Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.42
      1 /* $NetBSD: acpi_cpu_md.c,v 1.42 2011/02/25 10:59:32 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.42 2011/02/25 10:59:32 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #include <machine/acpi_machdep.h>
     52 
     53 /*
     54  * AMD C1E.
     55  */
     56 #define MSR_CMPHALT		0xc0010055
     57 
     58 #define MSR_CMPHALT_SMI		__BIT(27)
     59 #define MSR_CMPHALT_C1E		__BIT(28)
     60 #define MSR_CMPHALT_BMSTS	__BIT(29)
     61 
     62 /*
     63  * AMD families 10h, 11h, and 14h
     64  */
     65 #define MSR_10H_LIMIT		0xc0010061
     66 #define MSR_10H_CONTROL		0xc0010062
     67 #define MSR_10H_STATUS		0xc0010063
     68 #define MSR_10H_CONFIG		0xc0010064
     69 
     70 /*
     71  * AMD family 0Fh.
     72  */
     73 #define MSR_0FH_CONTROL		0xc0010041
     74 #define MSR_0FH_STATUS		0xc0010042
     75 
     76 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     77 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     78 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     79 
     80 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     81 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     82 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     83 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     84 
     85 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     86 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     87 
     88 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     90 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     91 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     92 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
     93 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
     94 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
     95 
     96 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
     97 
     98 static char	  native_idle_text[16];
     99 void		(*native_idle)(void) = NULL;
    100 
    101 static int	 acpicpu_md_quirks_piix4(struct pci_attach_args *);
    102 static void	 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
    103 static void	 acpicpu_md_pstate_percent_status(void *, void *);
    104 static void	 acpicpu_md_pstate_status(void *, void *);
    105 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    106                                               uint32_t *);
    107 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    108 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    109 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    110 					        uint32_t, uint32_t);
    111 static void	 acpicpu_md_tstate_status(void *, void *);
    112 static int	 acpicpu_md_pstate_sysctl_init(void);
    113 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    114 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    115 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    116 
    117 extern struct acpicpu_softc **acpicpu_sc;
    118 static bool acpicpu_pstate_status = false;
    119 static struct sysctllog *acpicpu_log = NULL;
    120 
    121 uint32_t
    122 acpicpu_md_cap(void)
    123 {
    124 	struct cpu_info *ci = curcpu();
    125 	uint32_t val = 0;
    126 
    127 	if (cpu_vendor != CPUVENDOR_IDT &&
    128 	    cpu_vendor != CPUVENDOR_INTEL)
    129 		return val;
    130 
    131 	/*
    132 	 * Basic SMP C-states (required for _CST).
    133 	 */
    134 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    135 
    136         /*
    137 	 * If MONITOR/MWAIT is available, announce
    138 	 * support for native instructions in all C-states.
    139 	 */
    140         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    141 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    142 
    143 	/*
    144 	 * Set native P- and T-states, if available.
    145 	 */
    146         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    147 		val |= ACPICPU_PDC_P_FFH;
    148 
    149 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    150 		val |= ACPICPU_PDC_T_FFH;
    151 
    152 	return val;
    153 }
    154 
    155 uint32_t
    156 acpicpu_md_quirks(void)
    157 {
    158 	struct cpu_info *ci = curcpu();
    159 	struct pci_attach_args pa;
    160 	uint32_t family, val = 0;
    161 	uint32_t regs[4];
    162 
    163 	if (acpi_md_ncpus() == 1)
    164 		val |= ACPICPU_FLAG_C_BM;
    165 
    166 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    167 		val |= ACPICPU_FLAG_C_FFH;
    168 
    169 	/*
    170 	 * By default, assume that the local APIC timer
    171 	 * as well as TSC are stalled during C3 sleep.
    172 	 */
    173 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    174 
    175 	switch (cpu_vendor) {
    176 
    177 	case CPUVENDOR_IDT:
    178 
    179 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    180 			val |= ACPICPU_FLAG_P_FFH;
    181 
    182 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    183 			val |= ACPICPU_FLAG_T_FFH;
    184 
    185 		break;
    186 
    187 	case CPUVENDOR_INTEL:
    188 
    189 		/*
    190 		 * Bus master control and arbitration should be
    191 		 * available on all supported Intel CPUs (to be
    192 		 * sure, this is double-checked later from the
    193 		 * firmware data). These flags imply that it is
    194 		 * not necessary to flush caches before C3 state.
    195 		 */
    196 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    197 
    198 		/*
    199 		 * Check if we can use "native", MSR-based,
    200 		 * access. If not, we have to resort to I/O.
    201 		 */
    202 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    203 			val |= ACPICPU_FLAG_P_FFH;
    204 
    205 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    206 			val |= ACPICPU_FLAG_T_FFH;
    207 
    208 		/*
    209 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    210 		 * Boost are available. Also see if we might have
    211 		 * an invariant local APIC timer ("ARAT").
    212 		 */
    213 		if (cpuid_level >= 0x06) {
    214 
    215 			x86_cpuid(0x06, regs);
    216 
    217 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    218 				val |= ACPICPU_FLAG_P_HW;
    219 
    220 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    221 				val |= ACPICPU_FLAG_P_TURBO;
    222 
    223 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    224 				val &= ~ACPICPU_FLAG_C_APIC;
    225 		}
    226 
    227 		/*
    228 		 * Detect whether TSC is invariant. If it is not,
    229 		 * we keep the flag to note that TSC will not run
    230 		 * at constant rate. Depending on the CPU, this may
    231 		 * affect P- and T-state changes, but especially
    232 		 * relevant are C-states; with variant TSC, states
    233 		 * larger than C1 may completely stop the counter.
    234 		 */
    235 		x86_cpuid(0x80000000, regs);
    236 
    237 		if (regs[0] >= 0x80000007) {
    238 
    239 			x86_cpuid(0x80000007, regs);
    240 
    241 			if ((regs[3] & __BIT(8)) != 0)
    242 				val &= ~ACPICPU_FLAG_C_TSC;
    243 		}
    244 
    245 		break;
    246 
    247 	case CPUVENDOR_AMD:
    248 
    249 		x86_cpuid(0x80000000, regs);
    250 
    251 		if (regs[0] < 0x80000007)
    252 			break;
    253 
    254 		x86_cpuid(0x80000007, regs);
    255 
    256 		family = CPUID2FAMILY(ci->ci_signature);
    257 
    258 		if (family == 0xf)
    259 			family += CPUID2EXTFAMILY(ci->ci_signature);
    260 
    261     		switch (family) {
    262 
    263 		case 0x0f:
    264 
    265 			if ((regs[3] & CPUID_APM_FID) == 0)
    266 				break;
    267 
    268 			if ((regs[3] & CPUID_APM_VID) == 0)
    269 				break;
    270 
    271 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    272 			break;
    273 
    274 		case 0x10:
    275 		case 0x11:
    276 			val |= ACPICPU_FLAG_C_C1E;
    277 			/* FALLTHROUGH */
    278 
    279 		case 0x14: /* AMD Fusion */
    280 
    281 			/*
    282 			 * Like with Intel, detect invariant TSC,
    283 			 * MSR-based P-states, and AMD's "turbo"
    284 			 * (Core Performance Boost), respectively.
    285 			 */
    286 			if ((regs[3] & CPUID_APM_TSC) != 0)
    287 				val &= ~ACPICPU_FLAG_C_TSC;
    288 
    289 			if ((regs[3] & CPUID_APM_HWP) != 0)
    290 				val |= ACPICPU_FLAG_P_FFH;
    291 
    292 			if ((regs[3] & CPUID_APM_CPB) != 0)
    293 				val |= ACPICPU_FLAG_P_TURBO;
    294 
    295 			/*
    296 			 * Also check for APERF and MPERF,
    297 			 * first available in the family 10h.
    298 			 */
    299 			if (cpuid_level >= 0x06) {
    300 
    301 				x86_cpuid(0x00000006, regs);
    302 
    303 				if ((regs[2] & __BIT(0)) != 0)
    304 					val |= ACPICPU_FLAG_P_HW;
    305 			}
    306 
    307 			break;
    308 		}
    309 
    310 		break;
    311 	}
    312 
    313 	/*
    314 	 * There are several erratums for PIIX4.
    315 	 */
    316 	if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
    317 		val |= ACPICPU_FLAG_PIIX4;
    318 
    319 	return val;
    320 }
    321 
    322 static int
    323 acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
    324 {
    325 
    326 	/*
    327 	 * XXX: The pci_find_device(9) function only
    328 	 *	deals with attached devices. Change this
    329 	 *	to use something like pci_device_foreach().
    330 	 */
    331 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    332 		return 0;
    333 
    334 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    335 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    336 		return 1;
    337 
    338 	return 0;
    339 }
    340 
    341 void
    342 acpicpu_md_quirks_c1e(void)
    343 {
    344 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    345 	uint64_t val;
    346 
    347 	val = rdmsr(MSR_CMPHALT);
    348 
    349 	if ((val & c1e) != 0)
    350 		wrmsr(MSR_CMPHALT, val & ~c1e);
    351 }
    352 
    353 int
    354 acpicpu_md_idle_start(struct acpicpu_softc *sc)
    355 {
    356 	const size_t size = sizeof(native_idle_text);
    357 	struct acpicpu_cstate *cs;
    358 	bool ipi = false;
    359 	int i;
    360 
    361 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    362 
    363 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    364 
    365 		cs = &sc->sc_cstate[i];
    366 
    367 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    368 			ipi = true;
    369 			break;
    370 		}
    371 	}
    372 
    373 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    374 
    375 	return 0;
    376 }
    377 
    378 int
    379 acpicpu_md_idle_stop(void)
    380 {
    381 	uint64_t xc;
    382 	bool ipi;
    383 
    384 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    385 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    386 
    387 	/*
    388 	 * Run a cross-call to ensure that all CPUs are
    389 	 * out from the ACPI idle-loop before detachment.
    390 	 */
    391 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    392 	xc_wait(xc);
    393 
    394 	return 0;
    395 }
    396 
    397 /*
    398  * Called with interrupts disabled.
    399  * Caller should enable interrupts after return.
    400  */
    401 void
    402 acpicpu_md_idle_enter(int method, int state)
    403 {
    404 	struct cpu_info *ci = curcpu();
    405 
    406 	switch (method) {
    407 
    408 	case ACPICPU_C_STATE_FFH:
    409 
    410 		x86_enable_intr();
    411 		x86_monitor(&ci->ci_want_resched, 0, 0);
    412 
    413 		if (__predict_false(ci->ci_want_resched != 0))
    414 			return;
    415 
    416 		x86_mwait((state - 1) << 4, 0);
    417 		break;
    418 
    419 	case ACPICPU_C_STATE_HALT:
    420 
    421 		if (__predict_false(ci->ci_want_resched != 0))
    422 			return;
    423 
    424 		x86_stihlt();
    425 		break;
    426 	}
    427 }
    428 
    429 int
    430 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    431 {
    432 	const uint64_t est = __BIT(16);
    433 	uint64_t val;
    434 
    435 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
    436 		return ENODEV;
    437 
    438 	switch (cpu_vendor) {
    439 
    440 	case CPUVENDOR_IDT:
    441 	case CPUVENDOR_INTEL:
    442 
    443 		/*
    444 		 * Make sure EST is enabled.
    445 		 */
    446 		val = rdmsr(MSR_MISC_ENABLE);
    447 
    448 		if ((val & est) == 0) {
    449 
    450 			val |= est;
    451 
    452 			wrmsr(MSR_MISC_ENABLE, val);
    453 			val = rdmsr(MSR_MISC_ENABLE);
    454 
    455 			if ((val & est) == 0)
    456 				return ENOTTY;
    457 		}
    458 	}
    459 
    460 	/*
    461 	 * Reset the APERF and MPERF counters.
    462 	 */
    463 	if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
    464 		acpicpu_md_pstate_percent_reset(sc);
    465 
    466 	return acpicpu_md_pstate_sysctl_init();
    467 }
    468 
    469 int
    470 acpicpu_md_pstate_stop(void)
    471 {
    472 
    473 	if (acpicpu_log != NULL)
    474 		sysctl_teardown(&acpicpu_log);
    475 
    476 	return 0;
    477 }
    478 
    479 int
    480 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    481 {
    482 	struct acpicpu_pstate *ps, msr;
    483 	struct cpu_info *ci = curcpu();
    484 	uint32_t family, i = 0;
    485 
    486 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    487 
    488 	switch (cpu_vendor) {
    489 
    490 	case CPUVENDOR_IDT:
    491 	case CPUVENDOR_INTEL:
    492 
    493 		/*
    494 		 * If the so-called Turbo Boost is present,
    495 		 * the P0-state is always the "turbo state".
    496 		 *
    497 		 * For discussion, see:
    498 		 *
    499 		 *	Intel Corporation: Intel Turbo Boost Technology
    500 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    501 		 *	Based Processors. White Paper, November 2008.
    502 		 */
    503 		if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
    504 			sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
    505 
    506 		msr.ps_control_addr = MSR_PERF_CTL;
    507 		msr.ps_control_mask = __BITS(0, 15);
    508 
    509 		msr.ps_status_addr  = MSR_PERF_STATUS;
    510 		msr.ps_status_mask  = __BITS(0, 15);
    511 		break;
    512 
    513 	case CPUVENDOR_AMD:
    514 
    515 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    516 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    517 
    518 		family = CPUID2FAMILY(ci->ci_signature);
    519 
    520 		if (family == 0xf)
    521 			family += CPUID2EXTFAMILY(ci->ci_signature);
    522 
    523 		switch (family) {
    524 
    525 		case 0x0f:
    526 			msr.ps_control_addr = MSR_0FH_CONTROL;
    527 			msr.ps_status_addr  = MSR_0FH_STATUS;
    528 			break;
    529 
    530 		case 0x10:
    531 		case 0x11:
    532 		case 0x14: /* AMD Fusion */
    533 			msr.ps_control_addr = MSR_10H_CONTROL;
    534 			msr.ps_control_mask = __BITS(0, 2);
    535 
    536 			msr.ps_status_addr  = MSR_10H_STATUS;
    537 			msr.ps_status_mask  = __BITS(0, 2);
    538 			break;
    539 
    540 		default:
    541 
    542 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    543 				return EOPNOTSUPP;
    544 		}
    545 
    546 		break;
    547 
    548 	default:
    549 		return ENODEV;
    550 	}
    551 
    552 	/*
    553 	 * Fill the P-state structures with MSR addresses that are
    554 	 * known to be correct. If we do not know the addresses,
    555 	 * leave the values intact. If a vendor uses XPSS, we do
    556 	 * not necessarily need to do anything to support new CPUs.
    557 	 */
    558 	while (i < sc->sc_pstate_count) {
    559 
    560 		ps = &sc->sc_pstate[i];
    561 
    562 		if (msr.ps_flags != 0)
    563 			ps->ps_flags |= msr.ps_flags;
    564 
    565 		if (msr.ps_status_addr != 0)
    566 			ps->ps_status_addr = msr.ps_status_addr;
    567 
    568 		if (msr.ps_status_mask != 0)
    569 			ps->ps_status_mask = msr.ps_status_mask;
    570 
    571 		if (msr.ps_control_addr != 0)
    572 			ps->ps_control_addr = msr.ps_control_addr;
    573 
    574 		if (msr.ps_control_mask != 0)
    575 			ps->ps_control_mask = msr.ps_control_mask;
    576 
    577 		i++;
    578 	}
    579 
    580 	return 0;
    581 }
    582 
    583 /*
    584  * Returns the percentage of the actual frequency in
    585  * terms of the maximum frequency of the calling CPU
    586  * since the last call. A value zero implies an error.
    587  */
    588 uint8_t
    589 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
    590 {
    591 	struct cpu_info *ci = sc->sc_ci;
    592 	uint64_t aperf, mperf;
    593 	uint64_t xc, rv = 0;
    594 
    595 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
    596 		return 0;
    597 
    598 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
    599 		return 0;
    600 
    601 	/*
    602 	 * Read the IA32_APERF and IA32_MPERF counters. The first
    603 	 * increments at the rate of the fixed maximum frequency
    604 	 * configured during the boot, whereas APERF counts at the
    605 	 * rate of the actual frequency. Note that the MSRs must be
    606 	 * read without delay, and that only the ratio between
    607 	 * IA32_APERF and IA32_MPERF is architecturally defined.
    608 	 *
    609 	 * For further details, refer to:
    610 	 *
    611 	 *	Intel Corporation: Intel 64 and IA-32 Architectures
    612 	 *	Software Developer's Manual. Section 13.2, Volume 3A:
    613 	 *	System Programming Guide, Part 1. July, 2008.
    614 	 *
    615 	 *	Advanced Micro Devices: BIOS and Kernel Developer's
    616 	 *	Guide (BKDG) for AMD Family 10h Processors. Section
    617 	 *	2.4.5, Revision 3.48, April 2010.
    618 	 */
    619 	x86_disable_intr();
    620 
    621 	aperf = sc->sc_pstate_aperf;
    622 	mperf = sc->sc_pstate_mperf;
    623 
    624 	xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
    625 	xc_wait(xc);
    626 
    627 	x86_enable_intr();
    628 
    629 	aperf = sc->sc_pstate_aperf - aperf;
    630 	mperf = sc->sc_pstate_mperf - mperf;
    631 
    632 	if (__predict_true(mperf != 0))
    633 		rv = (aperf * 100) / mperf;
    634 
    635 	return rv;
    636 }
    637 
    638 static void
    639 acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
    640 {
    641 	struct acpicpu_softc *sc = arg1;
    642 
    643 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    644 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    645 }
    646 
    647 static void
    648 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
    649 {
    650 
    651 	KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
    652 	KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
    653 
    654 	wrmsr(MSR_APERF, 0);
    655 	wrmsr(MSR_MPERF, 0);
    656 
    657 	sc->sc_pstate_aperf = 0;
    658 	sc->sc_pstate_mperf = 0;
    659 }
    660 
    661 int
    662 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    663 {
    664 	struct acpicpu_pstate *ps = NULL;
    665 	uint64_t val;
    666 	uint32_t i;
    667 
    668 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    669 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    670 
    671 	for (i = 0; i < sc->sc_pstate_count; i++) {
    672 
    673 		ps = &sc->sc_pstate[i];
    674 
    675 		if (__predict_true(ps->ps_freq != 0))
    676 			break;
    677 	}
    678 
    679 	if (__predict_false(ps == NULL))
    680 		return ENODEV;
    681 
    682 	if (__predict_false(ps->ps_status_addr == 0))
    683 		return EINVAL;
    684 
    685 	val = rdmsr(ps->ps_status_addr);
    686 
    687 	if (__predict_true(ps->ps_status_mask != 0))
    688 		val = val & ps->ps_status_mask;
    689 
    690 	for (i = 0; i < sc->sc_pstate_count; i++) {
    691 
    692 		ps = &sc->sc_pstate[i];
    693 
    694 		if (__predict_false(ps->ps_freq == 0))
    695 			continue;
    696 
    697 		if (val == ps->ps_status) {
    698 			*freq = ps->ps_freq;
    699 			return 0;
    700 		}
    701 	}
    702 
    703 	return EIO;
    704 }
    705 
    706 int
    707 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    708 {
    709 	struct msr_rw_info msr;
    710 	uint64_t xc;
    711 	int rv = 0;
    712 
    713 	if (__predict_false(ps->ps_control_addr == 0))
    714 		return EINVAL;
    715 
    716 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    717 		return acpicpu_md_pstate_fidvid_set(ps);
    718 
    719 	msr.msr_read  = false;
    720 	msr.msr_type  = ps->ps_control_addr;
    721 	msr.msr_value = ps->ps_control;
    722 
    723 	if (__predict_true(ps->ps_control_mask != 0)) {
    724 		msr.msr_mask = ps->ps_control_mask;
    725 		msr.msr_read = true;
    726 	}
    727 
    728 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    729 	xc_wait(xc);
    730 
    731 	/*
    732 	 * Due several problems, we bypass the
    733 	 * relatively expensive status check.
    734 	 */
    735 	if (acpicpu_pstate_status != true) {
    736 		DELAY(ps->ps_latency);
    737 		return 0;
    738 	}
    739 
    740 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    741 	xc_wait(xc);
    742 
    743 	return rv;
    744 }
    745 
    746 static void
    747 acpicpu_md_pstate_status(void *arg1, void *arg2)
    748 {
    749 	struct acpicpu_pstate *ps = arg1;
    750 	uint64_t val;
    751 	int i;
    752 
    753 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    754 
    755 		val = rdmsr(ps->ps_status_addr);
    756 
    757 		if (__predict_true(ps->ps_status_mask != 0))
    758 			val = val & ps->ps_status_mask;
    759 
    760 		if (val == ps->ps_status)
    761 			return;
    762 
    763 		DELAY(ps->ps_latency);
    764 	}
    765 
    766 	*(uintptr_t *)arg2 = EAGAIN;
    767 }
    768 
    769 static int
    770 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    771 {
    772 	struct acpicpu_pstate *ps;
    773 	uint32_t fid, i, vid;
    774 	uint32_t cfid, cvid;
    775 	int rv;
    776 
    777 	/*
    778 	 * AMD family 0Fh needs special treatment.
    779 	 * While it wants to use ACPI, it does not
    780 	 * comply with the ACPI specifications.
    781 	 */
    782 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    783 
    784 	if (rv != 0)
    785 		return rv;
    786 
    787 	for (i = 0; i < sc->sc_pstate_count; i++) {
    788 
    789 		ps = &sc->sc_pstate[i];
    790 
    791 		if (__predict_false(ps->ps_freq == 0))
    792 			continue;
    793 
    794 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    795 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    796 
    797 		if (cfid == fid && cvid == vid) {
    798 			*freq = ps->ps_freq;
    799 			return 0;
    800 		}
    801 	}
    802 
    803 	return EIO;
    804 }
    805 
    806 static int
    807 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    808 {
    809 	const uint64_t ctrl = ps->ps_control;
    810 	uint32_t cfid, cvid, fid, i, irt;
    811 	uint32_t pll, vco_cfid, vco_fid;
    812 	uint32_t val, vid, vst;
    813 	int rv;
    814 
    815 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    816 
    817 	if (rv != 0)
    818 		return rv;
    819 
    820 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    821 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    822 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    823 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    824 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    825 
    826 	vst = vst * 20;
    827 	pll = pll * 1000 / 5;
    828 	irt = 10 * __BIT(irt);
    829 
    830 	/*
    831 	 * Phase 1.
    832 	 */
    833 	while (cvid > vid) {
    834 
    835 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    836 		val = (val > cvid) ? 0 : cvid - val;
    837 
    838 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    839 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    840 
    841 		if (rv != 0)
    842 			return rv;
    843 	}
    844 
    845 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    846 
    847 	for (; i > 0 && cvid > 0; --i) {
    848 
    849 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    850 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    851 
    852 		if (rv != 0)
    853 			return rv;
    854 	}
    855 
    856 	/*
    857 	 * Phase 2.
    858 	 */
    859 	if (cfid != fid) {
    860 
    861 		vco_fid  = FID_TO_VCO_FID(fid);
    862 		vco_cfid = FID_TO_VCO_FID(cfid);
    863 
    864 		while (abs(vco_fid - vco_cfid) > 2) {
    865 
    866 			if (fid <= cfid)
    867 				val = cfid - 2;
    868 			else {
    869 				val = (cfid > 6) ? cfid + 2 :
    870 				    FID_TO_VCO_FID(cfid) + 2;
    871 			}
    872 
    873 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    874 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    875 
    876 			if (rv != 0)
    877 				return rv;
    878 
    879 			vco_cfid = FID_TO_VCO_FID(cfid);
    880 		}
    881 
    882 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    883 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    884 
    885 		if (rv != 0)
    886 			return rv;
    887 	}
    888 
    889 	/*
    890 	 * Phase 3.
    891 	 */
    892 	if (cvid != vid) {
    893 
    894 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    895 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    896 
    897 		if (rv != 0)
    898 			return rv;
    899 	}
    900 
    901 	if (cfid != fid || cvid != vid)
    902 		return EIO;
    903 
    904 	return 0;
    905 }
    906 
    907 static int
    908 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    909 {
    910 	int i = ACPICPU_P_STATE_RETRY * 100;
    911 	uint64_t val;
    912 
    913 	do {
    914 		val = rdmsr(MSR_0FH_STATUS);
    915 
    916 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    917 
    918 	if (i == 0)
    919 		return EAGAIN;
    920 
    921 	if (cfid != NULL)
    922 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    923 
    924 	if (cvid != NULL)
    925 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    926 
    927 	return 0;
    928 }
    929 
    930 static void
    931 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    932     uint32_t vid, uint32_t cnt, uint32_t tmo)
    933 {
    934 	struct msr_rw_info msr;
    935 	uint64_t xc;
    936 
    937 	msr.msr_read  = false;
    938 	msr.msr_type  = MSR_0FH_CONTROL;
    939 	msr.msr_value = 0;
    940 
    941 	msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    942 	msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    943 	msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    944 	msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    945 
    946 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    947 	xc_wait(xc);
    948 
    949 	DELAY(tmo);
    950 }
    951 
    952 int
    953 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    954 {
    955 	struct acpicpu_tstate *ts;
    956 	uint64_t val;
    957 	uint32_t i;
    958 
    959 	val = rdmsr(MSR_THERM_CONTROL);
    960 
    961 	for (i = 0; i < sc->sc_tstate_count; i++) {
    962 
    963 		ts = &sc->sc_tstate[i];
    964 
    965 		if (ts->ts_percent == 0)
    966 			continue;
    967 
    968 		if (val == ts->ts_status) {
    969 			*percent = ts->ts_percent;
    970 			return 0;
    971 		}
    972 	}
    973 
    974 	return EIO;
    975 }
    976 
    977 int
    978 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    979 {
    980 	struct msr_rw_info msr;
    981 	uint64_t xc;
    982 	int rv = 0;
    983 
    984 	msr.msr_read  = true;
    985 	msr.msr_type  = MSR_THERM_CONTROL;
    986 	msr.msr_value = ts->ts_control;
    987 	msr.msr_mask = __BITS(1, 4);
    988 
    989 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    990 	xc_wait(xc);
    991 
    992 	if (ts->ts_status == 0) {
    993 		DELAY(ts->ts_latency);
    994 		return 0;
    995 	}
    996 
    997 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    998 	xc_wait(xc);
    999 
   1000 	return rv;
   1001 }
   1002 
   1003 static void
   1004 acpicpu_md_tstate_status(void *arg1, void *arg2)
   1005 {
   1006 	struct acpicpu_tstate *ts = arg1;
   1007 	uint64_t val;
   1008 	int i;
   1009 
   1010 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1011 
   1012 		val = rdmsr(MSR_THERM_CONTROL);
   1013 
   1014 		if (val == ts->ts_status)
   1015 			return;
   1016 
   1017 		DELAY(ts->ts_latency);
   1018 	}
   1019 
   1020 	*(uintptr_t *)arg2 = EAGAIN;
   1021 }
   1022 
   1023 /*
   1024  * A kludge for backwards compatibility.
   1025  */
   1026 static int
   1027 acpicpu_md_pstate_sysctl_init(void)
   1028 {
   1029 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1030 	const char *str;
   1031 	int rv;
   1032 
   1033 	switch (cpu_vendor) {
   1034 
   1035 	case CPUVENDOR_IDT:
   1036 	case CPUVENDOR_INTEL:
   1037 		str = "est";
   1038 		break;
   1039 
   1040 	case CPUVENDOR_AMD:
   1041 		str = "powernow";
   1042 		break;
   1043 
   1044 	default:
   1045 		return ENODEV;
   1046 	}
   1047 
   1048 
   1049 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1050 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1051 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1052 
   1053 	if (rv != 0)
   1054 		goto fail;
   1055 
   1056 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1057 	    0, CTLTYPE_NODE, str, NULL,
   1058 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1059 
   1060 	if (rv != 0)
   1061 		goto fail;
   1062 
   1063 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1064 	    0, CTLTYPE_NODE, "frequency", NULL,
   1065 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1066 
   1067 	if (rv != 0)
   1068 		goto fail;
   1069 
   1070 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1071 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1072 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1073 
   1074 	if (rv != 0)
   1075 		goto fail;
   1076 
   1077 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1078 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1079 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1080 
   1081 	if (rv != 0)
   1082 		goto fail;
   1083 
   1084 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1085 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1086 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1087 
   1088 	if (rv != 0)
   1089 		goto fail;
   1090 
   1091 	return 0;
   1092 
   1093 fail:
   1094 	if (acpicpu_log != NULL) {
   1095 		sysctl_teardown(&acpicpu_log);
   1096 		acpicpu_log = NULL;
   1097 	}
   1098 
   1099 	return rv;
   1100 }
   1101 
   1102 static int
   1103 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1104 {
   1105 	struct cpu_info *ci = curcpu();
   1106 	struct acpicpu_softc *sc;
   1107 	struct sysctlnode node;
   1108 	uint32_t freq;
   1109 	int err;
   1110 
   1111 	sc = acpicpu_sc[ci->ci_acpiid];
   1112 
   1113 	if (sc == NULL)
   1114 		return ENXIO;
   1115 
   1116 	err = acpicpu_pstate_get(sc, &freq);
   1117 
   1118 	if (err != 0)
   1119 		return err;
   1120 
   1121 	node = *rnode;
   1122 	node.sysctl_data = &freq;
   1123 
   1124 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1125 
   1126 	if (err != 0 || newp == NULL)
   1127 		return err;
   1128 
   1129 	return 0;
   1130 }
   1131 
   1132 static int
   1133 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1134 {
   1135 	struct cpu_info *ci = curcpu();
   1136 	struct acpicpu_softc *sc;
   1137 	struct sysctlnode node;
   1138 	uint32_t freq;
   1139 	int err;
   1140 
   1141 	sc = acpicpu_sc[ci->ci_acpiid];
   1142 
   1143 	if (sc == NULL)
   1144 		return ENXIO;
   1145 
   1146 	err = acpicpu_pstate_get(sc, &freq);
   1147 
   1148 	if (err != 0)
   1149 		return err;
   1150 
   1151 	node = *rnode;
   1152 	node.sysctl_data = &freq;
   1153 
   1154 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1155 
   1156 	if (err != 0 || newp == NULL)
   1157 		return err;
   1158 
   1159 	err = acpicpu_pstate_set(sc, freq);
   1160 
   1161 	if (err != 0)
   1162 		return err;
   1163 
   1164 	return 0;
   1165 }
   1166 
   1167 static int
   1168 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1169 {
   1170 	struct cpu_info *ci = curcpu();
   1171 	struct acpicpu_softc *sc;
   1172 	struct sysctlnode node;
   1173 	char buf[1024];
   1174 	size_t len;
   1175 	uint32_t i;
   1176 	int err;
   1177 
   1178 	sc = acpicpu_sc[ci->ci_acpiid];
   1179 
   1180 	if (sc == NULL)
   1181 		return ENXIO;
   1182 
   1183 	(void)memset(&buf, 0, sizeof(buf));
   1184 
   1185 	mutex_enter(&sc->sc_mtx);
   1186 
   1187 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1188 
   1189 		if (sc->sc_pstate[i].ps_freq == 0)
   1190 			continue;
   1191 
   1192 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1193 		    sc->sc_pstate[i].ps_freq,
   1194 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1195 	}
   1196 
   1197 	mutex_exit(&sc->sc_mtx);
   1198 
   1199 	node = *rnode;
   1200 	node.sysctl_data = buf;
   1201 
   1202 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1203 
   1204 	if (err != 0 || newp == NULL)
   1205 		return err;
   1206 
   1207 	return 0;
   1208 }
   1209 
   1210