Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.38.4.2
      1 /* $NetBSD: acpi_cpu_md.c,v 1.38.4.2 2011/03/05 15:10:09 bouyer Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.38.4.2 2011/03/05 15:10:09 bouyer Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/device.h>
     35 #include <sys/kcore.h>
     36 #include <sys/sysctl.h>
     37 #include <sys/xcall.h>
     38 
     39 #include <x86/cpu.h>
     40 #include <x86/cpufunc.h>
     41 #include <x86/cputypes.h>
     42 #include <x86/cpuvar.h>
     43 #include <x86/cpu_msr.h>
     44 #include <x86/machdep.h>
     45 
     46 #include <dev/acpi/acpica.h>
     47 #include <dev/acpi/acpi_cpu.h>
     48 
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <machine/acpi_machdep.h>
     53 
     54 /*
     55  * Intel IA32_MISC_ENABLE.
     56  */
     57 #define MSR_MISC_ENABLE_EST	__BIT(16)
     58 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     59 
     60 /*
     61  * AMD C1E.
     62  */
     63 #define MSR_CMPHALT		0xc0010055
     64 
     65 #define MSR_CMPHALT_SMI		__BIT(27)
     66 #define MSR_CMPHALT_C1E		__BIT(28)
     67 #define MSR_CMPHALT_BMSTS	__BIT(29)
     68 
     69 /*
     70  * AMD families 10h, 11h, and 14h
     71  */
     72 #define MSR_10H_LIMIT		0xc0010061
     73 #define MSR_10H_CONTROL		0xc0010062
     74 #define MSR_10H_STATUS		0xc0010063
     75 #define MSR_10H_CONFIG		0xc0010064
     76 
     77 /*
     78  * AMD family 0Fh.
     79  */
     80 #define MSR_0FH_CONTROL		0xc0010041
     81 #define MSR_0FH_STATUS		0xc0010042
     82 
     83 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     84 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     85 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     86 
     87 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     88 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     89 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     90 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     91 
     92 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     93 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     94 
     95 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     96 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     97 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     98 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     99 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    100 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    101 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    102 
    103 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    104 
    105 static char	  native_idle_text[16];
    106 void		(*native_idle)(void) = NULL;
    107 
    108 static u_long	 acpicpu_md_lock(struct acpicpu_softc *);
    109 static void	 acpicpu_md_unlock(struct acpicpu_softc *, u_long);
    110 static int	 acpicpu_md_quirk_piix4(struct pci_attach_args *);
    111 static void	 acpicpu_md_pstate_percent_reset(struct cpu_info *);
    112 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    113                                               uint32_t *);
    114 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    115 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    116 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    117 					        uint32_t, uint32_t);
    118 static int	 acpicpu_md_pstate_sysctl_init(void);
    119 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    121 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    122 
    123 extern struct acpicpu_softc **acpicpu_sc;
    124 static struct sysctllog *acpicpu_log = NULL;
    125 
    126 struct cpu_info *
    127 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    128 {
    129 	struct cpufeature_attach_args *cfaa = aux;
    130 
    131 	if (strcmp(cfaa->name, "frequency") != 0)
    132 		return NULL;
    133 
    134 	return cfaa->ci;
    135 }
    136 
    137 struct cpu_info *
    138 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    139 {
    140 	struct cpufeature_attach_args *cfaa = aux;
    141 
    142 	return cfaa->ci;
    143 }
    144 
    145 static u_long
    146 acpicpu_md_lock(struct acpicpu_softc *sc)
    147 {
    148 	const u_long flags = x86_read_psl();
    149 
    150 	x86_disable_intr();
    151 	__cpu_simple_lock(&sc->sc_lock);
    152 
    153 	return flags;
    154 }
    155 
    156 static void
    157 acpicpu_md_unlock(struct acpicpu_softc *sc, u_long flags)
    158 {
    159 	__cpu_simple_unlock(&sc->sc_lock);
    160 	x86_write_psl(flags);
    161 }
    162 
    163 uint32_t
    164 acpicpu_md_cap(void)
    165 {
    166 	struct cpu_info *ci = curcpu();
    167 	uint32_t regs[4];
    168 	uint32_t val = 0;
    169 
    170 	if (cpu_vendor != CPUVENDOR_IDT &&
    171 	    cpu_vendor != CPUVENDOR_INTEL)
    172 		return val;
    173 
    174 	/*
    175 	 * Basic SMP C-states (required for e.g. _CST).
    176 	 */
    177 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    178 
    179 	/*
    180 	 * Claim to support dependency coordination.
    181 	 */
    182 	val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
    183 
    184         /*
    185 	 * If MONITOR/MWAIT is available, announce
    186 	 * support for native instructions in all C-states.
    187 	 */
    188         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    189 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    190 
    191 	/*
    192 	 * Set native P- and T-states, if available.
    193 	 */
    194         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    195 		val |= ACPICPU_PDC_P_FFH;
    196 
    197 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    198 		val |= ACPICPU_PDC_T_FFH;
    199 
    200 	/*
    201 	 * Declare support for APERF and MPERF.
    202 	 */
    203 	if (cpuid_level >= 0x06) {
    204 
    205 		x86_cpuid(0x00000006, regs);
    206 
    207 		if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208 			val |= ACPICPU_PDC_P_HWF;
    209 	}
    210 
    211 	return val;
    212 }
    213 
    214 uint32_t
    215 acpicpu_md_flags(void)
    216 {
    217 	struct cpu_info *ci = curcpu();
    218 	struct pci_attach_args pa;
    219 	uint32_t family, val = 0;
    220 	uint32_t regs[4];
    221 
    222 	if (acpi_md_ncpus() == 1)
    223 		val |= ACPICPU_FLAG_C_BM;
    224 
    225 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    226 		val |= ACPICPU_FLAG_C_FFH;
    227 
    228 	/*
    229 	 * By default, assume that the local APIC timer
    230 	 * as well as TSC are stalled during C3 sleep.
    231 	 */
    232 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    233 
    234 	switch (cpu_vendor) {
    235 
    236 	case CPUVENDOR_IDT:
    237 
    238 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    239 			val |= ACPICPU_FLAG_P_FFH;
    240 
    241 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    242 			val |= ACPICPU_FLAG_T_FFH;
    243 
    244 		break;
    245 
    246 	case CPUVENDOR_INTEL:
    247 
    248 		/*
    249 		 * Bus master control and arbitration should be
    250 		 * available on all supported Intel CPUs (to be
    251 		 * sure, this is double-checked later from the
    252 		 * firmware data). These flags imply that it is
    253 		 * not necessary to flush caches before C3 state.
    254 		 */
    255 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    256 
    257 		/*
    258 		 * Check if we can use "native", MSR-based,
    259 		 * access. If not, we have to resort to I/O.
    260 		 */
    261 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    262 			val |= ACPICPU_FLAG_P_FFH;
    263 
    264 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    265 			val |= ACPICPU_FLAG_T_FFH;
    266 
    267 		/*
    268 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    269 		 * Boost are available. Also see if we might have
    270 		 * an invariant local APIC timer ("ARAT").
    271 		 */
    272 		if (cpuid_level >= 0x06) {
    273 
    274 			x86_cpuid(0x00000006, regs);
    275 
    276 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    277 				val |= ACPICPU_FLAG_P_HWF;
    278 
    279 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    280 				val |= ACPICPU_FLAG_P_TURBO;
    281 
    282 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    283 				val &= ~ACPICPU_FLAG_C_APIC;
    284 		}
    285 
    286 		/*
    287 		 * Detect whether TSC is invariant. If it is not,
    288 		 * we keep the flag to note that TSC will not run
    289 		 * at constant rate. Depending on the CPU, this may
    290 		 * affect P- and T-state changes, but especially
    291 		 * relevant are C-states; with variant TSC, states
    292 		 * larger than C1 may completely stop the counter.
    293 		 */
    294 		x86_cpuid(0x80000000, regs);
    295 
    296 		if (regs[0] >= 0x80000007) {
    297 
    298 			x86_cpuid(0x80000007, regs);
    299 
    300 			if ((regs[3] & __BIT(8)) != 0)
    301 				val &= ~ACPICPU_FLAG_C_TSC;
    302 		}
    303 
    304 		break;
    305 
    306 	case CPUVENDOR_AMD:
    307 
    308 		x86_cpuid(0x80000000, regs);
    309 
    310 		if (regs[0] < 0x80000007)
    311 			break;
    312 
    313 		x86_cpuid(0x80000007, regs);
    314 
    315 		family = CPUID2FAMILY(ci->ci_signature);
    316 
    317 		if (family == 0xf)
    318 			family += CPUID2EXTFAMILY(ci->ci_signature);
    319 
    320     		switch (family) {
    321 
    322 		case 0x0f:
    323 
    324 			/*
    325 			 * Evaluate support for the "FID/VID
    326 			 * algorithm" also used by powernow(4).
    327 			 */
    328 			if ((regs[3] & CPUID_APM_FID) == 0)
    329 				break;
    330 
    331 			if ((regs[3] & CPUID_APM_VID) == 0)
    332 				break;
    333 
    334 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    335 			break;
    336 
    337 		case 0x10:
    338 		case 0x11:
    339 			val |= ACPICPU_FLAG_C_C1E;
    340 			/* FALLTHROUGH */
    341 
    342 		case 0x14: /* AMD Fusion */
    343 
    344 			/*
    345 			 * Like with Intel, detect invariant TSC,
    346 			 * MSR-based P-states, and AMD's "turbo"
    347 			 * (Core Performance Boost), respectively.
    348 			 */
    349 			if ((regs[3] & CPUID_APM_TSC) != 0)
    350 				val &= ~ACPICPU_FLAG_C_TSC;
    351 
    352 			if ((regs[3] & CPUID_APM_HWP) != 0)
    353 				val |= ACPICPU_FLAG_P_FFH;
    354 
    355 			if ((regs[3] & CPUID_APM_CPB) != 0)
    356 				val |= ACPICPU_FLAG_P_TURBO;
    357 
    358 			/*
    359 			 * Also check for APERF and MPERF,
    360 			 * first available in the family 10h.
    361 			 */
    362 			if (cpuid_level >= 0x06) {
    363 
    364 				x86_cpuid(0x00000006, regs);
    365 
    366 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    367 					val |= ACPICPU_FLAG_P_HWF;
    368 			}
    369 
    370 			break;
    371 		}
    372 
    373 		break;
    374 	}
    375 
    376 	/*
    377 	 * There are several erratums for PIIX4.
    378 	 */
    379 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    380 		val |= ACPICPU_FLAG_PIIX4;
    381 
    382 	return val;
    383 }
    384 
    385 static int
    386 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
    387 {
    388 
    389 	/*
    390 	 * XXX: The pci_find_device(9) function only
    391 	 *	deals with attached devices. Change this
    392 	 *	to use something like pci_device_foreach().
    393 	 */
    394 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    395 		return 0;
    396 
    397 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    398 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    399 		return 1;
    400 
    401 	return 0;
    402 }
    403 
    404 void
    405 acpicpu_md_quirk_c1e(void)
    406 {
    407 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    408 	uint64_t val;
    409 
    410 	val = rdmsr(MSR_CMPHALT);
    411 
    412 	if ((val & c1e) != 0)
    413 		wrmsr(MSR_CMPHALT, val & ~c1e);
    414 }
    415 
    416 int
    417 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    418 {
    419 	const size_t size = sizeof(native_idle_text);
    420 	struct acpicpu_cstate *cs;
    421 	bool ipi = false;
    422 	int i;
    423 
    424 	/*
    425 	 * Save the cpu_idle(9) loop used by default.
    426 	 */
    427 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    428 
    429 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    430 
    431 		cs = &sc->sc_cstate[i];
    432 
    433 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    434 			ipi = true;
    435 			break;
    436 		}
    437 	}
    438 
    439 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    440 
    441 	return 0;
    442 }
    443 
    444 int
    445 acpicpu_md_cstate_stop(void)
    446 {
    447 	uint64_t xc;
    448 	bool ipi;
    449 
    450 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    451 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    452 
    453 	/*
    454 	 * Run a cross-call to ensure that all CPUs are
    455 	 * out from the ACPI idle-loop before detachment.
    456 	 */
    457 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    458 	xc_wait(xc);
    459 
    460 	return 0;
    461 }
    462 
    463 /*
    464  * Called with interrupts disabled.
    465  * Caller should enable interrupts after return.
    466  */
    467 void
    468 acpicpu_md_cstate_enter(int method, int state)
    469 {
    470 	struct cpu_info *ci = curcpu();
    471 
    472 	switch (method) {
    473 
    474 	case ACPICPU_C_STATE_FFH:
    475 
    476 		x86_enable_intr();
    477 		x86_monitor(&ci->ci_want_resched, 0, 0);
    478 
    479 		if (__predict_false(ci->ci_want_resched != 0))
    480 			return;
    481 
    482 		x86_mwait((state - 1) << 4, 0);
    483 		break;
    484 
    485 	case ACPICPU_C_STATE_HALT:
    486 
    487 		if (__predict_false(ci->ci_want_resched != 0))
    488 			return;
    489 
    490 		x86_stihlt();
    491 		break;
    492 	}
    493 }
    494 
    495 int
    496 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    497 {
    498 	return acpicpu_md_pstate_sysctl_init();
    499 }
    500 
    501 int
    502 acpicpu_md_pstate_stop(void)
    503 {
    504 	if (acpicpu_log != NULL)
    505 		sysctl_teardown(&acpicpu_log);
    506 
    507 	return 0;
    508 }
    509 
    510 int
    511 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    512 {
    513 	struct acpicpu_pstate *ps, msr;
    514 	struct cpu_info *ci = curcpu();
    515 	uint32_t family, i = 0;
    516 	uint64_t val;
    517 
    518 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    519 
    520 	switch (cpu_vendor) {
    521 
    522 	case CPUVENDOR_IDT:
    523 	case CPUVENDOR_INTEL:
    524 
    525 		/*
    526 		 * Make sure EST is enabled.
    527 		 */
    528 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    529 
    530 			val = rdmsr(MSR_MISC_ENABLE);
    531 
    532 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    533 
    534 				val |= MSR_MISC_ENABLE_EST;
    535 				wrmsr(MSR_MISC_ENABLE, val);
    536 				val = rdmsr(MSR_MISC_ENABLE);
    537 
    538 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    539 					return ENOTTY;
    540 			}
    541 		}
    542 
    543 		/*
    544 		 * If the so-called Turbo Boost is present,
    545 		 * the P0-state is always the "turbo state".
    546 		 * It is shown as the P1 frequency + 1 MHz.
    547 		 *
    548 		 * For discussion, see:
    549 		 *
    550 		 *	Intel Corporation: Intel Turbo Boost Technology
    551 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    552 		 *	Based Processors. White Paper, November 2008.
    553 		 */
    554 		if (sc->sc_pstate_count >= 2 &&
    555 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    556 
    557 			ps = &sc->sc_pstate[0];
    558 
    559 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    560 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    561 		}
    562 
    563 		msr.ps_control_addr = MSR_PERF_CTL;
    564 		msr.ps_control_mask = __BITS(0, 15);
    565 
    566 		msr.ps_status_addr  = MSR_PERF_STATUS;
    567 		msr.ps_status_mask  = __BITS(0, 15);
    568 		break;
    569 
    570 	case CPUVENDOR_AMD:
    571 
    572 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    573 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    574 
    575 		family = CPUID2FAMILY(ci->ci_signature);
    576 
    577 		if (family == 0xf)
    578 			family += CPUID2EXTFAMILY(ci->ci_signature);
    579 
    580 		switch (family) {
    581 
    582 		case 0x0f:
    583 			msr.ps_control_addr = MSR_0FH_CONTROL;
    584 			msr.ps_status_addr  = MSR_0FH_STATUS;
    585 			break;
    586 
    587 		case 0x10:
    588 		case 0x11:
    589 		case 0x14: /* AMD Fusion */
    590 			msr.ps_control_addr = MSR_10H_CONTROL;
    591 			msr.ps_control_mask = __BITS(0, 2);
    592 
    593 			msr.ps_status_addr  = MSR_10H_STATUS;
    594 			msr.ps_status_mask  = __BITS(0, 2);
    595 			break;
    596 
    597 		default:
    598 
    599 			/*
    600 			 * If we have an unknown AMD CPU, rely on XPSS.
    601 			 */
    602 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    603 				return EOPNOTSUPP;
    604 		}
    605 
    606 		break;
    607 
    608 	default:
    609 		return ENODEV;
    610 	}
    611 
    612 	/*
    613 	 * Fill the P-state structures with MSR addresses that are
    614 	 * known to be correct. If we do not know the addresses,
    615 	 * leave the values intact. If a vendor uses XPSS, we do
    616 	 * not necessarily need to do anything to support new CPUs.
    617 	 */
    618 	while (i < sc->sc_pstate_count) {
    619 
    620 		ps = &sc->sc_pstate[i];
    621 
    622 		if (msr.ps_flags != 0)
    623 			ps->ps_flags |= msr.ps_flags;
    624 
    625 		if (msr.ps_status_addr != 0)
    626 			ps->ps_status_addr = msr.ps_status_addr;
    627 
    628 		if (msr.ps_status_mask != 0)
    629 			ps->ps_status_mask = msr.ps_status_mask;
    630 
    631 		if (msr.ps_control_addr != 0)
    632 			ps->ps_control_addr = msr.ps_control_addr;
    633 
    634 		if (msr.ps_control_mask != 0)
    635 			ps->ps_control_mask = msr.ps_control_mask;
    636 
    637 		i++;
    638 	}
    639 
    640 	/*
    641 	 * Reset the APERF and MPERF counters.
    642 	 *
    643 	 * XXX: Should be with xc_unicast(9).
    644 	 */
    645 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0)
    646 		acpicpu_md_pstate_percent_reset(sc->sc_ci);
    647 
    648 	return 0;
    649 }
    650 
    651 /*
    652  * Read the IA32_APERF and IA32_MPERF counters. The first
    653  * increments at the rate of the fixed maximum frequency
    654  * configured during the boot, whereas APERF counts at the
    655  * rate of the actual frequency. Note that the MSRs must be
    656  * read without delay, and that only the ratio between
    657  * IA32_APERF and IA32_MPERF is architecturally defined.
    658  *
    659  * The function thus returns the percentage of the actual
    660  * frequency in terms of the maximum frequency of the calling
    661  * CPU since the last call. A value zero implies an error.
    662  *
    663  * For further details, refer to:
    664  *
    665  *	Intel Corporation: Intel 64 and IA-32 Architectures
    666  *	Software Developer's Manual. Section 13.2, Volume 3A:
    667  *	System Programming Guide, Part 1. July, 2008.
    668  *
    669  *	Advanced Micro Devices: BIOS and Kernel Developer's
    670  *	Guide (BKDG) for AMD Family 10h Processors. Section
    671  *	2.4.5, Revision 3.48, April 2010.
    672  */
    673 uint8_t
    674 acpicpu_md_pstate_percent(struct cpu_info *ci)
    675 {
    676 	struct acpicpu_softc *sc;
    677 	uint64_t aperf, mperf;
    678 	uint8_t rv = 0;
    679 	u_long flags;
    680 
    681 	sc = acpicpu_sc[ci->ci_acpiid];
    682 
    683 	if (__predict_false(sc == NULL))
    684 		return 0;
    685 
    686 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    687 		return 0;
    688 
    689 	flags = acpicpu_md_lock(sc);
    690 
    691 	aperf = sc->sc_pstate_aperf;
    692 	mperf = sc->sc_pstate_mperf;
    693 
    694 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    695 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    696 
    697 	aperf = sc->sc_pstate_aperf - aperf;
    698 	mperf = sc->sc_pstate_mperf - mperf;
    699 
    700 	if (__predict_true(mperf != 0))
    701 		rv = (aperf * 100) / mperf;
    702 
    703 	acpicpu_md_unlock(sc, flags);
    704 
    705 	return rv;
    706 }
    707 
    708 static void
    709 acpicpu_md_pstate_percent_reset(struct cpu_info *ci)
    710 {
    711 	struct acpicpu_softc *sc;
    712 	u_long flags;
    713 
    714 	sc = acpicpu_sc[ci->ci_acpiid];
    715 
    716 	if (__predict_false(sc == NULL))
    717 		return;
    718 
    719 	flags = acpicpu_md_lock(sc);
    720 
    721 	wrmsr(MSR_APERF, 0);
    722 	wrmsr(MSR_MPERF, 0);
    723 
    724 	sc->sc_pstate_aperf = 0;
    725 	sc->sc_pstate_mperf = 0;
    726 
    727 	acpicpu_md_unlock(sc, flags);
    728 }
    729 
    730 int
    731 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    732 {
    733 	struct acpicpu_pstate *ps = NULL;
    734 	uint64_t val;
    735 	uint32_t i;
    736 
    737 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    738 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    739 
    740 	/*
    741 	 * Pick any P-state for the status address.
    742 	*/
    743 	for (i = 0; i < sc->sc_pstate_count; i++) {
    744 
    745 		ps = &sc->sc_pstate[i];
    746 
    747 		if (__predict_true(ps->ps_freq != 0))
    748 			break;
    749 	}
    750 
    751 	if (__predict_false(ps == NULL))
    752 		return ENODEV;
    753 
    754 	if (__predict_false(ps->ps_status_addr == 0))
    755 		return EINVAL;
    756 
    757 	val = rdmsr(ps->ps_status_addr);
    758 
    759 	if (__predict_true(ps->ps_status_mask != 0))
    760 		val = val & ps->ps_status_mask;
    761 
    762 	/*
    763 	 * Search for the value from known P-states.
    764 	 */
    765 	for (i = 0; i < sc->sc_pstate_count; i++) {
    766 
    767 		ps = &sc->sc_pstate[i];
    768 
    769 		if (__predict_false(ps->ps_freq == 0))
    770 			continue;
    771 
    772 		if (val == ps->ps_status) {
    773 			*freq = ps->ps_freq;
    774 			return 0;
    775 		}
    776 	}
    777 
    778 	return EIO;
    779 }
    780 
    781 int
    782 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    783 {
    784 	uint64_t val = 0;
    785 
    786 	if (__predict_false(ps->ps_control_addr == 0))
    787 		return EINVAL;
    788 
    789 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    790 		return acpicpu_md_pstate_fidvid_set(ps);
    791 
    792 	/*
    793 	 * If the mask is set, do a read-modify-write.
    794 	 */
    795 	if (__predict_true(ps->ps_control_mask != 0)) {
    796 		val = rdmsr(ps->ps_control_addr);
    797 		val &= ~ps->ps_control_mask;
    798 	}
    799 
    800 	val |= ps->ps_control;
    801 
    802 	wrmsr(ps->ps_control_addr, val);
    803 	DELAY(ps->ps_latency);
    804 
    805 	return 0;
    806 }
    807 
    808 static int
    809 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    810 {
    811 	struct acpicpu_pstate *ps;
    812 	uint32_t fid, i, vid;
    813 	uint32_t cfid, cvid;
    814 	int rv;
    815 
    816 	/*
    817 	 * AMD family 0Fh needs special treatment.
    818 	 * While it wants to use ACPI, it does not
    819 	 * comply with the ACPI specifications.
    820 	 */
    821 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    822 
    823 	if (rv != 0)
    824 		return rv;
    825 
    826 	for (i = 0; i < sc->sc_pstate_count; i++) {
    827 
    828 		ps = &sc->sc_pstate[i];
    829 
    830 		if (__predict_false(ps->ps_freq == 0))
    831 			continue;
    832 
    833 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    834 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    835 
    836 		if (cfid == fid && cvid == vid) {
    837 			*freq = ps->ps_freq;
    838 			return 0;
    839 		}
    840 	}
    841 
    842 	return EIO;
    843 }
    844 
    845 static int
    846 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    847 {
    848 	const uint64_t ctrl = ps->ps_control;
    849 	uint32_t cfid, cvid, fid, i, irt;
    850 	uint32_t pll, vco_cfid, vco_fid;
    851 	uint32_t val, vid, vst;
    852 	int rv;
    853 
    854 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    855 
    856 	if (rv != 0)
    857 		return rv;
    858 
    859 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    860 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    861 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    862 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    863 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    864 
    865 	vst = vst * 20;
    866 	pll = pll * 1000 / 5;
    867 	irt = 10 * __BIT(irt);
    868 
    869 	/*
    870 	 * Phase 1.
    871 	 */
    872 	while (cvid > vid) {
    873 
    874 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    875 		val = (val > cvid) ? 0 : cvid - val;
    876 
    877 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    878 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    879 
    880 		if (rv != 0)
    881 			return rv;
    882 	}
    883 
    884 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    885 
    886 	for (; i > 0 && cvid > 0; --i) {
    887 
    888 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    889 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    890 
    891 		if (rv != 0)
    892 			return rv;
    893 	}
    894 
    895 	/*
    896 	 * Phase 2.
    897 	 */
    898 	if (cfid != fid) {
    899 
    900 		vco_fid  = FID_TO_VCO_FID(fid);
    901 		vco_cfid = FID_TO_VCO_FID(cfid);
    902 
    903 		while (abs(vco_fid - vco_cfid) > 2) {
    904 
    905 			if (fid <= cfid)
    906 				val = cfid - 2;
    907 			else {
    908 				val = (cfid > 6) ? cfid + 2 :
    909 				    FID_TO_VCO_FID(cfid) + 2;
    910 			}
    911 
    912 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    913 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    914 
    915 			if (rv != 0)
    916 				return rv;
    917 
    918 			vco_cfid = FID_TO_VCO_FID(cfid);
    919 		}
    920 
    921 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    922 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    923 
    924 		if (rv != 0)
    925 			return rv;
    926 	}
    927 
    928 	/*
    929 	 * Phase 3.
    930 	 */
    931 	if (cvid != vid) {
    932 
    933 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    934 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    935 
    936 		if (rv != 0)
    937 			return rv;
    938 	}
    939 
    940 	if (cfid != fid || cvid != vid)
    941 		return EIO;
    942 
    943 	return 0;
    944 }
    945 
    946 static int
    947 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    948 {
    949 	int i = ACPICPU_P_STATE_RETRY * 100;
    950 	uint64_t val;
    951 
    952 	do {
    953 		val = rdmsr(MSR_0FH_STATUS);
    954 
    955 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    956 
    957 	if (i == 0)
    958 		return EAGAIN;
    959 
    960 	if (cfid != NULL)
    961 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    962 
    963 	if (cvid != NULL)
    964 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    965 
    966 	return 0;
    967 }
    968 
    969 static void
    970 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    971     uint32_t vid, uint32_t cnt, uint32_t tmo)
    972 {
    973 	uint64_t val = 0;
    974 
    975 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    976 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    977 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    978 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    979 
    980 	wrmsr(MSR_0FH_CONTROL, val);
    981 	DELAY(tmo);
    982 }
    983 
    984 int
    985 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    986 {
    987 	struct acpicpu_tstate *ts;
    988 	uint64_t val;
    989 	uint32_t i;
    990 
    991 	val = rdmsr(MSR_THERM_CONTROL);
    992 
    993 	for (i = 0; i < sc->sc_tstate_count; i++) {
    994 
    995 		ts = &sc->sc_tstate[i];
    996 
    997 		if (ts->ts_percent == 0)
    998 			continue;
    999 
   1000 		if (val == ts->ts_status) {
   1001 			*percent = ts->ts_percent;
   1002 			return 0;
   1003 		}
   1004 	}
   1005 
   1006 	return EIO;
   1007 }
   1008 
   1009 int
   1010 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
   1011 {
   1012 	uint64_t val;
   1013 	uint8_t i;
   1014 
   1015 	val = ts->ts_control;
   1016 	val = val & __BITS(1, 4);
   1017 
   1018 	wrmsr(MSR_THERM_CONTROL, val);
   1019 
   1020 	if (ts->ts_status == 0) {
   1021 		DELAY(ts->ts_latency);
   1022 		return 0;
   1023 	}
   1024 
   1025 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1026 
   1027 		val = rdmsr(MSR_THERM_CONTROL);
   1028 
   1029 		if (val == ts->ts_status)
   1030 			return 0;
   1031 
   1032 		DELAY(ts->ts_latency);
   1033 	}
   1034 
   1035 	return EAGAIN;
   1036 }
   1037 
   1038 /*
   1039  * A kludge for backwards compatibility.
   1040  */
   1041 static int
   1042 acpicpu_md_pstate_sysctl_init(void)
   1043 {
   1044 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1045 	const char *str;
   1046 	int rv;
   1047 
   1048 	switch (cpu_vendor) {
   1049 
   1050 	case CPUVENDOR_IDT:
   1051 	case CPUVENDOR_INTEL:
   1052 		str = "est";
   1053 		break;
   1054 
   1055 	case CPUVENDOR_AMD:
   1056 		str = "powernow";
   1057 		break;
   1058 
   1059 	default:
   1060 		return ENODEV;
   1061 	}
   1062 
   1063 
   1064 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1065 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1066 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1067 
   1068 	if (rv != 0)
   1069 		goto fail;
   1070 
   1071 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1072 	    0, CTLTYPE_NODE, str, NULL,
   1073 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1074 
   1075 	if (rv != 0)
   1076 		goto fail;
   1077 
   1078 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1079 	    0, CTLTYPE_NODE, "frequency", NULL,
   1080 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1081 
   1082 	if (rv != 0)
   1083 		goto fail;
   1084 
   1085 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1086 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1087 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1088 
   1089 	if (rv != 0)
   1090 		goto fail;
   1091 
   1092 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1093 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1094 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1095 
   1096 	if (rv != 0)
   1097 		goto fail;
   1098 
   1099 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1100 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1101 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1102 
   1103 	if (rv != 0)
   1104 		goto fail;
   1105 
   1106 	return 0;
   1107 
   1108 fail:
   1109 	if (acpicpu_log != NULL) {
   1110 		sysctl_teardown(&acpicpu_log);
   1111 		acpicpu_log = NULL;
   1112 	}
   1113 
   1114 	return rv;
   1115 }
   1116 
   1117 static int
   1118 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1119 {
   1120 	struct cpu_info *ci = curcpu();
   1121 	struct sysctlnode node;
   1122 	uint32_t freq;
   1123 	int err;
   1124 
   1125 	err = acpicpu_pstate_get(ci, &freq);
   1126 
   1127 	if (err != 0)
   1128 		return err;
   1129 
   1130 	node = *rnode;
   1131 	node.sysctl_data = &freq;
   1132 
   1133 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1134 
   1135 	if (err != 0 || newp == NULL)
   1136 		return err;
   1137 
   1138 	return 0;
   1139 }
   1140 
   1141 static int
   1142 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1143 {
   1144 	struct cpu_info *ci = curcpu();
   1145 	struct sysctlnode node;
   1146 	uint32_t freq;
   1147 	int err;
   1148 
   1149 	err = acpicpu_pstate_get(ci, &freq);
   1150 
   1151 	if (err != 0)
   1152 		return err;
   1153 
   1154 	node = *rnode;
   1155 	node.sysctl_data = &freq;
   1156 
   1157 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1158 
   1159 	if (err != 0 || newp == NULL)
   1160 		return err;
   1161 
   1162 	acpicpu_pstate_set(ci, freq);
   1163 
   1164 	return 0;
   1165 }
   1166 
   1167 static int
   1168 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1169 {
   1170 	struct cpu_info *ci = curcpu();
   1171 	struct acpicpu_softc *sc;
   1172 	struct sysctlnode node;
   1173 	char buf[1024];
   1174 	size_t len;
   1175 	uint32_t i;
   1176 	int err;
   1177 
   1178 	sc = acpicpu_sc[ci->ci_acpiid];
   1179 
   1180 	if (sc == NULL)
   1181 		return ENXIO;
   1182 
   1183 	(void)memset(&buf, 0, sizeof(buf));
   1184 
   1185 	mutex_enter(&sc->sc_mtx);
   1186 
   1187 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1188 
   1189 		if (sc->sc_pstate[i].ps_freq == 0)
   1190 			continue;
   1191 
   1192 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1193 		    sc->sc_pstate[i].ps_freq,
   1194 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1195 	}
   1196 
   1197 	mutex_exit(&sc->sc_mtx);
   1198 
   1199 	node = *rnode;
   1200 	node.sysctl_data = buf;
   1201 
   1202 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1203 
   1204 	if (err != 0 || newp == NULL)
   1205 		return err;
   1206 
   1207 	return 0;
   1208 }
   1209 
   1210