Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.46
      1 /* $NetBSD: acpi_cpu_md.c,v 1.46 2011/02/25 17:23:34 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.46 2011/02/25 17:23:34 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/kcore.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/xcall.h>
     37 
     38 #include <x86/cpu.h>
     39 #include <x86/cpufunc.h>
     40 #include <x86/cputypes.h>
     41 #include <x86/cpuvar.h>
     42 #include <x86/cpu_msr.h>
     43 #include <x86/machdep.h>
     44 
     45 #include <dev/acpi/acpica.h>
     46 #include <dev/acpi/acpi_cpu.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #include <machine/acpi_machdep.h>
     52 
     53 /*
     54  * AMD C1E.
     55  */
     56 #define MSR_CMPHALT		0xc0010055
     57 
     58 #define MSR_CMPHALT_SMI		__BIT(27)
     59 #define MSR_CMPHALT_C1E		__BIT(28)
     60 #define MSR_CMPHALT_BMSTS	__BIT(29)
     61 
     62 /*
     63  * AMD families 10h, 11h, and 14h
     64  */
     65 #define MSR_10H_LIMIT		0xc0010061
     66 #define MSR_10H_CONTROL		0xc0010062
     67 #define MSR_10H_STATUS		0xc0010063
     68 #define MSR_10H_CONFIG		0xc0010064
     69 
     70 /*
     71  * AMD family 0Fh.
     72  */
     73 #define MSR_0FH_CONTROL		0xc0010041
     74 #define MSR_0FH_STATUS		0xc0010042
     75 
     76 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     77 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     78 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     79 
     80 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     81 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     82 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     83 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     84 
     85 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     86 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     87 
     88 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     90 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     91 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     92 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
     93 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
     94 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
     95 
     96 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
     97 
     98 static char	  native_idle_text[16];
     99 void		(*native_idle)(void) = NULL;
    100 
    101 static int	 acpicpu_md_quirk_piix4(struct pci_attach_args *);
    102 static void	 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
    103 static void	 acpicpu_md_pstate_percent_status(void *, void *);
    104 static void	 acpicpu_md_pstate_status(void *, void *);
    105 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    106                                               uint32_t *);
    107 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    108 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    109 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    110 					        uint32_t, uint32_t);
    111 static void	 acpicpu_md_tstate_status(void *, void *);
    112 static int	 acpicpu_md_pstate_sysctl_init(void);
    113 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    114 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    115 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    116 
    117 extern struct acpicpu_softc **acpicpu_sc;
    118 static bool acpicpu_pstate_status = false;
    119 static struct sysctllog *acpicpu_log = NULL;
    120 
    121 uint32_t
    122 acpicpu_md_cap(void)
    123 {
    124 	struct cpu_info *ci = curcpu();
    125 	uint32_t regs[4];
    126 	uint32_t val = 0;
    127 
    128 	if (cpu_vendor != CPUVENDOR_IDT &&
    129 	    cpu_vendor != CPUVENDOR_INTEL)
    130 		return val;
    131 
    132 	/*
    133 	 * Basic SMP C-states (required for _CST).
    134 	 */
    135 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    136 
    137         /*
    138 	 * If MONITOR/MWAIT is available, announce
    139 	 * support for native instructions in all C-states.
    140 	 */
    141         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    142 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    143 
    144 	/*
    145 	 * Set native P- and T-states, if available.
    146 	 */
    147         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    148 		val |= ACPICPU_PDC_P_FFH;
    149 
    150 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    151 		val |= ACPICPU_PDC_T_FFH;
    152 
    153 	/*
    154 	 * Declare support for APERF and MPERF.
    155 	 */
    156 	if (cpuid_level >= 0x06) {
    157 
    158 		x86_cpuid(0x00000006, regs);
    159 
    160 		if ((regs[2] & CPUID_DSPM_HWF) != 0)
    161 			val |= ACPICPU_PDC_P_HW;
    162 	}
    163 
    164 	return val;
    165 }
    166 
    167 uint32_t
    168 acpicpu_md_flags(void)
    169 {
    170 	struct cpu_info *ci = curcpu();
    171 	struct pci_attach_args pa;
    172 	uint32_t family, val = 0;
    173 	uint32_t regs[4];
    174 
    175 	if (acpi_md_ncpus() == 1)
    176 		val |= ACPICPU_FLAG_C_BM;
    177 
    178 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    179 		val |= ACPICPU_FLAG_C_FFH;
    180 
    181 	/*
    182 	 * By default, assume that the local APIC timer
    183 	 * as well as TSC are stalled during C3 sleep.
    184 	 */
    185 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    186 
    187 	switch (cpu_vendor) {
    188 
    189 	case CPUVENDOR_IDT:
    190 
    191 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    192 			val |= ACPICPU_FLAG_P_FFH;
    193 
    194 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    195 			val |= ACPICPU_FLAG_T_FFH;
    196 
    197 		break;
    198 
    199 	case CPUVENDOR_INTEL:
    200 
    201 		/*
    202 		 * Bus master control and arbitration should be
    203 		 * available on all supported Intel CPUs (to be
    204 		 * sure, this is double-checked later from the
    205 		 * firmware data). These flags imply that it is
    206 		 * not necessary to flush caches before C3 state.
    207 		 */
    208 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    209 
    210 		/*
    211 		 * Check if we can use "native", MSR-based,
    212 		 * access. If not, we have to resort to I/O.
    213 		 */
    214 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    215 			val |= ACPICPU_FLAG_P_FFH;
    216 
    217 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    218 			val |= ACPICPU_FLAG_T_FFH;
    219 
    220 		/*
    221 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    222 		 * Boost are available. Also see if we might have
    223 		 * an invariant local APIC timer ("ARAT").
    224 		 */
    225 		if (cpuid_level >= 0x06) {
    226 
    227 			x86_cpuid(0x00000006, regs);
    228 
    229 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    230 				val |= ACPICPU_FLAG_P_HW;
    231 
    232 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    233 				val |= ACPICPU_FLAG_P_TURBO;
    234 
    235 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    236 				val &= ~ACPICPU_FLAG_C_APIC;
    237 		}
    238 
    239 		/*
    240 		 * Detect whether TSC is invariant. If it is not,
    241 		 * we keep the flag to note that TSC will not run
    242 		 * at constant rate. Depending on the CPU, this may
    243 		 * affect P- and T-state changes, but especially
    244 		 * relevant are C-states; with variant TSC, states
    245 		 * larger than C1 may completely stop the counter.
    246 		 */
    247 		x86_cpuid(0x80000000, regs);
    248 
    249 		if (regs[0] >= 0x80000007) {
    250 
    251 			x86_cpuid(0x80000007, regs);
    252 
    253 			if ((regs[3] & __BIT(8)) != 0)
    254 				val &= ~ACPICPU_FLAG_C_TSC;
    255 		}
    256 
    257 		break;
    258 
    259 	case CPUVENDOR_AMD:
    260 
    261 		x86_cpuid(0x80000000, regs);
    262 
    263 		if (regs[0] < 0x80000007)
    264 			break;
    265 
    266 		x86_cpuid(0x80000007, regs);
    267 
    268 		family = CPUID2FAMILY(ci->ci_signature);
    269 
    270 		if (family == 0xf)
    271 			family += CPUID2EXTFAMILY(ci->ci_signature);
    272 
    273     		switch (family) {
    274 
    275 		case 0x0f:
    276 
    277 			/*
    278 			 * Evaluate support for the "FID/VID
    279 			 * algorithm" also used by powernow(4).
    280 			 */
    281 			if ((regs[3] & CPUID_APM_FID) == 0)
    282 				break;
    283 
    284 			if ((regs[3] & CPUID_APM_VID) == 0)
    285 				break;
    286 
    287 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    288 			break;
    289 
    290 		case 0x10:
    291 		case 0x11:
    292 			val |= ACPICPU_FLAG_C_C1E;
    293 			/* FALLTHROUGH */
    294 
    295 		case 0x14: /* AMD Fusion */
    296 
    297 			/*
    298 			 * Like with Intel, detect invariant TSC,
    299 			 * MSR-based P-states, and AMD's "turbo"
    300 			 * (Core Performance Boost), respectively.
    301 			 */
    302 			if ((regs[3] & CPUID_APM_TSC) != 0)
    303 				val &= ~ACPICPU_FLAG_C_TSC;
    304 
    305 			if ((regs[3] & CPUID_APM_HWP) != 0)
    306 				val |= ACPICPU_FLAG_P_FFH;
    307 
    308 			if ((regs[3] & CPUID_APM_CPB) != 0)
    309 				val |= ACPICPU_FLAG_P_TURBO;
    310 
    311 			/*
    312 			 * Also check for APERF and MPERF,
    313 			 * first available in the family 10h.
    314 			 */
    315 			if (cpuid_level >= 0x06) {
    316 
    317 				x86_cpuid(0x00000006, regs);
    318 
    319 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    320 					val |= ACPICPU_FLAG_P_HW;
    321 			}
    322 
    323 			break;
    324 		}
    325 
    326 		break;
    327 	}
    328 
    329 	/*
    330 	 * There are several erratums for PIIX4.
    331 	 */
    332 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    333 		val |= ACPICPU_FLAG_PIIX4;
    334 
    335 	return val;
    336 }
    337 
    338 static int
    339 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
    340 {
    341 
    342 	/*
    343 	 * XXX: The pci_find_device(9) function only
    344 	 *	deals with attached devices. Change this
    345 	 *	to use something like pci_device_foreach().
    346 	 */
    347 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    348 		return 0;
    349 
    350 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    351 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    352 		return 1;
    353 
    354 	return 0;
    355 }
    356 
    357 void
    358 acpicpu_md_quirk_c1e(void)
    359 {
    360 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    361 	uint64_t val;
    362 
    363 	val = rdmsr(MSR_CMPHALT);
    364 
    365 	if ((val & c1e) != 0)
    366 		wrmsr(MSR_CMPHALT, val & ~c1e);
    367 }
    368 
    369 int
    370 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    371 {
    372 	const size_t size = sizeof(native_idle_text);
    373 	struct acpicpu_cstate *cs;
    374 	bool ipi = false;
    375 	int i;
    376 
    377 	/*
    378 	 * Save the cpu_idle(9) loop used by default.
    379 	 */
    380 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    381 
    382 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    383 
    384 		cs = &sc->sc_cstate[i];
    385 
    386 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    387 			ipi = true;
    388 			break;
    389 		}
    390 	}
    391 
    392 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    393 
    394 	return 0;
    395 }
    396 
    397 int
    398 acpicpu_md_cstate_stop(void)
    399 {
    400 	uint64_t xc;
    401 	bool ipi;
    402 
    403 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    404 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    405 
    406 	/*
    407 	 * Run a cross-call to ensure that all CPUs are
    408 	 * out from the ACPI idle-loop before detachment.
    409 	 */
    410 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    411 	xc_wait(xc);
    412 
    413 	return 0;
    414 }
    415 
    416 /*
    417  * Called with interrupts disabled.
    418  * Caller should enable interrupts after return.
    419  */
    420 void
    421 acpicpu_md_cstate_enter(int method, int state)
    422 {
    423 	struct cpu_info *ci = curcpu();
    424 
    425 	switch (method) {
    426 
    427 	case ACPICPU_C_STATE_FFH:
    428 
    429 		x86_enable_intr();
    430 		x86_monitor(&ci->ci_want_resched, 0, 0);
    431 
    432 		if (__predict_false(ci->ci_want_resched != 0))
    433 			return;
    434 
    435 		x86_mwait((state - 1) << 4, 0);
    436 		break;
    437 
    438 	case ACPICPU_C_STATE_HALT:
    439 
    440 		if (__predict_false(ci->ci_want_resched != 0))
    441 			return;
    442 
    443 		x86_stihlt();
    444 		break;
    445 	}
    446 }
    447 
    448 int
    449 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    450 {
    451 	const uint64_t est = __BIT(16);
    452 	uint64_t val;
    453 
    454 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
    455 		return ENODEV;
    456 
    457 	switch (cpu_vendor) {
    458 
    459 	case CPUVENDOR_IDT:
    460 	case CPUVENDOR_INTEL:
    461 
    462 		/*
    463 		 * Make sure EST is enabled.
    464 		 */
    465 		val = rdmsr(MSR_MISC_ENABLE);
    466 
    467 		if ((val & est) == 0) {
    468 
    469 			val |= est;
    470 
    471 			wrmsr(MSR_MISC_ENABLE, val);
    472 			val = rdmsr(MSR_MISC_ENABLE);
    473 
    474 			if ((val & est) == 0)
    475 				return ENOTTY;
    476 		}
    477 	}
    478 
    479 	/*
    480 	 * Reset the APERF and MPERF counters.
    481 	 */
    482 	if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
    483 		acpicpu_md_pstate_percent_reset(sc);
    484 
    485 	return acpicpu_md_pstate_sysctl_init();
    486 }
    487 
    488 int
    489 acpicpu_md_pstate_stop(void)
    490 {
    491 
    492 	if (acpicpu_log != NULL)
    493 		sysctl_teardown(&acpicpu_log);
    494 
    495 	return 0;
    496 }
    497 
    498 int
    499 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    500 {
    501 	struct acpicpu_pstate *ps, msr;
    502 	struct cpu_info *ci = curcpu();
    503 	uint32_t family, i = 0;
    504 
    505 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    506 
    507 	switch (cpu_vendor) {
    508 
    509 	case CPUVENDOR_IDT:
    510 	case CPUVENDOR_INTEL:
    511 
    512 		/*
    513 		 * If the so-called Turbo Boost is present,
    514 		 * the P0-state is always the "turbo state".
    515 		 *
    516 		 * For discussion, see:
    517 		 *
    518 		 *	Intel Corporation: Intel Turbo Boost Technology
    519 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    520 		 *	Based Processors. White Paper, November 2008.
    521 		 */
    522 		if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
    523 			sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
    524 
    525 		msr.ps_control_addr = MSR_PERF_CTL;
    526 		msr.ps_control_mask = __BITS(0, 15);
    527 
    528 		msr.ps_status_addr  = MSR_PERF_STATUS;
    529 		msr.ps_status_mask  = __BITS(0, 15);
    530 		break;
    531 
    532 	case CPUVENDOR_AMD:
    533 
    534 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    535 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    536 
    537 		family = CPUID2FAMILY(ci->ci_signature);
    538 
    539 		if (family == 0xf)
    540 			family += CPUID2EXTFAMILY(ci->ci_signature);
    541 
    542 		switch (family) {
    543 
    544 		case 0x0f:
    545 			msr.ps_control_addr = MSR_0FH_CONTROL;
    546 			msr.ps_status_addr  = MSR_0FH_STATUS;
    547 			break;
    548 
    549 		case 0x10:
    550 		case 0x11:
    551 		case 0x14: /* AMD Fusion */
    552 			msr.ps_control_addr = MSR_10H_CONTROL;
    553 			msr.ps_control_mask = __BITS(0, 2);
    554 
    555 			msr.ps_status_addr  = MSR_10H_STATUS;
    556 			msr.ps_status_mask  = __BITS(0, 2);
    557 			break;
    558 
    559 		default:
    560 
    561 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    562 				return EOPNOTSUPP;
    563 		}
    564 
    565 		break;
    566 
    567 	default:
    568 		return ENODEV;
    569 	}
    570 
    571 	/*
    572 	 * Fill the P-state structures with MSR addresses that are
    573 	 * known to be correct. If we do not know the addresses,
    574 	 * leave the values intact. If a vendor uses XPSS, we do
    575 	 * not necessarily need to do anything to support new CPUs.
    576 	 */
    577 	while (i < sc->sc_pstate_count) {
    578 
    579 		ps = &sc->sc_pstate[i];
    580 
    581 		if (msr.ps_flags != 0)
    582 			ps->ps_flags |= msr.ps_flags;
    583 
    584 		if (msr.ps_status_addr != 0)
    585 			ps->ps_status_addr = msr.ps_status_addr;
    586 
    587 		if (msr.ps_status_mask != 0)
    588 			ps->ps_status_mask = msr.ps_status_mask;
    589 
    590 		if (msr.ps_control_addr != 0)
    591 			ps->ps_control_addr = msr.ps_control_addr;
    592 
    593 		if (msr.ps_control_mask != 0)
    594 			ps->ps_control_mask = msr.ps_control_mask;
    595 
    596 		i++;
    597 	}
    598 
    599 	return 0;
    600 }
    601 
    602 /*
    603  * Returns the percentage of the actual frequency in
    604  * terms of the maximum frequency of the calling CPU
    605  * since the last call. A value zero implies an error.
    606  */
    607 uint8_t
    608 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
    609 {
    610 	struct cpu_info *ci = sc->sc_ci;
    611 	uint64_t aperf, mperf;
    612 	uint64_t xc, rv = 0;
    613 
    614 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
    615 		return 0;
    616 
    617 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
    618 		return 0;
    619 
    620 	/*
    621 	 * Read the IA32_APERF and IA32_MPERF counters. The first
    622 	 * increments at the rate of the fixed maximum frequency
    623 	 * configured during the boot, whereas APERF counts at the
    624 	 * rate of the actual frequency. Note that the MSRs must be
    625 	 * read without delay, and that only the ratio between
    626 	 * IA32_APERF and IA32_MPERF is architecturally defined.
    627 	 *
    628 	 * For further details, refer to:
    629 	 *
    630 	 *	Intel Corporation: Intel 64 and IA-32 Architectures
    631 	 *	Software Developer's Manual. Section 13.2, Volume 3A:
    632 	 *	System Programming Guide, Part 1. July, 2008.
    633 	 *
    634 	 *	Advanced Micro Devices: BIOS and Kernel Developer's
    635 	 *	Guide (BKDG) for AMD Family 10h Processors. Section
    636 	 *	2.4.5, Revision 3.48, April 2010.
    637 	 */
    638 	x86_disable_intr();
    639 
    640 	aperf = sc->sc_pstate_aperf;
    641 	mperf = sc->sc_pstate_mperf;
    642 
    643 	xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
    644 	xc_wait(xc);
    645 
    646 	x86_enable_intr();
    647 
    648 	aperf = sc->sc_pstate_aperf - aperf;
    649 	mperf = sc->sc_pstate_mperf - mperf;
    650 
    651 	if (__predict_true(mperf != 0))
    652 		rv = (aperf * 100) / mperf;
    653 
    654 	return rv;
    655 }
    656 
    657 static void
    658 acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
    659 {
    660 	struct acpicpu_softc *sc = arg1;
    661 
    662 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    663 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    664 }
    665 
    666 static void
    667 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
    668 {
    669 	struct msr_rw_info msr;
    670 	uint64_t xc;
    671 
    672 	KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
    673 	KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
    674 
    675 	msr.msr_value = 0;
    676 	msr.msr_read = false;
    677 	msr.msr_type = MSR_APERF;
    678 
    679 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    680 	xc_wait(xc);
    681 
    682 	msr.msr_value = 0;
    683 	msr.msr_read = false;
    684 	msr.msr_type = MSR_MPERF;
    685 
    686 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    687 	xc_wait(xc);
    688 
    689 	sc->sc_pstate_aperf = 0;
    690 	sc->sc_pstate_mperf = 0;
    691 }
    692 
    693 int
    694 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    695 {
    696 	struct acpicpu_pstate *ps = NULL;
    697 	uint64_t val;
    698 	uint32_t i;
    699 
    700 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    701 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    702 
    703 	for (i = 0; i < sc->sc_pstate_count; i++) {
    704 
    705 		ps = &sc->sc_pstate[i];
    706 
    707 		if (__predict_true(ps->ps_freq != 0))
    708 			break;
    709 	}
    710 
    711 	if (__predict_false(ps == NULL))
    712 		return ENODEV;
    713 
    714 	if (__predict_false(ps->ps_status_addr == 0))
    715 		return EINVAL;
    716 
    717 	val = rdmsr(ps->ps_status_addr);
    718 
    719 	if (__predict_true(ps->ps_status_mask != 0))
    720 		val = val & ps->ps_status_mask;
    721 
    722 	for (i = 0; i < sc->sc_pstate_count; i++) {
    723 
    724 		ps = &sc->sc_pstate[i];
    725 
    726 		if (__predict_false(ps->ps_freq == 0))
    727 			continue;
    728 
    729 		if (val == ps->ps_status) {
    730 			*freq = ps->ps_freq;
    731 			return 0;
    732 		}
    733 	}
    734 
    735 	return EIO;
    736 }
    737 
    738 int
    739 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    740 {
    741 	struct msr_rw_info msr;
    742 	uint64_t xc;
    743 	int rv = 0;
    744 
    745 	if (__predict_false(ps->ps_control_addr == 0))
    746 		return EINVAL;
    747 
    748 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    749 		return acpicpu_md_pstate_fidvid_set(ps);
    750 
    751 	msr.msr_read  = false;
    752 	msr.msr_type  = ps->ps_control_addr;
    753 	msr.msr_value = ps->ps_control;
    754 
    755 	if (__predict_true(ps->ps_control_mask != 0)) {
    756 		msr.msr_mask = ps->ps_control_mask;
    757 		msr.msr_read = true;
    758 	}
    759 
    760 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    761 	xc_wait(xc);
    762 
    763 	/*
    764 	 * Due several problems, we bypass the
    765 	 * relatively expensive status check.
    766 	 */
    767 	if (acpicpu_pstate_status != true) {
    768 		DELAY(ps->ps_latency);
    769 		return 0;
    770 	}
    771 
    772 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    773 	xc_wait(xc);
    774 
    775 	return rv;
    776 }
    777 
    778 static void
    779 acpicpu_md_pstate_status(void *arg1, void *arg2)
    780 {
    781 	struct acpicpu_pstate *ps = arg1;
    782 	uint64_t val;
    783 	int i;
    784 
    785 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    786 
    787 		val = rdmsr(ps->ps_status_addr);
    788 
    789 		if (__predict_true(ps->ps_status_mask != 0))
    790 			val = val & ps->ps_status_mask;
    791 
    792 		if (val == ps->ps_status)
    793 			return;
    794 
    795 		DELAY(ps->ps_latency);
    796 	}
    797 
    798 	*(uintptr_t *)arg2 = EAGAIN;
    799 }
    800 
    801 static int
    802 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    803 {
    804 	struct acpicpu_pstate *ps;
    805 	uint32_t fid, i, vid;
    806 	uint32_t cfid, cvid;
    807 	int rv;
    808 
    809 	/*
    810 	 * AMD family 0Fh needs special treatment.
    811 	 * While it wants to use ACPI, it does not
    812 	 * comply with the ACPI specifications.
    813 	 */
    814 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    815 
    816 	if (rv != 0)
    817 		return rv;
    818 
    819 	for (i = 0; i < sc->sc_pstate_count; i++) {
    820 
    821 		ps = &sc->sc_pstate[i];
    822 
    823 		if (__predict_false(ps->ps_freq == 0))
    824 			continue;
    825 
    826 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    827 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    828 
    829 		if (cfid == fid && cvid == vid) {
    830 			*freq = ps->ps_freq;
    831 			return 0;
    832 		}
    833 	}
    834 
    835 	return EIO;
    836 }
    837 
    838 static int
    839 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    840 {
    841 	const uint64_t ctrl = ps->ps_control;
    842 	uint32_t cfid, cvid, fid, i, irt;
    843 	uint32_t pll, vco_cfid, vco_fid;
    844 	uint32_t val, vid, vst;
    845 	int rv;
    846 
    847 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    848 
    849 	if (rv != 0)
    850 		return rv;
    851 
    852 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    853 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    854 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    855 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    856 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    857 
    858 	vst = vst * 20;
    859 	pll = pll * 1000 / 5;
    860 	irt = 10 * __BIT(irt);
    861 
    862 	/*
    863 	 * Phase 1.
    864 	 */
    865 	while (cvid > vid) {
    866 
    867 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    868 		val = (val > cvid) ? 0 : cvid - val;
    869 
    870 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    871 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    872 
    873 		if (rv != 0)
    874 			return rv;
    875 	}
    876 
    877 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    878 
    879 	for (; i > 0 && cvid > 0; --i) {
    880 
    881 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    882 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    883 
    884 		if (rv != 0)
    885 			return rv;
    886 	}
    887 
    888 	/*
    889 	 * Phase 2.
    890 	 */
    891 	if (cfid != fid) {
    892 
    893 		vco_fid  = FID_TO_VCO_FID(fid);
    894 		vco_cfid = FID_TO_VCO_FID(cfid);
    895 
    896 		while (abs(vco_fid - vco_cfid) > 2) {
    897 
    898 			if (fid <= cfid)
    899 				val = cfid - 2;
    900 			else {
    901 				val = (cfid > 6) ? cfid + 2 :
    902 				    FID_TO_VCO_FID(cfid) + 2;
    903 			}
    904 
    905 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    906 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    907 
    908 			if (rv != 0)
    909 				return rv;
    910 
    911 			vco_cfid = FID_TO_VCO_FID(cfid);
    912 		}
    913 
    914 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    915 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    916 
    917 		if (rv != 0)
    918 			return rv;
    919 	}
    920 
    921 	/*
    922 	 * Phase 3.
    923 	 */
    924 	if (cvid != vid) {
    925 
    926 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    927 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    928 
    929 		if (rv != 0)
    930 			return rv;
    931 	}
    932 
    933 	if (cfid != fid || cvid != vid)
    934 		return EIO;
    935 
    936 	return 0;
    937 }
    938 
    939 static int
    940 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    941 {
    942 	int i = ACPICPU_P_STATE_RETRY * 100;
    943 	uint64_t val;
    944 
    945 	do {
    946 		val = rdmsr(MSR_0FH_STATUS);
    947 
    948 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    949 
    950 	if (i == 0)
    951 		return EAGAIN;
    952 
    953 	if (cfid != NULL)
    954 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    955 
    956 	if (cvid != NULL)
    957 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    958 
    959 	return 0;
    960 }
    961 
    962 static void
    963 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    964     uint32_t vid, uint32_t cnt, uint32_t tmo)
    965 {
    966 	struct msr_rw_info msr;
    967 	uint64_t xc;
    968 
    969 	msr.msr_read  = false;
    970 	msr.msr_type  = MSR_0FH_CONTROL;
    971 	msr.msr_value = 0;
    972 
    973 	msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    974 	msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    975 	msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    976 	msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    977 
    978 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    979 	xc_wait(xc);
    980 
    981 	DELAY(tmo);
    982 }
    983 
    984 int
    985 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    986 {
    987 	struct acpicpu_tstate *ts;
    988 	uint64_t val;
    989 	uint32_t i;
    990 
    991 	val = rdmsr(MSR_THERM_CONTROL);
    992 
    993 	for (i = 0; i < sc->sc_tstate_count; i++) {
    994 
    995 		ts = &sc->sc_tstate[i];
    996 
    997 		if (ts->ts_percent == 0)
    998 			continue;
    999 
   1000 		if (val == ts->ts_status) {
   1001 			*percent = ts->ts_percent;
   1002 			return 0;
   1003 		}
   1004 	}
   1005 
   1006 	return EIO;
   1007 }
   1008 
   1009 int
   1010 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
   1011 {
   1012 	struct msr_rw_info msr;
   1013 	uint64_t xc;
   1014 	int rv = 0;
   1015 
   1016 	msr.msr_read  = true;
   1017 	msr.msr_type  = MSR_THERM_CONTROL;
   1018 	msr.msr_value = ts->ts_control;
   1019 	msr.msr_mask = __BITS(1, 4);
   1020 
   1021 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
   1022 	xc_wait(xc);
   1023 
   1024 	if (ts->ts_status == 0) {
   1025 		DELAY(ts->ts_latency);
   1026 		return 0;
   1027 	}
   1028 
   1029 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
   1030 	xc_wait(xc);
   1031 
   1032 	return rv;
   1033 }
   1034 
   1035 static void
   1036 acpicpu_md_tstate_status(void *arg1, void *arg2)
   1037 {
   1038 	struct acpicpu_tstate *ts = arg1;
   1039 	uint64_t val;
   1040 	int i;
   1041 
   1042 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1043 
   1044 		val = rdmsr(MSR_THERM_CONTROL);
   1045 
   1046 		if (val == ts->ts_status)
   1047 			return;
   1048 
   1049 		DELAY(ts->ts_latency);
   1050 	}
   1051 
   1052 	*(uintptr_t *)arg2 = EAGAIN;
   1053 }
   1054 
   1055 /*
   1056  * A kludge for backwards compatibility.
   1057  */
   1058 static int
   1059 acpicpu_md_pstate_sysctl_init(void)
   1060 {
   1061 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1062 	const char *str;
   1063 	int rv;
   1064 
   1065 	switch (cpu_vendor) {
   1066 
   1067 	case CPUVENDOR_IDT:
   1068 	case CPUVENDOR_INTEL:
   1069 		str = "est";
   1070 		break;
   1071 
   1072 	case CPUVENDOR_AMD:
   1073 		str = "powernow";
   1074 		break;
   1075 
   1076 	default:
   1077 		return ENODEV;
   1078 	}
   1079 
   1080 
   1081 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1082 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1083 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1084 
   1085 	if (rv != 0)
   1086 		goto fail;
   1087 
   1088 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1089 	    0, CTLTYPE_NODE, str, NULL,
   1090 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1091 
   1092 	if (rv != 0)
   1093 		goto fail;
   1094 
   1095 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1096 	    0, CTLTYPE_NODE, "frequency", NULL,
   1097 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1098 
   1099 	if (rv != 0)
   1100 		goto fail;
   1101 
   1102 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1103 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1104 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1105 
   1106 	if (rv != 0)
   1107 		goto fail;
   1108 
   1109 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1110 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1111 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1112 
   1113 	if (rv != 0)
   1114 		goto fail;
   1115 
   1116 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1117 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1118 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1119 
   1120 	if (rv != 0)
   1121 		goto fail;
   1122 
   1123 	return 0;
   1124 
   1125 fail:
   1126 	if (acpicpu_log != NULL) {
   1127 		sysctl_teardown(&acpicpu_log);
   1128 		acpicpu_log = NULL;
   1129 	}
   1130 
   1131 	return rv;
   1132 }
   1133 
   1134 static int
   1135 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1136 {
   1137 	struct cpu_info *ci = curcpu();
   1138 	struct acpicpu_softc *sc;
   1139 	struct sysctlnode node;
   1140 	uint32_t freq;
   1141 	int err;
   1142 
   1143 	sc = acpicpu_sc[ci->ci_acpiid];
   1144 
   1145 	if (sc == NULL)
   1146 		return ENXIO;
   1147 
   1148 	err = acpicpu_pstate_get(sc, &freq);
   1149 
   1150 	if (err != 0)
   1151 		return err;
   1152 
   1153 	node = *rnode;
   1154 	node.sysctl_data = &freq;
   1155 
   1156 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1157 
   1158 	if (err != 0 || newp == NULL)
   1159 		return err;
   1160 
   1161 	return 0;
   1162 }
   1163 
   1164 static int
   1165 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1166 {
   1167 	struct cpu_info *ci = curcpu();
   1168 	struct acpicpu_softc *sc;
   1169 	struct sysctlnode node;
   1170 	uint32_t freq;
   1171 	int err;
   1172 
   1173 	sc = acpicpu_sc[ci->ci_acpiid];
   1174 
   1175 	if (sc == NULL)
   1176 		return ENXIO;
   1177 
   1178 	err = acpicpu_pstate_get(sc, &freq);
   1179 
   1180 	if (err != 0)
   1181 		return err;
   1182 
   1183 	node = *rnode;
   1184 	node.sysctl_data = &freq;
   1185 
   1186 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1187 
   1188 	if (err != 0 || newp == NULL)
   1189 		return err;
   1190 
   1191 	err = acpicpu_pstate_set(sc, freq);
   1192 
   1193 	if (err != 0)
   1194 		return err;
   1195 
   1196 	return 0;
   1197 }
   1198 
   1199 static int
   1200 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1201 {
   1202 	struct cpu_info *ci = curcpu();
   1203 	struct acpicpu_softc *sc;
   1204 	struct sysctlnode node;
   1205 	char buf[1024];
   1206 	size_t len;
   1207 	uint32_t i;
   1208 	int err;
   1209 
   1210 	sc = acpicpu_sc[ci->ci_acpiid];
   1211 
   1212 	if (sc == NULL)
   1213 		return ENXIO;
   1214 
   1215 	(void)memset(&buf, 0, sizeof(buf));
   1216 
   1217 	mutex_enter(&sc->sc_mtx);
   1218 
   1219 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1220 
   1221 		if (sc->sc_pstate[i].ps_freq == 0)
   1222 			continue;
   1223 
   1224 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1225 		    sc->sc_pstate[i].ps_freq,
   1226 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1227 	}
   1228 
   1229 	mutex_exit(&sc->sc_mtx);
   1230 
   1231 	node = *rnode;
   1232 	node.sysctl_data = buf;
   1233 
   1234 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1235 
   1236 	if (err != 0 || newp == NULL)
   1237 		return err;
   1238 
   1239 	return 0;
   1240 }
   1241 
   1242