acpi_cpu_md.c revision 1.44 1 /* $NetBSD: acpi_cpu_md.c,v 1.44 2011/02/25 16:54:36 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.44 2011/02/25 16:54:36 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <machine/acpi_machdep.h>
52
53 /*
54 * AMD C1E.
55 */
56 #define MSR_CMPHALT 0xc0010055
57
58 #define MSR_CMPHALT_SMI __BIT(27)
59 #define MSR_CMPHALT_C1E __BIT(28)
60 #define MSR_CMPHALT_BMSTS __BIT(29)
61
62 /*
63 * AMD families 10h, 11h, and 14h
64 */
65 #define MSR_10H_LIMIT 0xc0010061
66 #define MSR_10H_CONTROL 0xc0010062
67 #define MSR_10H_STATUS 0xc0010063
68 #define MSR_10H_CONFIG 0xc0010064
69
70 /*
71 * AMD family 0Fh.
72 */
73 #define MSR_0FH_CONTROL 0xc0010041
74 #define MSR_0FH_STATUS 0xc0010042
75
76 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
77 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
78 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
79
80 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
81 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
82 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
83 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
84
85 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
86 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
87
88 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
89 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
90 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
91 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
92 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
93 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
94 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
95
96 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97
98 static char native_idle_text[16];
99 void (*native_idle)(void) = NULL;
100
101 static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
102 static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
103 static void acpicpu_md_pstate_percent_status(void *, void *);
104 static void acpicpu_md_pstate_status(void *, void *);
105 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
106 uint32_t *);
107 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
108 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
109 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
110 uint32_t, uint32_t);
111 static void acpicpu_md_tstate_status(void *, void *);
112 static int acpicpu_md_pstate_sysctl_init(void);
113 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
114 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
115 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
116
117 extern struct acpicpu_softc **acpicpu_sc;
118 static bool acpicpu_pstate_status = false;
119 static struct sysctllog *acpicpu_log = NULL;
120
121 uint32_t
122 acpicpu_md_cap(void)
123 {
124 struct cpu_info *ci = curcpu();
125 uint32_t regs[4];
126 uint32_t val = 0;
127
128 if (cpu_vendor != CPUVENDOR_IDT &&
129 cpu_vendor != CPUVENDOR_INTEL)
130 return val;
131
132 /*
133 * Basic SMP C-states (required for _CST).
134 */
135 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
136
137 /*
138 * If MONITOR/MWAIT is available, announce
139 * support for native instructions in all C-states.
140 */
141 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
142 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
143
144 /*
145 * Set native P- and T-states, if available.
146 */
147 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
148 val |= ACPICPU_PDC_P_FFH;
149
150 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
151 val |= ACPICPU_PDC_T_FFH;
152
153 /*
154 * Declare support for APERF and MPERF.
155 */
156 if (cpuid_level >= 0x06) {
157
158 x86_cpuid(0x00000006, regs);
159
160 if ((regs[2] & CPUID_DSPM_HWF) != 0)
161 val |= ACPICPU_PDC_P_HW;
162 }
163
164 return val;
165 }
166
167 uint32_t
168 acpicpu_md_flags(void)
169 {
170 struct cpu_info *ci = curcpu();
171 struct pci_attach_args pa;
172 uint32_t family, val = 0;
173 uint32_t regs[4];
174
175 if (acpi_md_ncpus() == 1)
176 val |= ACPICPU_FLAG_C_BM;
177
178 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
179 val |= ACPICPU_FLAG_C_FFH;
180
181 /*
182 * By default, assume that the local APIC timer
183 * as well as TSC are stalled during C3 sleep.
184 */
185 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
186
187 switch (cpu_vendor) {
188
189 case CPUVENDOR_IDT:
190
191 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
192 val |= ACPICPU_FLAG_P_FFH;
193
194 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
195 val |= ACPICPU_FLAG_T_FFH;
196
197 break;
198
199 case CPUVENDOR_INTEL:
200
201 /*
202 * Bus master control and arbitration should be
203 * available on all supported Intel CPUs (to be
204 * sure, this is double-checked later from the
205 * firmware data). These flags imply that it is
206 * not necessary to flush caches before C3 state.
207 */
208 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
209
210 /*
211 * Check if we can use "native", MSR-based,
212 * access. If not, we have to resort to I/O.
213 */
214 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
215 val |= ACPICPU_FLAG_P_FFH;
216
217 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
218 val |= ACPICPU_FLAG_T_FFH;
219
220 /*
221 * Check whether MSR_APERF, MSR_MPERF, and Turbo
222 * Boost are available. Also see if we might have
223 * an invariant local APIC timer ("ARAT").
224 */
225 if (cpuid_level >= 0x06) {
226
227 x86_cpuid(0x00000006, regs);
228
229 if ((regs[2] & CPUID_DSPM_HWF) != 0)
230 val |= ACPICPU_FLAG_P_HW;
231
232 if ((regs[0] & CPUID_DSPM_IDA) != 0)
233 val |= ACPICPU_FLAG_P_TURBO;
234
235 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
236 val &= ~ACPICPU_FLAG_C_APIC;
237 }
238
239 /*
240 * Detect whether TSC is invariant. If it is not,
241 * we keep the flag to note that TSC will not run
242 * at constant rate. Depending on the CPU, this may
243 * affect P- and T-state changes, but especially
244 * relevant are C-states; with variant TSC, states
245 * larger than C1 may completely stop the counter.
246 */
247 x86_cpuid(0x80000000, regs);
248
249 if (regs[0] >= 0x80000007) {
250
251 x86_cpuid(0x80000007, regs);
252
253 if ((regs[3] & __BIT(8)) != 0)
254 val &= ~ACPICPU_FLAG_C_TSC;
255 }
256
257 break;
258
259 case CPUVENDOR_AMD:
260
261 x86_cpuid(0x80000000, regs);
262
263 if (regs[0] < 0x80000007)
264 break;
265
266 x86_cpuid(0x80000007, regs);
267
268 family = CPUID2FAMILY(ci->ci_signature);
269
270 if (family == 0xf)
271 family += CPUID2EXTFAMILY(ci->ci_signature);
272
273 switch (family) {
274
275 case 0x0f:
276
277 if ((regs[3] & CPUID_APM_FID) == 0)
278 break;
279
280 if ((regs[3] & CPUID_APM_VID) == 0)
281 break;
282
283 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
284 break;
285
286 case 0x10:
287 case 0x11:
288 val |= ACPICPU_FLAG_C_C1E;
289 /* FALLTHROUGH */
290
291 case 0x14: /* AMD Fusion */
292
293 /*
294 * Like with Intel, detect invariant TSC,
295 * MSR-based P-states, and AMD's "turbo"
296 * (Core Performance Boost), respectively.
297 */
298 if ((regs[3] & CPUID_APM_TSC) != 0)
299 val &= ~ACPICPU_FLAG_C_TSC;
300
301 if ((regs[3] & CPUID_APM_HWP) != 0)
302 val |= ACPICPU_FLAG_P_FFH;
303
304 if ((regs[3] & CPUID_APM_CPB) != 0)
305 val |= ACPICPU_FLAG_P_TURBO;
306
307 /*
308 * Also check for APERF and MPERF,
309 * first available in the family 10h.
310 */
311 if (cpuid_level >= 0x06) {
312
313 x86_cpuid(0x00000006, regs);
314
315 if ((regs[2] & CPUID_DSPM_HWF) != 0)
316 val |= ACPICPU_FLAG_P_HW;
317 }
318
319 break;
320 }
321
322 break;
323 }
324
325 /*
326 * There are several erratums for PIIX4.
327 */
328 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
329 val |= ACPICPU_FLAG_PIIX4;
330
331 return val;
332 }
333
334 static int
335 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
336 {
337
338 /*
339 * XXX: The pci_find_device(9) function only
340 * deals with attached devices. Change this
341 * to use something like pci_device_foreach().
342 */
343 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
344 return 0;
345
346 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
347 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
348 return 1;
349
350 return 0;
351 }
352
353 void
354 acpicpu_md_quirk_c1e(void)
355 {
356 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
357 uint64_t val;
358
359 val = rdmsr(MSR_CMPHALT);
360
361 if ((val & c1e) != 0)
362 wrmsr(MSR_CMPHALT, val & ~c1e);
363 }
364
365 int
366 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
367 {
368 const size_t size = sizeof(native_idle_text);
369 struct acpicpu_cstate *cs;
370 bool ipi = false;
371 int i;
372
373 x86_cpu_idle_get(&native_idle, native_idle_text, size);
374
375 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
376
377 cs = &sc->sc_cstate[i];
378
379 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
380 ipi = true;
381 break;
382 }
383 }
384
385 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
386
387 return 0;
388 }
389
390 int
391 acpicpu_md_cstate_stop(void)
392 {
393 uint64_t xc;
394 bool ipi;
395
396 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
397 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
398
399 /*
400 * Run a cross-call to ensure that all CPUs are
401 * out from the ACPI idle-loop before detachment.
402 */
403 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
404 xc_wait(xc);
405
406 return 0;
407 }
408
409 /*
410 * Called with interrupts disabled.
411 * Caller should enable interrupts after return.
412 */
413 void
414 acpicpu_md_cstate_enter(int method, int state)
415 {
416 struct cpu_info *ci = curcpu();
417
418 switch (method) {
419
420 case ACPICPU_C_STATE_FFH:
421
422 x86_enable_intr();
423 x86_monitor(&ci->ci_want_resched, 0, 0);
424
425 if (__predict_false(ci->ci_want_resched != 0))
426 return;
427
428 x86_mwait((state - 1) << 4, 0);
429 break;
430
431 case ACPICPU_C_STATE_HALT:
432
433 if (__predict_false(ci->ci_want_resched != 0))
434 return;
435
436 x86_stihlt();
437 break;
438 }
439 }
440
441 int
442 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
443 {
444 const uint64_t est = __BIT(16);
445 uint64_t val;
446
447 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
448 return ENODEV;
449
450 switch (cpu_vendor) {
451
452 case CPUVENDOR_IDT:
453 case CPUVENDOR_INTEL:
454
455 /*
456 * Make sure EST is enabled.
457 */
458 val = rdmsr(MSR_MISC_ENABLE);
459
460 if ((val & est) == 0) {
461
462 val |= est;
463
464 wrmsr(MSR_MISC_ENABLE, val);
465 val = rdmsr(MSR_MISC_ENABLE);
466
467 if ((val & est) == 0)
468 return ENOTTY;
469 }
470 }
471
472 /*
473 * Reset the APERF and MPERF counters.
474 */
475 if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
476 acpicpu_md_pstate_percent_reset(sc);
477
478 return acpicpu_md_pstate_sysctl_init();
479 }
480
481 int
482 acpicpu_md_pstate_stop(void)
483 {
484
485 if (acpicpu_log != NULL)
486 sysctl_teardown(&acpicpu_log);
487
488 return 0;
489 }
490
491 int
492 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
493 {
494 struct acpicpu_pstate *ps, msr;
495 struct cpu_info *ci = curcpu();
496 uint32_t family, i = 0;
497
498 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
499
500 switch (cpu_vendor) {
501
502 case CPUVENDOR_IDT:
503 case CPUVENDOR_INTEL:
504
505 /*
506 * If the so-called Turbo Boost is present,
507 * the P0-state is always the "turbo state".
508 *
509 * For discussion, see:
510 *
511 * Intel Corporation: Intel Turbo Boost Technology
512 * in Intel Core(tm) Microarchitectures (Nehalem)
513 * Based Processors. White Paper, November 2008.
514 */
515 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
516 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
517
518 msr.ps_control_addr = MSR_PERF_CTL;
519 msr.ps_control_mask = __BITS(0, 15);
520
521 msr.ps_status_addr = MSR_PERF_STATUS;
522 msr.ps_status_mask = __BITS(0, 15);
523 break;
524
525 case CPUVENDOR_AMD:
526
527 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
528 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
529
530 family = CPUID2FAMILY(ci->ci_signature);
531
532 if (family == 0xf)
533 family += CPUID2EXTFAMILY(ci->ci_signature);
534
535 switch (family) {
536
537 case 0x0f:
538 msr.ps_control_addr = MSR_0FH_CONTROL;
539 msr.ps_status_addr = MSR_0FH_STATUS;
540 break;
541
542 case 0x10:
543 case 0x11:
544 case 0x14: /* AMD Fusion */
545 msr.ps_control_addr = MSR_10H_CONTROL;
546 msr.ps_control_mask = __BITS(0, 2);
547
548 msr.ps_status_addr = MSR_10H_STATUS;
549 msr.ps_status_mask = __BITS(0, 2);
550 break;
551
552 default:
553
554 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
555 return EOPNOTSUPP;
556 }
557
558 break;
559
560 default:
561 return ENODEV;
562 }
563
564 /*
565 * Fill the P-state structures with MSR addresses that are
566 * known to be correct. If we do not know the addresses,
567 * leave the values intact. If a vendor uses XPSS, we do
568 * not necessarily need to do anything to support new CPUs.
569 */
570 while (i < sc->sc_pstate_count) {
571
572 ps = &sc->sc_pstate[i];
573
574 if (msr.ps_flags != 0)
575 ps->ps_flags |= msr.ps_flags;
576
577 if (msr.ps_status_addr != 0)
578 ps->ps_status_addr = msr.ps_status_addr;
579
580 if (msr.ps_status_mask != 0)
581 ps->ps_status_mask = msr.ps_status_mask;
582
583 if (msr.ps_control_addr != 0)
584 ps->ps_control_addr = msr.ps_control_addr;
585
586 if (msr.ps_control_mask != 0)
587 ps->ps_control_mask = msr.ps_control_mask;
588
589 i++;
590 }
591
592 return 0;
593 }
594
595 /*
596 * Returns the percentage of the actual frequency in
597 * terms of the maximum frequency of the calling CPU
598 * since the last call. A value zero implies an error.
599 */
600 uint8_t
601 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
602 {
603 struct cpu_info *ci = sc->sc_ci;
604 uint64_t aperf, mperf;
605 uint64_t xc, rv = 0;
606
607 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
608 return 0;
609
610 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
611 return 0;
612
613 /*
614 * Read the IA32_APERF and IA32_MPERF counters. The first
615 * increments at the rate of the fixed maximum frequency
616 * configured during the boot, whereas APERF counts at the
617 * rate of the actual frequency. Note that the MSRs must be
618 * read without delay, and that only the ratio between
619 * IA32_APERF and IA32_MPERF is architecturally defined.
620 *
621 * For further details, refer to:
622 *
623 * Intel Corporation: Intel 64 and IA-32 Architectures
624 * Software Developer's Manual. Section 13.2, Volume 3A:
625 * System Programming Guide, Part 1. July, 2008.
626 *
627 * Advanced Micro Devices: BIOS and Kernel Developer's
628 * Guide (BKDG) for AMD Family 10h Processors. Section
629 * 2.4.5, Revision 3.48, April 2010.
630 */
631 x86_disable_intr();
632
633 aperf = sc->sc_pstate_aperf;
634 mperf = sc->sc_pstate_mperf;
635
636 xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
637 xc_wait(xc);
638
639 x86_enable_intr();
640
641 aperf = sc->sc_pstate_aperf - aperf;
642 mperf = sc->sc_pstate_mperf - mperf;
643
644 if (__predict_true(mperf != 0))
645 rv = (aperf * 100) / mperf;
646
647 return rv;
648 }
649
650 static void
651 acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
652 {
653 struct acpicpu_softc *sc = arg1;
654
655 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
656 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
657 }
658
659 static void
660 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
661 {
662
663 KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
664 KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
665
666 wrmsr(MSR_APERF, 0);
667 wrmsr(MSR_MPERF, 0);
668
669 sc->sc_pstate_aperf = 0;
670 sc->sc_pstate_mperf = 0;
671 }
672
673 int
674 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
675 {
676 struct acpicpu_pstate *ps = NULL;
677 uint64_t val;
678 uint32_t i;
679
680 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
681 return acpicpu_md_pstate_fidvid_get(sc, freq);
682
683 for (i = 0; i < sc->sc_pstate_count; i++) {
684
685 ps = &sc->sc_pstate[i];
686
687 if (__predict_true(ps->ps_freq != 0))
688 break;
689 }
690
691 if (__predict_false(ps == NULL))
692 return ENODEV;
693
694 if (__predict_false(ps->ps_status_addr == 0))
695 return EINVAL;
696
697 val = rdmsr(ps->ps_status_addr);
698
699 if (__predict_true(ps->ps_status_mask != 0))
700 val = val & ps->ps_status_mask;
701
702 for (i = 0; i < sc->sc_pstate_count; i++) {
703
704 ps = &sc->sc_pstate[i];
705
706 if (__predict_false(ps->ps_freq == 0))
707 continue;
708
709 if (val == ps->ps_status) {
710 *freq = ps->ps_freq;
711 return 0;
712 }
713 }
714
715 return EIO;
716 }
717
718 int
719 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
720 {
721 struct msr_rw_info msr;
722 uint64_t xc;
723 int rv = 0;
724
725 if (__predict_false(ps->ps_control_addr == 0))
726 return EINVAL;
727
728 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
729 return acpicpu_md_pstate_fidvid_set(ps);
730
731 msr.msr_read = false;
732 msr.msr_type = ps->ps_control_addr;
733 msr.msr_value = ps->ps_control;
734
735 if (__predict_true(ps->ps_control_mask != 0)) {
736 msr.msr_mask = ps->ps_control_mask;
737 msr.msr_read = true;
738 }
739
740 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
741 xc_wait(xc);
742
743 /*
744 * Due several problems, we bypass the
745 * relatively expensive status check.
746 */
747 if (acpicpu_pstate_status != true) {
748 DELAY(ps->ps_latency);
749 return 0;
750 }
751
752 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
753 xc_wait(xc);
754
755 return rv;
756 }
757
758 static void
759 acpicpu_md_pstate_status(void *arg1, void *arg2)
760 {
761 struct acpicpu_pstate *ps = arg1;
762 uint64_t val;
763 int i;
764
765 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
766
767 val = rdmsr(ps->ps_status_addr);
768
769 if (__predict_true(ps->ps_status_mask != 0))
770 val = val & ps->ps_status_mask;
771
772 if (val == ps->ps_status)
773 return;
774
775 DELAY(ps->ps_latency);
776 }
777
778 *(uintptr_t *)arg2 = EAGAIN;
779 }
780
781 static int
782 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
783 {
784 struct acpicpu_pstate *ps;
785 uint32_t fid, i, vid;
786 uint32_t cfid, cvid;
787 int rv;
788
789 /*
790 * AMD family 0Fh needs special treatment.
791 * While it wants to use ACPI, it does not
792 * comply with the ACPI specifications.
793 */
794 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
795
796 if (rv != 0)
797 return rv;
798
799 for (i = 0; i < sc->sc_pstate_count; i++) {
800
801 ps = &sc->sc_pstate[i];
802
803 if (__predict_false(ps->ps_freq == 0))
804 continue;
805
806 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
807 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
808
809 if (cfid == fid && cvid == vid) {
810 *freq = ps->ps_freq;
811 return 0;
812 }
813 }
814
815 return EIO;
816 }
817
818 static int
819 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
820 {
821 const uint64_t ctrl = ps->ps_control;
822 uint32_t cfid, cvid, fid, i, irt;
823 uint32_t pll, vco_cfid, vco_fid;
824 uint32_t val, vid, vst;
825 int rv;
826
827 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
828
829 if (rv != 0)
830 return rv;
831
832 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
833 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
834 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
835 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
836 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
837
838 vst = vst * 20;
839 pll = pll * 1000 / 5;
840 irt = 10 * __BIT(irt);
841
842 /*
843 * Phase 1.
844 */
845 while (cvid > vid) {
846
847 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
848 val = (val > cvid) ? 0 : cvid - val;
849
850 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
851 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
852
853 if (rv != 0)
854 return rv;
855 }
856
857 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
858
859 for (; i > 0 && cvid > 0; --i) {
860
861 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
862 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
863
864 if (rv != 0)
865 return rv;
866 }
867
868 /*
869 * Phase 2.
870 */
871 if (cfid != fid) {
872
873 vco_fid = FID_TO_VCO_FID(fid);
874 vco_cfid = FID_TO_VCO_FID(cfid);
875
876 while (abs(vco_fid - vco_cfid) > 2) {
877
878 if (fid <= cfid)
879 val = cfid - 2;
880 else {
881 val = (cfid > 6) ? cfid + 2 :
882 FID_TO_VCO_FID(cfid) + 2;
883 }
884
885 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
886 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
887
888 if (rv != 0)
889 return rv;
890
891 vco_cfid = FID_TO_VCO_FID(cfid);
892 }
893
894 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
895 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
896
897 if (rv != 0)
898 return rv;
899 }
900
901 /*
902 * Phase 3.
903 */
904 if (cvid != vid) {
905
906 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
907 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
908
909 if (rv != 0)
910 return rv;
911 }
912
913 if (cfid != fid || cvid != vid)
914 return EIO;
915
916 return 0;
917 }
918
919 static int
920 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
921 {
922 int i = ACPICPU_P_STATE_RETRY * 100;
923 uint64_t val;
924
925 do {
926 val = rdmsr(MSR_0FH_STATUS);
927
928 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
929
930 if (i == 0)
931 return EAGAIN;
932
933 if (cfid != NULL)
934 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
935
936 if (cvid != NULL)
937 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
938
939 return 0;
940 }
941
942 static void
943 acpicpu_md_pstate_fidvid_write(uint32_t fid,
944 uint32_t vid, uint32_t cnt, uint32_t tmo)
945 {
946 struct msr_rw_info msr;
947 uint64_t xc;
948
949 msr.msr_read = false;
950 msr.msr_type = MSR_0FH_CONTROL;
951 msr.msr_value = 0;
952
953 msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
954 msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
955 msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
956 msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
957
958 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
959 xc_wait(xc);
960
961 DELAY(tmo);
962 }
963
964 int
965 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
966 {
967 struct acpicpu_tstate *ts;
968 uint64_t val;
969 uint32_t i;
970
971 val = rdmsr(MSR_THERM_CONTROL);
972
973 for (i = 0; i < sc->sc_tstate_count; i++) {
974
975 ts = &sc->sc_tstate[i];
976
977 if (ts->ts_percent == 0)
978 continue;
979
980 if (val == ts->ts_status) {
981 *percent = ts->ts_percent;
982 return 0;
983 }
984 }
985
986 return EIO;
987 }
988
989 int
990 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
991 {
992 struct msr_rw_info msr;
993 uint64_t xc;
994 int rv = 0;
995
996 msr.msr_read = true;
997 msr.msr_type = MSR_THERM_CONTROL;
998 msr.msr_value = ts->ts_control;
999 msr.msr_mask = __BITS(1, 4);
1000
1001 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1002 xc_wait(xc);
1003
1004 if (ts->ts_status == 0) {
1005 DELAY(ts->ts_latency);
1006 return 0;
1007 }
1008
1009 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
1010 xc_wait(xc);
1011
1012 return rv;
1013 }
1014
1015 static void
1016 acpicpu_md_tstate_status(void *arg1, void *arg2)
1017 {
1018 struct acpicpu_tstate *ts = arg1;
1019 uint64_t val;
1020 int i;
1021
1022 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1023
1024 val = rdmsr(MSR_THERM_CONTROL);
1025
1026 if (val == ts->ts_status)
1027 return;
1028
1029 DELAY(ts->ts_latency);
1030 }
1031
1032 *(uintptr_t *)arg2 = EAGAIN;
1033 }
1034
1035 /*
1036 * A kludge for backwards compatibility.
1037 */
1038 static int
1039 acpicpu_md_pstate_sysctl_init(void)
1040 {
1041 const struct sysctlnode *fnode, *mnode, *rnode;
1042 const char *str;
1043 int rv;
1044
1045 switch (cpu_vendor) {
1046
1047 case CPUVENDOR_IDT:
1048 case CPUVENDOR_INTEL:
1049 str = "est";
1050 break;
1051
1052 case CPUVENDOR_AMD:
1053 str = "powernow";
1054 break;
1055
1056 default:
1057 return ENODEV;
1058 }
1059
1060
1061 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1062 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1063 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1064
1065 if (rv != 0)
1066 goto fail;
1067
1068 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1069 0, CTLTYPE_NODE, str, NULL,
1070 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1071
1072 if (rv != 0)
1073 goto fail;
1074
1075 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1076 0, CTLTYPE_NODE, "frequency", NULL,
1077 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1078
1079 if (rv != 0)
1080 goto fail;
1081
1082 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1083 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1084 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1085
1086 if (rv != 0)
1087 goto fail;
1088
1089 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1090 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1091 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1092
1093 if (rv != 0)
1094 goto fail;
1095
1096 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1097 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1098 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1099
1100 if (rv != 0)
1101 goto fail;
1102
1103 return 0;
1104
1105 fail:
1106 if (acpicpu_log != NULL) {
1107 sysctl_teardown(&acpicpu_log);
1108 acpicpu_log = NULL;
1109 }
1110
1111 return rv;
1112 }
1113
1114 static int
1115 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1116 {
1117 struct cpu_info *ci = curcpu();
1118 struct acpicpu_softc *sc;
1119 struct sysctlnode node;
1120 uint32_t freq;
1121 int err;
1122
1123 sc = acpicpu_sc[ci->ci_acpiid];
1124
1125 if (sc == NULL)
1126 return ENXIO;
1127
1128 err = acpicpu_pstate_get(sc, &freq);
1129
1130 if (err != 0)
1131 return err;
1132
1133 node = *rnode;
1134 node.sysctl_data = &freq;
1135
1136 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1137
1138 if (err != 0 || newp == NULL)
1139 return err;
1140
1141 return 0;
1142 }
1143
1144 static int
1145 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1146 {
1147 struct cpu_info *ci = curcpu();
1148 struct acpicpu_softc *sc;
1149 struct sysctlnode node;
1150 uint32_t freq;
1151 int err;
1152
1153 sc = acpicpu_sc[ci->ci_acpiid];
1154
1155 if (sc == NULL)
1156 return ENXIO;
1157
1158 err = acpicpu_pstate_get(sc, &freq);
1159
1160 if (err != 0)
1161 return err;
1162
1163 node = *rnode;
1164 node.sysctl_data = &freq;
1165
1166 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1167
1168 if (err != 0 || newp == NULL)
1169 return err;
1170
1171 err = acpicpu_pstate_set(sc, freq);
1172
1173 if (err != 0)
1174 return err;
1175
1176 return 0;
1177 }
1178
1179 static int
1180 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1181 {
1182 struct cpu_info *ci = curcpu();
1183 struct acpicpu_softc *sc;
1184 struct sysctlnode node;
1185 char buf[1024];
1186 size_t len;
1187 uint32_t i;
1188 int err;
1189
1190 sc = acpicpu_sc[ci->ci_acpiid];
1191
1192 if (sc == NULL)
1193 return ENXIO;
1194
1195 (void)memset(&buf, 0, sizeof(buf));
1196
1197 mutex_enter(&sc->sc_mtx);
1198
1199 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1200
1201 if (sc->sc_pstate[i].ps_freq == 0)
1202 continue;
1203
1204 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1205 sc->sc_pstate[i].ps_freq,
1206 i < (sc->sc_pstate_count - 1) ? " " : "");
1207 }
1208
1209 mutex_exit(&sc->sc_mtx);
1210
1211 node = *rnode;
1212 node.sysctl_data = buf;
1213
1214 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1215
1216 if (err != 0 || newp == NULL)
1217 return err;
1218
1219 return 0;
1220 }
1221
1222