;
    786 	}
    787 
    788 	if (cfid != fid || cvid != vid)
    789 		return EIO;
    790 
    791 	return 0;
    792 }
    793 
    794 static int
    795 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    796 {
    797 	int i = ACPICPU_P_STATE_RETRY * 100;
    798 	uint64_t val;
    799 
    800 	do {
    801 		val = rdmsr(MSR_0FH_STATUS);
    802 
    803 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    804 
    805 	if (i == 0)
    806 		return EAGAIN;
    807 
    808 	if (cfid != NULL)
    809 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    810 
    811 	if (cvid != NULL)
    812 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    813 
    814 	return 0;
    815 }
    816 
    817 static void
    818 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    819     uint32_t vid, uint32_t cnt, uint32_t tmo)
    820 {
    821 	struct msr_rw_info msr;
    822 	uint64_t xc;
    823 
    824 	msr.msr_read  = false;
    825 	msr.msr_type  = MSR_0FH_CONTROL;
    826 	msr.msr_value = 0;
    827 
    828 	msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    829 	msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    830 	msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    831 	msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    832 
    833 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    834 	xc_wait(xc);
    835 
    836 	DELAY(tmo);
    837 }
    838 
    839 int
    840 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    841 {
    842 	struct acpicpu_tstate *ts;
    843 	uint64_t val;
    844 	uint32_t i;
    845 
    846 	val = rdmsr(MSR_THERM_CONTROL);
    847 
    848 	for (i = 0; i < sc->sc_tstate_count; i++) {
    849 
    850 		ts = &sc->sc_tstate[i];
    851 
    852 		if (ts->ts_percent == 0)
    853 			continue;
    854 
    855 		if (val == ts->ts_status) {
    856 			*percent = ts->ts_percent;
    857 			return 0;
    858 		}
    859 	}
    860 
    861 	return EIO;
    862 }
    863 
    864 int
    865 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    866 {
    867 	struct msr_rw_info msr;
    868 	uint64_t xc;
    869 	int rv = 0;
    870 
    871 	msr.msr_read  = true;
    872 	msr.msr_type  = MSR_THERM_CONTROL;
    873 	msr.msr_value = ts->ts_control;
    874 	msr.msr_mask = __BITS(1, 4);
    875 
    876 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    877 	xc_wait(xc);
    878 
    879 	if (ts->ts_status == 0) {
    880 		DELAY(ts->ts_latency);
    881 		return 0;
    882 	}
    883 
    884 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    885 	xc_wait(xc);
    886 
    887 	return rv;
    888 }
    889 
    890 static void
    891 acpicpu_md_tstate_status(void *arg1, void *arg2)
    892 {
    893 	struct acpicpu_tstate *ts = arg1;
    894 	uint64_t val;
    895 	int i;
    896 
    897 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    898 
    899 		val = rdmsr(MSR_THERM_CONTROL);
    900 
    901 		if (val == ts->ts_status)
    902 			return;
    903 
    904 		DELAY(ts->ts_latency);
    905 	}
    906 
    907 	*(uintptr_t *)arg2 = EAGAIN;
    908 }
    909 
    910 /*
    911  * A kludge for backwards compatibility.
    912  */
    913 static int
    914 acpicpu_md_pstate_sysctl_init(void)
    915 {
    916 	const struct sysctlnode	*fnode, *mnode, *rnode;
    917 	const char *str;
    918 	int rv;
    919 
    920 	switch (cpu_vendor) {
    921 
    922 	case CPUVENDOR_IDT:
    923 	case CPUVENDOR_INTEL:
    924 		str = "est";
    925 		break;
    926 
    927 	case CPUVENDOR_AMD:
    928 		str = "powernow";
    929 		break;
    930 
    931 	default:
    932 		return ENODEV;
    933 	}
    934 
    935 
    936 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
    937 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    938 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    939 
    940 	if (rv != 0)
    941 		goto fail;
    942 
    943 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
    944 	    0, CTLTYPE_NODE, str, NULL,
    945 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    946 
    947 	if (rv != 0)
    948 		goto fail;
    949 
    950 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
    951 	    0, CTLTYPE_NODE, "frequency", NULL,
    952 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    953 
    954 	if (rv != 0)
    955 		goto fail;
    956 
    957 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
    958 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    959 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    960 
    961 	if (rv != 0)
    962 		goto fail;
    963 
    964 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
    965 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
    966 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    967 
    968 	if (rv != 0)
    969 		goto fail;
    970 
    971 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
    972 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
    973 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    974 
    975 	if (rv != 0)
    976 		goto fail;
    977 
    978 	return 0;
    979 
    980 fail:
    981 	if (acpicpu_log != NULL) {
    982 		sysctl_teardown(&acpicpu_log);
    983 		acpicpu_log = NULL;
    984 	}
    985 
    986 	return rv;
    987 }
    988 
    989 static int
    990 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
    991 {
    992 	struct cpu_info *ci = curcpu();
    993 	struct acpicpu_softc *sc;
    994 	struct sysctlnode node;
    995 	uint32_t freq;
    996 	int err;
    997 
    998 	sc = acpicpu_sc[ci->ci_acpiid];
    999 
   1000 	if (sc == NULL)
   1001 		return ENXIO;
   1002 
   1003 	err = acpicpu_pstate_get(sc, &freq);
   1004 
   1005 	if (err != 0)
   1006 		return err;
   1007 
   1008 	node = *rnode;
   1009 	node.sysctl_data = &freq;
   1010 
   1011 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1012 
   1013 	if (err != 0 || newp == NULL)
   1014 		return err;
   1015 
   1016 	return 0;
   1017 }
   1018 
   1019 static int
   1020 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1021 {
   1022 	struct cpu_info *ci = curcpu();
   1023 	struct acpicpu_softc *sc;
   1024 	struct sysctlnode node;
   1025 	uint32_t freq;
   1026 	int err;
   1027 
   1028 	sc = acpicpu_sc[ci->ci_acpiid];
   1029 
   1030 	if (sc == NULL)
   1031 		return ENXIO;
   1032 
   1033 	err = acpicpu_pstate_get(sc, &freq);
   1034 
   1035 	if (err != 0)
   1036 		return err;
   1037 
   1038 	node = *rnode;
   1039 	node.sysctl_data = &freq;
   1040 
   1041 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1042 
   1043 	if (err != 0 || newp == NULL)
   1044 		return err;
   1045 
   1046 	err = acpicpu_pstate_set(sc, freq);
   1047 
   1048 	if (err != 0)
   1049 		return err;
   1050 
   1051 	return 0;
   1052 }
   1053 
   1054 static int
   1055 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1056 {
   1057 	struct cpu_info *ci = curcpu();
   1058 	struct acpicpu_softc *sc;
   1059 	struct sysctlnode node;
   1060 	char buf[1024];
   1061 	size_t len;
   1062 	uint32_t i;
   1063 	int err;
   1064 
   1065 	sc = acpicpu_sc[ci->ci_acpiid];
   1066 
   1067 	if (sc == NULL)
   1068 		return ENXIO;
   1069 
   1070 	(void)memset(&buf, 0, sizeof(buf));
   1071 
   1072 	mutex_enter(&sc->sc_mtx);
   1073 
   1074 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1075 
   1076 		if (sc->sc_pstate[i].ps_freq == 0)
   1077 			continue;
   1078 
   1079 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1080 		    sc->sc_pstate[i].ps_freq,
   1081 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1082 	}
   1083 
   1084 	mutex_exit(&sc->sc_mtx);
   1085 
   1086 	node = *rnode;
   1087 	node.sysctl_data = buf;
   1088 
   1089 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1090 
   1091 	if (err != 0 || newp == NULL)
   1092 		return err;
   1093 
   1094 	return 0;
   1095 }
   1096 
   1097