acpi_cpu_md.c revision 1.48 1 /* $NetBSD: acpi_cpu_md.c,v 1.48 2011/02/27 18:32:54 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.48 2011/02/27 18:32:54 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * AMD C1E.
56 */
57 #define MSR_CMPHALT 0xc0010055
58
59 #define MSR_CMPHALT_SMI __BIT(27)
60 #define MSR_CMPHALT_C1E __BIT(28)
61 #define MSR_CMPHALT_BMSTS __BIT(29)
62
63 /*
64 * AMD families 10h, 11h, and 14h
65 */
66 #define MSR_10H_LIMIT 0xc0010061
67 #define MSR_10H_CONTROL 0xc0010062
68 #define MSR_10H_STATUS 0xc0010063
69 #define MSR_10H_CONFIG 0xc0010064
70
71 /*
72 * AMD family 0Fh.
73 */
74 #define MSR_0FH_CONTROL 0xc0010041
75 #define MSR_0FH_STATUS 0xc0010042
76
77 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
78 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
79 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
80
81 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
82 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
83 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
84 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
85
86 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
87 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
88
89 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
90 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
91 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
92 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
93 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
94 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
95 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
96
97 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
98
99 static char native_idle_text[16];
100 void (*native_idle)(void) = NULL;
101
102 static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
103 static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
104 static void acpicpu_md_pstate_percent_status(void *, void *);
105 static void acpicpu_md_pstate_status(void *, void *);
106 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
107 uint32_t *);
108 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
109 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
110 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
111 uint32_t, uint32_t);
112 static void acpicpu_md_tstate_status(void *, void *);
113 static int acpicpu_md_pstate_sysctl_init(void);
114 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
115 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
116 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
117
118 extern struct acpicpu_softc **acpicpu_sc;
119 static bool acpicpu_pstate_status = false;
120 static struct sysctllog *acpicpu_log = NULL;
121
122 struct cpu_info *
123 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
124 {
125 struct cpufeature_attach_args *cfaa = aux;
126
127 if (strcmp(cfaa->name, "frequency") != 0)
128 return NULL;
129
130 return cfaa->ci;
131 }
132
133 struct cpu_info *
134 acpicpu_md_attach(device_t parent, device_t self, void *aux)
135 {
136 struct cpufeature_attach_args *cfaa = aux;
137
138 return cfaa->ci;
139 }
140
141 uint32_t
142 acpicpu_md_cap(void)
143 {
144 struct cpu_info *ci = curcpu();
145 uint32_t regs[4];
146 uint32_t val = 0;
147
148 if (cpu_vendor != CPUVENDOR_IDT &&
149 cpu_vendor != CPUVENDOR_INTEL)
150 return val;
151
152 /*
153 * Basic SMP C-states (required for e.g. _CST).
154 */
155 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
156
157 /*
158 * Claim to support dependency coordination.
159 */
160 val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
161
162 /*
163 * If MONITOR/MWAIT is available, announce
164 * support for native instructions in all C-states.
165 */
166 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
167 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
168
169 /*
170 * Set native P- and T-states, if available.
171 */
172 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
173 val |= ACPICPU_PDC_P_FFH;
174
175 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
176 val |= ACPICPU_PDC_T_FFH;
177
178 /*
179 * Declare support for APERF and MPERF.
180 */
181 if (cpuid_level >= 0x06) {
182
183 x86_cpuid(0x00000006, regs);
184
185 if ((regs[2] & CPUID_DSPM_HWF) != 0)
186 val |= ACPICPU_PDC_P_HW;
187 }
188
189 return val;
190 }
191
192 uint32_t
193 acpicpu_md_flags(void)
194 {
195 struct cpu_info *ci = curcpu();
196 struct pci_attach_args pa;
197 uint32_t family, val = 0;
198 uint32_t regs[4];
199
200 if (acpi_md_ncpus() == 1)
201 val |= ACPICPU_FLAG_C_BM;
202
203 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
204 val |= ACPICPU_FLAG_C_FFH;
205
206 /*
207 * By default, assume that the local APIC timer
208 * as well as TSC are stalled during C3 sleep.
209 */
210 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
211
212 switch (cpu_vendor) {
213
214 case CPUVENDOR_IDT:
215
216 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
217 val |= ACPICPU_FLAG_P_FFH;
218
219 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
220 val |= ACPICPU_FLAG_T_FFH;
221
222 break;
223
224 case CPUVENDOR_INTEL:
225
226 /*
227 * Bus master control and arbitration should be
228 * available on all supported Intel CPUs (to be
229 * sure, this is double-checked later from the
230 * firmware data). These flags imply that it is
231 * not necessary to flush caches before C3 state.
232 */
233 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
234
235 /*
236 * Check if we can use "native", MSR-based,
237 * access. If not, we have to resort to I/O.
238 */
239 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
240 val |= ACPICPU_FLAG_P_FFH;
241
242 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
243 val |= ACPICPU_FLAG_T_FFH;
244
245 /*
246 * Check whether MSR_APERF, MSR_MPERF, and Turbo
247 * Boost are available. Also see if we might have
248 * an invariant local APIC timer ("ARAT").
249 */
250 if (cpuid_level >= 0x06) {
251
252 x86_cpuid(0x00000006, regs);
253
254 if ((regs[2] & CPUID_DSPM_HWF) != 0)
255 val |= ACPICPU_FLAG_P_HW;
256
257 if ((regs[0] & CPUID_DSPM_IDA) != 0)
258 val |= ACPICPU_FLAG_P_TURBO;
259
260 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
261 val &= ~ACPICPU_FLAG_C_APIC;
262 }
263
264 /*
265 * Detect whether TSC is invariant. If it is not,
266 * we keep the flag to note that TSC will not run
267 * at constant rate. Depending on the CPU, this may
268 * affect P- and T-state changes, but especially
269 * relevant are C-states; with variant TSC, states
270 * larger than C1 may completely stop the counter.
271 */
272 x86_cpuid(0x80000000, regs);
273
274 if (regs[0] >= 0x80000007) {
275
276 x86_cpuid(0x80000007, regs);
277
278 if ((regs[3] & __BIT(8)) != 0)
279 val &= ~ACPICPU_FLAG_C_TSC;
280 }
281
282 break;
283
284 case CPUVENDOR_AMD:
285
286 x86_cpuid(0x80000000, regs);
287
288 if (regs[0] < 0x80000007)
289 break;
290
291 x86_cpuid(0x80000007, regs);
292
293 family = CPUID2FAMILY(ci->ci_signature);
294
295 if (family == 0xf)
296 family += CPUID2EXTFAMILY(ci->ci_signature);
297
298 switch (family) {
299
300 case 0x0f:
301
302 /*
303 * Evaluate support for the "FID/VID
304 * algorithm" also used by powernow(4).
305 */
306 if ((regs[3] & CPUID_APM_FID) == 0)
307 break;
308
309 if ((regs[3] & CPUID_APM_VID) == 0)
310 break;
311
312 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
313 break;
314
315 case 0x10:
316 case 0x11:
317 val |= ACPICPU_FLAG_C_C1E;
318 /* FALLTHROUGH */
319
320 case 0x14: /* AMD Fusion */
321
322 /*
323 * Like with Intel, detect invariant TSC,
324 * MSR-based P-states, and AMD's "turbo"
325 * (Core Performance Boost), respectively.
326 */
327 if ((regs[3] & CPUID_APM_TSC) != 0)
328 val &= ~ACPICPU_FLAG_C_TSC;
329
330 if ((regs[3] & CPUID_APM_HWP) != 0)
331 val |= ACPICPU_FLAG_P_FFH;
332
333 if ((regs[3] & CPUID_APM_CPB) != 0)
334 val |= ACPICPU_FLAG_P_TURBO;
335
336 /*
337 * Also check for APERF and MPERF,
338 * first available in the family 10h.
339 */
340 if (cpuid_level >= 0x06) {
341
342 x86_cpuid(0x00000006, regs);
343
344 if ((regs[2] & CPUID_DSPM_HWF) != 0)
345 val |= ACPICPU_FLAG_P_HW;
346 }
347
348 break;
349 }
350
351 break;
352 }
353
354 /*
355 * There are several erratums for PIIX4.
356 */
357 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
358 val |= ACPICPU_FLAG_PIIX4;
359
360 return val;
361 }
362
363 static int
364 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
365 {
366
367 /*
368 * XXX: The pci_find_device(9) function only
369 * deals with attached devices. Change this
370 * to use something like pci_device_foreach().
371 */
372 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
373 return 0;
374
375 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
376 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
377 return 1;
378
379 return 0;
380 }
381
382 void
383 acpicpu_md_quirk_c1e(void)
384 {
385 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
386 uint64_t val;
387
388 val = rdmsr(MSR_CMPHALT);
389
390 if ((val & c1e) != 0)
391 wrmsr(MSR_CMPHALT, val & ~c1e);
392 }
393
394 int
395 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
396 {
397 const size_t size = sizeof(native_idle_text);
398 struct acpicpu_cstate *cs;
399 bool ipi = false;
400 int i;
401
402 /*
403 * Save the cpu_idle(9) loop used by default.
404 */
405 x86_cpu_idle_get(&native_idle, native_idle_text, size);
406
407 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
408
409 cs = &sc->sc_cstate[i];
410
411 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
412 ipi = true;
413 break;
414 }
415 }
416
417 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
418
419 return 0;
420 }
421
422 int
423 acpicpu_md_cstate_stop(void)
424 {
425 uint64_t xc;
426 bool ipi;
427
428 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
429 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
430
431 /*
432 * Run a cross-call to ensure that all CPUs are
433 * out from the ACPI idle-loop before detachment.
434 */
435 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
436 xc_wait(xc);
437
438 return 0;
439 }
440
441 /*
442 * Called with interrupts disabled.
443 * Caller should enable interrupts after return.
444 */
445 void
446 acpicpu_md_cstate_enter(int method, int state)
447 {
448 struct cpu_info *ci = curcpu();
449
450 switch (method) {
451
452 case ACPICPU_C_STATE_FFH:
453
454 x86_enable_intr();
455 x86_monitor(&ci->ci_want_resched, 0, 0);
456
457 if (__predict_false(ci->ci_want_resched != 0))
458 return;
459
460 x86_mwait((state - 1) << 4, 0);
461 break;
462
463 case ACPICPU_C_STATE_HALT:
464
465 if (__predict_false(ci->ci_want_resched != 0))
466 return;
467
468 x86_stihlt();
469 break;
470 }
471 }
472
473 int
474 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
475 {
476 const uint64_t est = __BIT(16);
477 uint64_t val;
478
479 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
480 return ENODEV;
481
482 switch (cpu_vendor) {
483
484 case CPUVENDOR_IDT:
485 case CPUVENDOR_INTEL:
486
487 /*
488 * Make sure EST is enabled.
489 */
490 val = rdmsr(MSR_MISC_ENABLE);
491
492 if ((val & est) == 0) {
493
494 val |= est;
495
496 wrmsr(MSR_MISC_ENABLE, val);
497 val = rdmsr(MSR_MISC_ENABLE);
498
499 if ((val & est) == 0)
500 return ENOTTY;
501 }
502 }
503
504 /*
505 * Reset the APERF and MPERF counters.
506 */
507 if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
508 acpicpu_md_pstate_percent_reset(sc);
509
510 return acpicpu_md_pstate_sysctl_init();
511 }
512
513 int
514 acpicpu_md_pstate_stop(void)
515 {
516
517 if (acpicpu_log != NULL)
518 sysctl_teardown(&acpicpu_log);
519
520 return 0;
521 }
522
523 int
524 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
525 {
526 struct acpicpu_pstate *ps, msr;
527 struct cpu_info *ci = curcpu();
528 uint32_t family, i = 0;
529
530 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
531
532 switch (cpu_vendor) {
533
534 case CPUVENDOR_IDT:
535 case CPUVENDOR_INTEL:
536
537 /*
538 * If the so-called Turbo Boost is present,
539 * the P0-state is always the "turbo state".
540 *
541 * For discussion, see:
542 *
543 * Intel Corporation: Intel Turbo Boost Technology
544 * in Intel Core(tm) Microarchitectures (Nehalem)
545 * Based Processors. White Paper, November 2008.
546 */
547 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
548 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
549
550 msr.ps_control_addr = MSR_PERF_CTL;
551 msr.ps_control_mask = __BITS(0, 15);
552
553 msr.ps_status_addr = MSR_PERF_STATUS;
554 msr.ps_status_mask = __BITS(0, 15);
555 break;
556
557 case CPUVENDOR_AMD:
558
559 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
560 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
561
562 family = CPUID2FAMILY(ci->ci_signature);
563
564 if (family == 0xf)
565 family += CPUID2EXTFAMILY(ci->ci_signature);
566
567 switch (family) {
568
569 case 0x0f:
570 msr.ps_control_addr = MSR_0FH_CONTROL;
571 msr.ps_status_addr = MSR_0FH_STATUS;
572 break;
573
574 case 0x10:
575 case 0x11:
576 case 0x14: /* AMD Fusion */
577 msr.ps_control_addr = MSR_10H_CONTROL;
578 msr.ps_control_mask = __BITS(0, 2);
579
580 msr.ps_status_addr = MSR_10H_STATUS;
581 msr.ps_status_mask = __BITS(0, 2);
582 break;
583
584 default:
585
586 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
587 return EOPNOTSUPP;
588 }
589
590 break;
591
592 default:
593 return ENODEV;
594 }
595
596 /*
597 * Fill the P-state structures with MSR addresses that are
598 * known to be correct. If we do not know the addresses,
599 * leave the values intact. If a vendor uses XPSS, we do
600 * not necessarily need to do anything to support new CPUs.
601 */
602 while (i < sc->sc_pstate_count) {
603
604 ps = &sc->sc_pstate[i];
605
606 if (msr.ps_flags != 0)
607 ps->ps_flags |= msr.ps_flags;
608
609 if (msr.ps_status_addr != 0)
610 ps->ps_status_addr = msr.ps_status_addr;
611
612 if (msr.ps_status_mask != 0)
613 ps->ps_status_mask = msr.ps_status_mask;
614
615 if (msr.ps_control_addr != 0)
616 ps->ps_control_addr = msr.ps_control_addr;
617
618 if (msr.ps_control_mask != 0)
619 ps->ps_control_mask = msr.ps_control_mask;
620
621 i++;
622 }
623
624 return 0;
625 }
626
627 /*
628 * Returns the percentage of the actual frequency in
629 * terms of the maximum frequency of the calling CPU
630 * since the last call. A value zero implies an error.
631 */
632 uint8_t
633 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
634 {
635 struct cpu_info *ci = sc->sc_ci;
636 uint64_t aperf, mperf;
637 uint64_t xc, rv = 0;
638
639 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
640 return 0;
641
642 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
643 return 0;
644
645 /*
646 * Read the IA32_APERF and IA32_MPERF counters. The first
647 * increments at the rate of the fixed maximum frequency
648 * configured during the boot, whereas APERF counts at the
649 * rate of the actual frequency. Note that the MSRs must be
650 * read without delay, and that only the ratio between
651 * IA32_APERF and IA32_MPERF is architecturally defined.
652 *
653 * For further details, refer to:
654 *
655 * Intel Corporation: Intel 64 and IA-32 Architectures
656 * Software Developer's Manual. Section 13.2, Volume 3A:
657 * System Programming Guide, Part 1. July, 2008.
658 *
659 * Advanced Micro Devices: BIOS and Kernel Developer's
660 * Guide (BKDG) for AMD Family 10h Processors. Section
661 * 2.4.5, Revision 3.48, April 2010.
662 */
663 x86_disable_intr();
664
665 aperf = sc->sc_pstate_aperf;
666 mperf = sc->sc_pstate_mperf;
667
668 xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
669 xc_wait(xc);
670
671 x86_enable_intr();
672
673 aperf = sc->sc_pstate_aperf - aperf;
674 mperf = sc->sc_pstate_mperf - mperf;
675
676 if (__predict_true(mperf != 0))
677 rv = (aperf * 100) / mperf;
678
679 return rv;
680 }
681
682 static void
683 acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
684 {
685 struct acpicpu_softc *sc = arg1;
686
687 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
688 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
689 }
690
691 static void
692 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
693 {
694 struct msr_rw_info msr;
695 uint64_t xc;
696
697 KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
698 KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
699
700 msr.msr_value = 0;
701 msr.msr_read = false;
702 msr.msr_type = MSR_APERF;
703
704 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
705 xc_wait(xc);
706
707 msr.msr_value = 0;
708 msr.msr_read = false;
709 msr.msr_type = MSR_MPERF;
710
711 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
712 xc_wait(xc);
713
714 sc->sc_pstate_aperf = 0;
715 sc->sc_pstate_mperf = 0;
716 }
717
718 int
719 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
720 {
721 struct acpicpu_pstate *ps = NULL;
722 uint64_t val;
723 uint32_t i;
724
725 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
726 return acpicpu_md_pstate_fidvid_get(sc, freq);
727
728 for (i = 0; i < sc->sc_pstate_count; i++) {
729
730 ps = &sc->sc_pstate[i];
731
732 if (__predict_true(ps->ps_freq != 0))
733 break;
734 }
735
736 if (__predict_false(ps == NULL))
737 return ENODEV;
738
739 if (__predict_false(ps->ps_status_addr == 0))
740 return EINVAL;
741
742 val = rdmsr(ps->ps_status_addr);
743
744 if (__predict_true(ps->ps_status_mask != 0))
745 val = val & ps->ps_status_mask;
746
747 for (i = 0; i < sc->sc_pstate_count; i++) {
748
749 ps = &sc->sc_pstate[i];
750
751 if (__predict_false(ps->ps_freq == 0))
752 continue;
753
754 if (val == ps->ps_status) {
755 *freq = ps->ps_freq;
756 return 0;
757 }
758 }
759
760 return EIO;
761 }
762
763 int
764 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
765 {
766 struct msr_rw_info msr;
767 uint64_t xc;
768 int rv = 0;
769
770 if (__predict_false(ps->ps_control_addr == 0))
771 return EINVAL;
772
773 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
774 return acpicpu_md_pstate_fidvid_set(ps);
775
776 msr.msr_read = false;
777 msr.msr_type = ps->ps_control_addr;
778 msr.msr_value = ps->ps_control;
779
780 if (__predict_true(ps->ps_control_mask != 0)) {
781 msr.msr_mask = ps->ps_control_mask;
782 msr.msr_read = true;
783 }
784
785 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
786 xc_wait(xc);
787
788 /*
789 * Due several problems, we bypass the
790 * relatively expensive status check.
791 */
792 if (acpicpu_pstate_status != true) {
793 DELAY(ps->ps_latency);
794 return 0;
795 }
796
797 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
798 xc_wait(xc);
799
800 return rv;
801 }
802
803 static void
804 acpicpu_md_pstate_status(void *arg1, void *arg2)
805 {
806 struct acpicpu_pstate *ps = arg1;
807 uint64_t val;
808 int i;
809
810 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
811
812 val = rdmsr(ps->ps_status_addr);
813
814 if (__predict_true(ps->ps_status_mask != 0))
815 val = val & ps->ps_status_mask;
816
817 if (val == ps->ps_status)
818 return;
819
820 DELAY(ps->ps_latency);
821 }
822
823 *(uintptr_t *)arg2 = EAGAIN;
824 }
825
826 static int
827 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
828 {
829 struct acpicpu_pstate *ps;
830 uint32_t fid, i, vid;
831 uint32_t cfid, cvid;
832 int rv;
833
834 /*
835 * AMD family 0Fh needs special treatment.
836 * While it wants to use ACPI, it does not
837 * comply with the ACPI specifications.
838 */
839 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
840
841 if (rv != 0)
842 return rv;
843
844 for (i = 0; i < sc->sc_pstate_count; i++) {
845
846 ps = &sc->sc_pstate[i];
847
848 if (__predict_false(ps->ps_freq == 0))
849 continue;
850
851 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
852 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
853
854 if (cfid == fid && cvid == vid) {
855 *freq = ps->ps_freq;
856 return 0;
857 }
858 }
859
860 return EIO;
861 }
862
863 static int
864 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
865 {
866 const uint64_t ctrl = ps->ps_control;
867 uint32_t cfid, cvid, fid, i, irt;
868 uint32_t pll, vco_cfid, vco_fid;
869 uint32_t val, vid, vst;
870 int rv;
871
872 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
873
874 if (rv != 0)
875 return rv;
876
877 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
878 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
879 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
880 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
881 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
882
883 vst = vst * 20;
884 pll = pll * 1000 / 5;
885 irt = 10 * __BIT(irt);
886
887 /*
888 * Phase 1.
889 */
890 while (cvid > vid) {
891
892 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
893 val = (val > cvid) ? 0 : cvid - val;
894
895 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
896 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
897
898 if (rv != 0)
899 return rv;
900 }
901
902 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
903
904 for (; i > 0 && cvid > 0; --i) {
905
906 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
907 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
908
909 if (rv != 0)
910 return rv;
911 }
912
913 /*
914 * Phase 2.
915 */
916 if (cfid != fid) {
917
918 vco_fid = FID_TO_VCO_FID(fid);
919 vco_cfid = FID_TO_VCO_FID(cfid);
920
921 while (abs(vco_fid - vco_cfid) > 2) {
922
923 if (fid <= cfid)
924 val = cfid - 2;
925 else {
926 val = (cfid > 6) ? cfid + 2 :
927 FID_TO_VCO_FID(cfid) + 2;
928 }
929
930 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
931 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
932
933 if (rv != 0)
934 return rv;
935
936 vco_cfid = FID_TO_VCO_FID(cfid);
937 }
938
939 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
940 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
941
942 if (rv != 0)
943 return rv;
944 }
945
946 /*
947 * Phase 3.
948 */
949 if (cvid != vid) {
950
951 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
952 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
953
954 if (rv != 0)
955 return rv;
956 }
957
958 if (cfid != fid || cvid != vid)
959 return EIO;
960
961 return 0;
962 }
963
964 static int
965 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
966 {
967 int i = ACPICPU_P_STATE_RETRY * 100;
968 uint64_t val;
969
970 do {
971 val = rdmsr(MSR_0FH_STATUS);
972
973 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
974
975 if (i == 0)
976 return EAGAIN;
977
978 if (cfid != NULL)
979 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
980
981 if (cvid != NULL)
982 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
983
984 return 0;
985 }
986
987 static void
988 acpicpu_md_pstate_fidvid_write(uint32_t fid,
989 uint32_t vid, uint32_t cnt, uint32_t tmo)
990 {
991 struct msr_rw_info msr;
992 uint64_t xc;
993
994 msr.msr_read = false;
995 msr.msr_type = MSR_0FH_CONTROL;
996 msr.msr_value = 0;
997
998 msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
999 msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
1000 msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
1001 msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
1002
1003 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1004 xc_wait(xc);
1005
1006 DELAY(tmo);
1007 }
1008
1009 int
1010 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
1011 {
1012 struct acpicpu_tstate *ts;
1013 uint64_t val;
1014 uint32_t i;
1015
1016 val = rdmsr(MSR_THERM_CONTROL);
1017
1018 for (i = 0; i < sc->sc_tstate_count; i++) {
1019
1020 ts = &sc->sc_tstate[i];
1021
1022 if (ts->ts_percent == 0)
1023 continue;
1024
1025 if (val == ts->ts_status) {
1026 *percent = ts->ts_percent;
1027 return 0;
1028 }
1029 }
1030
1031 return EIO;
1032 }
1033
1034 int
1035 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1036 {
1037 struct msr_rw_info msr;
1038 uint64_t xc;
1039 int rv = 0;
1040
1041 msr.msr_read = true;
1042 msr.msr_type = MSR_THERM_CONTROL;
1043 msr.msr_value = ts->ts_control;
1044 msr.msr_mask = __BITS(1, 4);
1045
1046 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1047 xc_wait(xc);
1048
1049 if (ts->ts_status == 0) {
1050 DELAY(ts->ts_latency);
1051 return 0;
1052 }
1053
1054 xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
1055 xc_wait(xc);
1056
1057 return rv;
1058 }
1059
1060 static void
1061 acpicpu_md_tstate_status(void *arg1, void *arg2)
1062 {
1063 struct acpicpu_tstate *ts = arg1;
1064 uint64_t val;
1065 int i;
1066
1067 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1068
1069 val = rdmsr(MSR_THERM_CONTROL);
1070
1071 if (val == ts->ts_status)
1072 return;
1073
1074 DELAY(ts->ts_latency);
1075 }
1076
1077 *(uintptr_t *)arg2 = EAGAIN;
1078 }
1079
1080 /*
1081 * A kludge for backwards compatibility.
1082 */
1083 static int
1084 acpicpu_md_pstate_sysctl_init(void)
1085 {
1086 const struct sysctlnode *fnode, *mnode, *rnode;
1087 const char *str;
1088 int rv;
1089
1090 switch (cpu_vendor) {
1091
1092 case CPUVENDOR_IDT:
1093 case CPUVENDOR_INTEL:
1094 str = "est";
1095 break;
1096
1097 case CPUVENDOR_AMD:
1098 str = "powernow";
1099 break;
1100
1101 default:
1102 return ENODEV;
1103 }
1104
1105
1106 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1107 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1108 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1109
1110 if (rv != 0)
1111 goto fail;
1112
1113 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1114 0, CTLTYPE_NODE, str, NULL,
1115 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1116
1117 if (rv != 0)
1118 goto fail;
1119
1120 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1121 0, CTLTYPE_NODE, "frequency", NULL,
1122 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1123
1124 if (rv != 0)
1125 goto fail;
1126
1127 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1128 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1129 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1130
1131 if (rv != 0)
1132 goto fail;
1133
1134 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1135 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1136 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1137
1138 if (rv != 0)
1139 goto fail;
1140
1141 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1142 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1143 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1144
1145 if (rv != 0)
1146 goto fail;
1147
1148 return 0;
1149
1150 fail:
1151 if (acpicpu_log != NULL) {
1152 sysctl_teardown(&acpicpu_log);
1153 acpicpu_log = NULL;
1154 }
1155
1156 return rv;
1157 }
1158
1159 static int
1160 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1161 {
1162 struct cpu_info *ci = curcpu();
1163 struct acpicpu_softc *sc;
1164 struct sysctlnode node;
1165 uint32_t freq;
1166 int err;
1167
1168 sc = acpicpu_sc[ci->ci_acpiid];
1169
1170 if (sc == NULL)
1171 return ENXIO;
1172
1173 err = acpicpu_pstate_get(sc, &freq);
1174
1175 if (err != 0)
1176 return err;
1177
1178 node = *rnode;
1179 node.sysctl_data = &freq;
1180
1181 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1182
1183 if (err != 0 || newp == NULL)
1184 return err;
1185
1186 return 0;
1187 }
1188
1189 static int
1190 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1191 {
1192 struct cpu_info *ci = curcpu();
1193 struct acpicpu_softc *sc;
1194 struct sysctlnode node;
1195 uint32_t freq;
1196 int err;
1197
1198 sc = acpicpu_sc[ci->ci_acpiid];
1199
1200 if (sc == NULL)
1201 return ENXIO;
1202
1203 err = acpicpu_pstate_get(sc, &freq);
1204
1205 if (err != 0)
1206 return err;
1207
1208 node = *rnode;
1209 node.sysctl_data = &freq;
1210
1211 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1212
1213 if (err != 0 || newp == NULL)
1214 return err;
1215
1216 err = acpicpu_pstate_set(sc, freq);
1217
1218 if (err != 0)
1219 return err;
1220
1221 return 0;
1222 }
1223
1224 static int
1225 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1226 {
1227 struct cpu_info *ci = curcpu();
1228 struct acpicpu_softc *sc;
1229 struct sysctlnode node;
1230 char buf[1024];
1231 size_t len;
1232 uint32_t i;
1233 int err;
1234
1235 sc = acpicpu_sc[ci->ci_acpiid];
1236
1237 if (sc == NULL)
1238 return ENXIO;
1239
1240 (void)memset(&buf, 0, sizeof(buf));
1241
1242 mutex_enter(&sc->sc_mtx);
1243
1244 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1245
1246 if (sc->sc_pstate[i].ps_freq == 0)
1247 continue;
1248
1249 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1250 sc->sc_pstate[i].ps_freq,
1251 i < (sc->sc_pstate_count - 1) ? " " : "");
1252 }
1253
1254 mutex_exit(&sc->sc_mtx);
1255
1256 node = *rnode;
1257 node.sysctl_data = buf;
1258
1259 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1260
1261 if (err != 0 || newp == NULL)
1262 return err;
1263
1264 return 0;
1265 }
1266
1267