acpi_cpu_md.c revision 1.47 1 /* $NetBSD: acpi_cpu_md.c,v 1.47 2011/02/27 17:27:28 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.47 2011/02/27 17:27:28 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kcore.h>
35 #include <sys/sysctl.h>
36 #include <sys/xcall.h>
37
38 #include <x86/cpu.h>
39 #include <x86/cpufunc.h>
40 #include <x86/cputypes.h>
41 #include <x86/cpuvar.h>
42 #include <x86/cpu_msr.h>
43 #include <x86/machdep.h>
44
45 #include <dev/acpi/acpica.h>
46 #include <dev/acpi/acpi_cpu.h>
47
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <machine/acpi_machdep.h>
52
53 /*
54 * AMD C1E.
55 */
56 #define MSR_CMPHALT 0xc0010055
57
58 #define MSR_CMPHALT_SMI __BIT(27)
59 #define MSR_CMPHALT_C1E __BIT(28)
60 #define MSR_CMPHALT_BMSTS __BIT(29)
61
62 /*
63 * AMD families 10h, 11h, and 14h
64 */
65 #define MSR_10H_LIMIT 0xc0010061
66 #define MSR_10H_CONTROL 0xc0010062
67 #define MSR_10H_STATUS 0xc0010063
68 #define MSR_10H_CONFIG 0xc0010064
69
70 /*
71 * AMD family 0Fh.
72 */
73 #define MSR_0FH_CONTROL 0xc0010041
74 #define MSR_0FH_STATUS 0xc0010042
75
76 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
77 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
78 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
79
80 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
81 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
82 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
83 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
84
85 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
86 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
87
88 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
89 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
90 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
91 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
92 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
93 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
94 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
95
96 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97
98 static char native_idle_text[16];
99 void (*native_idle)(void) = NULL;
100
101 static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
102 static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
103 static void acpicpu_md_pstate_percent_status(void *, void *);
104 static void acpicpu_md_pstate_status(void *, void *);
105 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
106 uint32_t *);
107 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
108 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
109 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
110 uint32_t, uint32_t);
111 static void acpicpu_md_tstate_status(void *, void *);
112 static int acpicpu_md_pstate_sysctl_init(void);
113 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
114 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
115 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
116
117 extern struct acpicpu_softc **acpicpu_sc;
118 static bool acpicpu_pstate_status = false;
119 static struct sysctllog *acpicpu_log = NULL;
120
121 uint32_t
122 acpicpu_md_cap(void)
123 {
124 struct cpu_info *ci = curcpu();
125 uint32_t regs[4];
126 uint32_t val = 0;
127
128 if (cpu_vendor != CPUVENDOR_IDT &&
129 cpu_vendor != CPUVENDOR_INTEL)
130 return val;
131
132 /*
133 * Basic SMP C-states (required for e.g. _CST).
134 */
135 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
136
137 /*
138 * Claim to support dependency coordination.
139 */
140 val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
141
142 /*
143 * If MONITOR/MWAIT is available, announce
144 * support for native instructions in all C-states.
145 */
146 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
147 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
148
149 /*
150 * Set native P- and T-states, if available.
151 */
152 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
153 val |= ACPICPU_PDC_P_FFH;
154
155 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
156 val |= ACPICPU_PDC_T_FFH;
157
158 /*
159 * Declare support for APERF and MPERF.
160 */
161 if (cpuid_level >= 0x06) {
162
163 x86_cpuid(0x00000006, regs);
164
165 if ((regs[2] & CPUID_DSPM_HWF) != 0)
166 val |= ACPICPU_PDC_P_HW;
167 }
168
169 return val;
170 }
171
172 uint32_t
173 acpicpu_md_flags(void)
174 {
175 struct cpu_info *ci = curcpu();
176 struct pci_attach_args pa;
177 uint32_t family, val = 0;
178 uint32_t regs[4];
179
180 if (acpi_md_ncpus() == 1)
181 val |= ACPICPU_FLAG_C_BM;
182
183 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
184 val |= ACPICPU_FLAG_C_FFH;
185
186 /*
187 * By default, assume that the local APIC timer
188 * as well as TSC are stalled during C3 sleep.
189 */
190 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
191
192 switch (cpu_vendor) {
193
194 case CPUVENDOR_IDT:
195
196 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
197 val |= ACPICPU_FLAG_P_FFH;
198
199 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
200 val |= ACPICPU_FLAG_T_FFH;
201
202 break;
203
204 case CPUVENDOR_INTEL:
205
206 /*
207 * Bus master control and arbitration should be
208 * available on all supported Intel CPUs (to be
209 * sure, this is double-checked later from the
210 * firmware data). These flags imply that it is
211 * not necessary to flush caches before C3 state.
212 */
213 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
214
215 /*
216 * Check if we can use "native", MSR-based,
217 * access. If not, we have to resort to I/O.
218 */
219 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
220 val |= ACPICPU_FLAG_P_FFH;
221
222 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
223 val |= ACPICPU_FLAG_T_FFH;
224
225 /*
226 * Check whether MSR_APERF, MSR_MPERF, and Turbo
227 * Boost are available. Also see if we might have
228 * an invariant local APIC timer ("ARAT").
229 */
230 if (cpuid_level >= 0x06) {
231
232 x86_cpuid(0x00000006, regs);
233
234 if ((regs[2] & CPUID_DSPM_HWF) != 0)
235 val |= ACPICPU_FLAG_P_HW;
236
237 if ((regs[0] & CPUID_DSPM_IDA) != 0)
238 val |= ACPICPU_FLAG_P_TURBO;
239
240 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
241 val &= ~ACPICPU_FLAG_C_APIC;
242 }
243
244 /*
245 * Detect whether TSC is invariant. If it is not,
246 * we keep the flag to note that TSC will not run
247 * at constant rate. Depending on the CPU, this may
248 * affect P- and T-state changes, but especially
249 * relevant are C-states; with variant TSC, states
250 * larger than C1 may completely stop the counter.
251 */
252 x86_cpuid(0x80000000, regs);
253
254 if (regs[0] >= 0x80000007) {
255
256 x86_cpuid(0x80000007, regs);
257
258 if ((regs[3] & __BIT(8)) != 0)
259 val &= ~ACPICPU_FLAG_C_TSC;
260 }
261
262 break;
263
264 case CPUVENDOR_AMD:
265
266 x86_cpuid(0x80000000, regs);
267
268 if (regs[0] < 0x80000007)
269 break;
270
271 x86_cpuid(0x80000007, regs);
272
273 family = CPUID2FAMILY(ci->ci_signature);
274
275 if (family == 0xf)
276 family += CPUID2EXTFAMILY(ci->ci_signature);
277
278 switch (family) {
279
280 case 0x0f:
281
282 /*
283 * Evaluate support for the "FID/VID
284 * algorithm" also used by powernow(4).
285 */
286 if ((regs[3] & CPUID_APM_FID) == 0)
287 break;
288
289 if ((regs[3] & CPUID_APM_VID) == 0)
290 break;
291
292 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
293 break;
294
295 case 0x10:
296 case 0x11:
297 val |= ACPICPU_FLAG_C_C1E;
298 /* FALLTHROUGH */
299
300 case 0x14: /* AMD Fusion */
301
302 /*
303 * Like with Intel, detect invariant TSC,
304 * MSR-based P-states, and AMD's "turbo"
305 * (Core Performance Boost), respectively.
306 */
307 if ((regs[3] & CPUID_APM_TSC) != 0)
308 val &= ~ACPICPU_FLAG_C_TSC;
309
310 if ((regs[3] & CPUID_APM_HWP) != 0)
311 val |= ACPICPU_FLAG_P_FFH;
312
313 if ((regs[3] & CPUID_APM_CPB) != 0)
314 val |= ACPICPU_FLAG_P_TURBO;
315
316 /*
317 * Also check for APERF and MPERF,
318 * first available in the family 10h.
319 */
320 if (cpuid_level >= 0x06) {
321
322 x86_cpuid(0x00000006, regs);
323
324 if ((regs[2] & CPUID_DSPM_HWF) != 0)
325 val |= ACPICPU_FLAG_P_HW;
326 }
327
328 break;
329 }
330
331 break;
332 }
333
334 /*
335 * There are several erratums for PIIX4.
336 */
337 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
338 val |= ACPICPU_FLAG_PIIX4;
339
340 return val;
341 }
342
343 static int
344 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
345 {
346
347 /*
348 * XXX: The pci_find_device(9) function only
349 * deals with attached devices. Change this
350 * to use something like pci_device_foreach().
351 */
352 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
353 return 0;
354
355 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
356 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
357 return 1;
358
359 return 0;
360 }
361
362 void
363 acpicpu_md_quirk_c1e(void)
364 {
365 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
366 uint64_t val;
367
368 val = rdmsr(MSR_CMPHALT);
369
370 if ((val & c1e) != 0)
371 wrmsr(MSR_CMPHALT, val & ~c1e);
372 }
373
374 int
375 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
376 {
377 const size_t size = sizeof(native_idle_text);
378 struct acpicpu_cstate *cs;
379 bool ipi = false;
380 int i;
381
382 /*
383 * Save the cpu_idle(9) loop used by default.
384 */
385 x86_cpu_idle_get(&native_idle, native_idle_text, size);
386
387 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
388
389 cs = &sc->sc_cstate[i];
390
391 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
392 ipi = true;
393 break;
394 }
395 }
396
397 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
398
399 return 0;
400 }
401
402 int
403 acpicpu_md_cstate_stop(void)
404 {
405 uint64_t xc;
406 bool ipi;
407
408 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
409 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
410
411 /*
412 * Run a cross-call to ensure that all CPUs are
413 * out from the ACPI idle-loop before detachment.
414 */
415 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
416 xc_wait(xc);
417
418 return 0;
419 }
420
421 /*
422 * Called with interrupts disabled.
423 * Caller should enable interrupts after return.
424 */
425 void
426 acpicpu_md_cstate_enter(int method, int state)
427 {
428 struct cpu_info *ci = curcpu();
429
430 switch (method) {
431
432 case ACPICPU_C_STATE_FFH:
433
434 x86_enable_intr();
435 x86_monitor(&ci->ci_want_resched, 0, 0);
436
437 if (__predict_false(ci->ci_want_resched != 0))
438 return;
439
440 x86_mwait((state - 1) << 4, 0);
441 break;
442
443 case ACPICPU_C_STATE_HALT:
444
445 if (__predict_false(ci->ci_want_resched != 0))
446 return;
447
448 x86_stihlt();
449 break;
450 }
451 }
452
453 int
454 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
455 {
456 const uint64_t est = __BIT(16);
457 uint64_t val;
458
459 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
460 return ENODEV;
461
462 switch (cpu_vendor) {
463
464 case CPUVENDOR_IDT:
465 case CPUVENDOR_INTEL:
466
467 /*
468 * Make sure EST is enabled.
469 */
470 val = rdmsr(MSR_MISC_ENABLE);
471
472 if ((val & est) == 0) {
473
474 val |= est;
475
476 wrmsr(MSR_MISC_ENABLE, val);
477 val = rdmsr(MSR_MISC_ENABLE);
478
479 if ((val & est) == 0)
480 return ENOTTY;
481 }
482 }
483
484 /*
485 * Reset the APERF and MPERF counters.
486 */
487 if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
488 acpicpu_md_pstate_percent_reset(sc);
489
490 return acpicpu_md_pstate_sysctl_init();
491 }
492
493 int
494 acpicpu_md_pstate_stop(void)
495 {
496
497 if (acpicpu_log != NULL)
498 sysctl_teardown(&acpicpu_log);
499
500 return 0;
501 }
502
503 int
504 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
505 {
506 struct acpicpu_pstate *ps, msr;
507 struct cpu_info *ci = curcpu();
508 uint32_t family, i = 0;
509
510 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
511
512 switch (cpu_vendor) {
513
514 case CPUVENDOR_IDT:
515 case CPUVENDOR_INTEL:
516
517 /*
518 * If the so-called Turbo Boost is present,
519 * the P0-state is always the "turbo state".
520 *
521 * For discussion, see:
522 *
523 * Intel Corporation: Intel Turbo Boost Technology
524 * in Intel Core(tm) Microarchitectures (Nehalem)
525 * Based Processors. White Paper, November 2008.
526 */
527 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
528 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
529
530 msr.ps_control_addr = MSR_PERF_CTL;
531 msr.ps_control_mask = __BITS(0, 15);
532
533 msr.ps_status_addr = MSR_PERF_STATUS;
534 msr.ps_status_mask = __BITS(0, 15);
535 break;
536
537 case CPUVENDOR_AMD:
538
539 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
540 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
541
542 family = CPUID2FAMILY(ci->ci_signature);
543
544 if (family == 0xf)
545 family += CPUID2EXTFAMILY(ci->ci_signature);
546
547 switch (family) {
548
549 case 0x0f:
550 msr.ps_control_addr = MSR_0FH_CONTROL;
551 msr.ps_status_addr = MSR_0FH_STATUS;
552 break;
553
554 case 0x10:
555 case 0x11:
556 case 0x14: /* AMD Fusion */
557 msr.ps_control_addr = MSR_10H_CONTROL;
558 msr.ps_control_mask = __BITS(0, 2);
559
560 msr.ps_status_addr = MSR_10H_STATUS;
561 msr.ps_status_mask = __BITS(0, 2);
562 break;
563
564 default:
565
566 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
567 return EOPNOTSUPP;
568 }
569
570 break;
571
572 default:
573 return ENODEV;
574 }
575
576 /*
577 * Fill the P-state structures with MSR addresses that are
578 * known to be correct. If we do not know the addresses,
579 * leave the values intact. If a vendor uses XPSS, we do
580 * not necessarily need to do anything to support new CPUs.
581 */
582 while (i < sc->sc_pstate_count) {
583
584 ps = &sc->sc_pstate[i];
585
586 if (msr.ps_flags != 0)
587 ps->ps_flags |= msr.ps_flags;
588
589 if (msr.ps_status_addr != 0)
590 ps->ps_status_addr = msr.ps_status_addr;
591
592 if (msr.ps_status_mask != 0)
593 ps->ps_status_mask = msr.ps_status_mask;
594
595 if (msr.ps_control_addr != 0)
596 ps->ps_control_addr = msr.ps_control_addr;
597
598 if (msr.ps_control_mask != 0)
599 ps->ps_control_mask = msr.ps_control_mask;
600
601 i++;
602 }
603
604 return 0;
605 }
606
607 /*
608 * Returns the percentage of the actual frequency in
609 * terms of the maximum frequency of the calling CPU
610 * since the last call. A value zero implies an error.
611 */
612 uint8_t
613 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
614 {
615 struct cpu_info *ci = sc->sc_ci;
616 uint64_t aperf, mperf;
617 uint64_t xc, rv = 0;
618
619 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
620 return 0;
621
622 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
623 return 0;
624
625 /*
626 * Read the IA32_APERF and IA32_MPERF counters. The first
627 * increments at the rate of the fixed maximum frequency
628 * configured during the boot, whereas APERF counts at the
629 * rate of the actual frequency. Note that the MSRs must be
630 * read without delay, and that only the ratio between
631 * IA32_APERF and IA32_MPERF is architecturally defined.
632 *
633 * For further details, refer to:
634 *
635 * Intel Corporation: Intel 64 and IA-32 Architectures
636 * Software Developer's Manual. Section 13.2, Volume 3A:
637 * System Programming Guide, Part 1. July, 2008.
638 *
639 * Advanced Micro Devices: BIOS and Kernel Developer's
640 * Guide (BKDG) for AMD Family 10h Processors. Section
641 * 2.4.5, Revision 3.48, April 2010.
642 */
643 x86_disable_intr();
644
645 aperf = sc->sc_pstate_aperf;
646 mperf = sc->sc_pstate_mperf;
647
648 xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
649 xc_wait(xc);
650
651 x86_enable_intr();
652
653 aperf = sc->sc_pstate_aperf - aperf;
654 mperf = sc->sc_pstate_mperf - mperf;
655
656 if (__predict_true(mperf != 0))
657 rv = (aperf * 100) / mperf;
658
659 return rv;
660 }
661
662 static void
663 acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
664 {
665 struct acpicpu_softc *sc = arg1;
666
667 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
668 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
669 }
670
671 static void
672 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
673 {
674 struct msr_rw_info msr;
675 uint64_t xc;
676
677 KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
678 KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
679
680 msr.msr_value = 0;
681 msr.msr_read = false;
682 msr.msr_type = MSR_APERF;
683
684 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
685 xc_wait(xc);
686
687 msr.msr_value = 0;
688 msr.msr_read = false;
689 msr.msr_type = MSR_MPERF;
690
691 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
692 xc_wait(xc);
693
694 sc->sc_pstate_aperf = 0;
695 sc->sc_pstate_mperf = 0;
696 }
697
698 int
699 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
700 {
701 struct acpicpu_pstate *ps = NULL;
702 uint64_t val;
703 uint32_t i;
704
705 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
706 return acpicpu_md_pstate_fidvid_get(sc, freq);
707
708 for (i = 0; i < sc->sc_pstate_count; i++) {
709
710 ps = &sc->sc_pstate[i];
711
712 if (__predict_true(ps->ps_freq != 0))
713 break;
714 }
715
716 if (__predict_false(ps == NULL))
717 return ENODEV;
718
719 if (__predict_false(ps->ps_status_addr == 0))
720 return EINVAL;
721
722 val = rdmsr(ps->ps_status_addr);
723
724 if (__predict_true(ps->ps_status_mask != 0))
725 val = val & ps->ps_status_mask;
726
727 for (i = 0; i < sc->sc_pstate_count; i++) {
728
729 ps = &sc->sc_pstate[i];
730
731 if (__predict_false(ps->ps_freq == 0))
732 continue;
733
734 if (val == ps->ps_status) {
735 *freq = ps->ps_freq;
736 return 0;
737 }
738 }
739
740 return EIO;
741 }
742
743 int
744 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
745 {
746 struct msr_rw_info msr;
747 uint64_t xc;
748 int rv = 0;
749
750 if (__predict_false(ps->ps_control_addr == 0))
751 return EINVAL;
752
753 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
754 return acpicpu_md_pstate_fidvid_set(ps);
755
756 msr.msr_read = false;
757 msr.msr_type = ps->ps_control_addr;
758 msr.msr_value = ps->ps_control;
759
760 if (__predict_true(ps->ps_control_mask != 0)) {
761 msr.msr_mask = ps->ps_control_mask;
762 msr.msr_read = true;
763 }
764
765 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
766 xc_wait(xc);
767
768 /*
769 * Due several problems, we bypass the
770 * relatively expensive status check.
771 */
772 if (acpicpu_pstate_status != true) {
773 DELAY(ps->ps_latency);
774 return 0;
775 }
776
777 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
778 xc_wait(xc);
779
780 return rv;
781 }
782
783 static void
784 acpicpu_md_pstate_status(void *arg1, void *arg2)
785 {
786 struct acpicpu_pstate *ps = arg1;
787 uint64_t val;
788 int i;
789
790 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
791
792 val = rdmsr(ps->ps_status_addr);
793
794 if (__predict_true(ps->ps_status_mask != 0))
795 val = val & ps->ps_status_mask;
796
797 if (val == ps->ps_status)
798 return;
799
800 DELAY(ps->ps_latency);
801 }
802
803 *(uintptr_t *)arg2 = EAGAIN;
804 }
805
806 static int
807 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
808 {
809 struct acpicpu_pstate *ps;
810 uint32_t fid, i, vid;
811 uint32_t cfid, cvid;
812 int rv;
813
814 /*
815 * AMD family 0Fh needs special treatment.
816 * While it wants to use ACPI, it does not
817 * comply with the ACPI specifications.
818 */
819 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
820
821 if (rv != 0)
822 return rv;
823
824 for (i = 0; i < sc->sc_pstate_count; i++) {
825
826 ps = &sc->sc_pstate[i];
827
828 if (__predict_false(ps->ps_freq == 0))
829 continue;
830
831 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
832 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
833
834 if (cfid == fid && cvid == vid) {
835 *freq = ps->ps_freq;
836 return 0;
837 }
838 }
839
840 return EIO;
841 }
842
843 static int
844 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
845 {
846 const uint64_t ctrl = ps->ps_control;
847 uint32_t cfid, cvid, fid, i, irt;
848 uint32_t pll, vco_cfid, vco_fid;
849 uint32_t val, vid, vst;
850 int rv;
851
852 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
853
854 if (rv != 0)
855 return rv;
856
857 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
858 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
859 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
860 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
861 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
862
863 vst = vst * 20;
864 pll = pll * 1000 / 5;
865 irt = 10 * __BIT(irt);
866
867 /*
868 * Phase 1.
869 */
870 while (cvid > vid) {
871
872 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
873 val = (val > cvid) ? 0 : cvid - val;
874
875 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
876 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
877
878 if (rv != 0)
879 return rv;
880 }
881
882 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
883
884 for (; i > 0 && cvid > 0; --i) {
885
886 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
887 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
888
889 if (rv != 0)
890 return rv;
891 }
892
893 /*
894 * Phase 2.
895 */
896 if (cfid != fid) {
897
898 vco_fid = FID_TO_VCO_FID(fid);
899 vco_cfid = FID_TO_VCO_FID(cfid);
900
901 while (abs(vco_fid - vco_cfid) > 2) {
902
903 if (fid <= cfid)
904 val = cfid - 2;
905 else {
906 val = (cfid > 6) ? cfid + 2 :
907 FID_TO_VCO_FID(cfid) + 2;
908 }
909
910 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
911 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
912
913 if (rv != 0)
914 return rv;
915
916 vco_cfid = FID_TO_VCO_FID(cfid);
917 }
918
919 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
920 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
921
922 if (rv != 0)
923 return rv;
924 }
925
926 /*
927 * Phase 3.
928 */
929 if (cvid != vid) {
930
931 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
932 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
933
934 if (rv != 0)
935 return rv;
936 }
937
938 if (cfid != fid || cvid != vid)
939 return EIO;
940
941 return 0;
942 }
943
944 static int
945 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
946 {
947 int i = ACPICPU_P_STATE_RETRY * 100;
948 uint64_t val;
949
950 do {
951 val = rdmsr(MSR_0FH_STATUS);
952
953 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
954
955 if (i == 0)
956 return EAGAIN;
957
958 if (cfid != NULL)
959 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
960
961 if (cvid != NULL)
962 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
963
964 return 0;
965 }
966
967 static void
968 acpicpu_md_pstate_fidvid_write(uint32_t fid,
969 uint32_t vid, uint32_t cnt, uint32_t tmo)
970 {
971 struct msr_rw_info msr;
972 uint64_t xc;
973
974 msr.msr_read = false;
975 msr.msr_type = MSR_0FH_CONTROL;
976 msr.msr_value = 0;
977
978 msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
979 msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
980 msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
981 msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
982
983 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
984 xc_wait(xc);
985
986 DELAY(tmo);
987 }
988
989 int
990 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
991 {
992 struct acpicpu_tstate *ts;
993 uint64_t val;
994 uint32_t i;
995
996 val = rdmsr(MSR_THERM_CONTROL);
997
998 for (i = 0; i < sc->sc_tstate_count; i++) {
999
1000 ts = &sc->sc_tstate[i];
1001
1002 if (ts->ts_percent == 0)
1003 continue;
1004
1005 if (val == ts->ts_status) {
1006 *percent = ts->ts_percent;
1007 return 0;
1008 }
1009 }
1010
1011 return EIO;
1012 }
1013
1014 int
1015 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1016 {
1017 struct msr_rw_info msr;
1018 uint64_t xc;
1019 int rv = 0;
1020
1021 msr.msr_read = true;
1022 msr.msr_type = MSR_THERM_CONTROL;
1023 msr.msr_value = ts->ts_control;
1024 msr.msr_mask = __BITS(1, 4);
1025
1026 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1027 xc_wait(xc);
1028
1029 if (ts->ts_status == 0) {
1030 DELAY(ts->ts_latency);
1031 return 0;
1032 }
1033
1034 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
1035 xc_wait(xc);
1036
1037 return rv;
1038 }
1039
1040 static void
1041 acpicpu_md_tstate_status(void *arg1, void *arg2)
1042 {
1043 struct acpicpu_tstate *ts = arg1;
1044 uint64_t val;
1045 int i;
1046
1047 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1048
1049 val = rdmsr(MSR_THERM_CONTROL);
1050
1051 if (val == ts->ts_status)
1052 return;
1053
1054 DELAY(ts->ts_latency);
1055 }
1056
1057 *(uintptr_t *)arg2 = EAGAIN;
1058 }
1059
1060 /*
1061 * A kludge for backwards compatibility.
1062 */
1063 static int
1064 acpicpu_md_pstate_sysctl_init(void)
1065 {
1066 const struct sysctlnode *fnode, *mnode, *rnode;
1067 const char *str;
1068 int rv;
1069
1070 switch (cpu_vendor) {
1071
1072 case CPUVENDOR_IDT:
1073 case CPUVENDOR_INTEL:
1074 str = "est";
1075 break;
1076
1077 case CPUVENDOR_AMD:
1078 str = "powernow";
1079 break;
1080
1081 default:
1082 return ENODEV;
1083 }
1084
1085
1086 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1087 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1088 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1089
1090 if (rv != 0)
1091 goto fail;
1092
1093 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1094 0, CTLTYPE_NODE, str, NULL,
1095 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1096
1097 if (rv != 0)
1098 goto fail;
1099
1100 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1101 0, CTLTYPE_NODE, "frequency", NULL,
1102 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1103
1104 if (rv != 0)
1105 goto fail;
1106
1107 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1108 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1109 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1110
1111 if (rv != 0)
1112 goto fail;
1113
1114 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1115 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1116 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1117
1118 if (rv != 0)
1119 goto fail;
1120
1121 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1122 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1123 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1124
1125 if (rv != 0)
1126 goto fail;
1127
1128 return 0;
1129
1130 fail:
1131 if (acpicpu_log != NULL) {
1132 sysctl_teardown(&acpicpu_log);
1133 acpicpu_log = NULL;
1134 }
1135
1136 return rv;
1137 }
1138
1139 static int
1140 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1141 {
1142 struct cpu_info *ci = curcpu();
1143 struct acpicpu_softc *sc;
1144 struct sysctlnode node;
1145 uint32_t freq;
1146 int err;
1147
1148 sc = acpicpu_sc[ci->ci_acpiid];
1149
1150 if (sc == NULL)
1151 return ENXIO;
1152
1153 err = acpicpu_pstate_get(sc, &freq);
1154
1155 if (err != 0)
1156 return err;
1157
1158 node = *rnode;
1159 node.sysctl_data = &freq;
1160
1161 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1162
1163 if (err != 0 || newp == NULL)
1164 return err;
1165
1166 return 0;
1167 }
1168
1169 static int
1170 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1171 {
1172 struct cpu_info *ci = curcpu();
1173 struct acpicpu_softc *sc;
1174 struct sysctlnode node;
1175 uint32_t freq;
1176 int err;
1177
1178 sc = acpicpu_sc[ci->ci_acpiid];
1179
1180 if (sc == NULL)
1181 return ENXIO;
1182
1183 err = acpicpu_pstate_get(sc, &freq);
1184
1185 if (err != 0)
1186 return err;
1187
1188 node = *rnode;
1189 node.sysctl_data = &freq;
1190
1191 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1192
1193 if (err != 0 || newp == NULL)
1194 return err;
1195
1196 err = acpicpu_pstate_set(sc, freq);
1197
1198 if (err != 0)
1199 return err;
1200
1201 return 0;
1202 }
1203
1204 static int
1205 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1206 {
1207 struct cpu_info *ci = curcpu();
1208 struct acpicpu_softc *sc;
1209 struct sysctlnode node;
1210 char buf[1024];
1211 size_t len;
1212 uint32_t i;
1213 int err;
1214
1215 sc = acpicpu_sc[ci->ci_acpiid];
1216
1217 if (sc == NULL)
1218 return ENXIO;
1219
1220 (void)memset(&buf, 0, sizeof(buf));
1221
1222 mutex_enter(&sc->sc_mtx);
1223
1224 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1225
1226 if (sc->sc_pstate[i].ps_freq == 0)
1227 continue;
1228
1229 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1230 sc->sc_pstate[i].ps_freq,
1231 i < (sc->sc_pstate_count - 1) ? " " : "");
1232 }
1233
1234 mutex_exit(&sc->sc_mtx);
1235
1236 node = *rnode;
1237 node.sysctl_data = buf;
1238
1239 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1240
1241 if (err != 0 || newp == NULL)
1242 return err;
1243
1244 return 0;
1245 }
1246
1247