acpi_cpu_md.c revision 1.49 1 /* $NetBSD: acpi_cpu_md.c,v 1.49 2011/03/01 04:35:48 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.49 2011/03/01 04:35:48 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * AMD C1E.
56 */
57 #define MSR_CMPHALT 0xc0010055
58
59 #define MSR_CMPHALT_SMI __BIT(27)
60 #define MSR_CMPHALT_C1E __BIT(28)
61 #define MSR_CMPHALT_BMSTS __BIT(29)
62
63 /*
64 * AMD families 10h, 11h, and 14h
65 */
66 #define MSR_10H_LIMIT 0xc0010061
67 #define MSR_10H_CONTROL 0xc0010062
68 #define MSR_10H_STATUS 0xc0010063
69 #define MSR_10H_CONFIG 0xc0010064
70
71 /*
72 * AMD family 0Fh.
73 */
74 #define MSR_0FH_CONTROL 0xc0010041
75 #define MSR_0FH_STATUS 0xc0010042
76
77 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
78 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
79 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
80
81 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
82 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
83 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
84 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
85
86 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
87 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
88
89 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
90 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
91 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
92 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
93 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
94 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
95 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
96
97 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
98
99 static char native_idle_text[16];
100 void (*native_idle)(void) = NULL;
101
102 static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
103 static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
104 static void acpicpu_md_pstate_percent_status(void *, void *);
105 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
106 uint32_t *);
107 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
108 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
109 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
110 uint32_t, uint32_t);
111 static int acpicpu_md_pstate_sysctl_init(void);
112 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
113 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
114 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
115
116 extern struct acpicpu_softc **acpicpu_sc;
117 static struct sysctllog *acpicpu_log = NULL;
118
119 struct cpu_info *
120 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
121 {
122 struct cpufeature_attach_args *cfaa = aux;
123
124 if (strcmp(cfaa->name, "frequency") != 0)
125 return NULL;
126
127 return cfaa->ci;
128 }
129
130 struct cpu_info *
131 acpicpu_md_attach(device_t parent, device_t self, void *aux)
132 {
133 struct cpufeature_attach_args *cfaa = aux;
134
135 return cfaa->ci;
136 }
137
138 uint32_t
139 acpicpu_md_cap(void)
140 {
141 struct cpu_info *ci = curcpu();
142 uint32_t regs[4];
143 uint32_t val = 0;
144
145 if (cpu_vendor != CPUVENDOR_IDT &&
146 cpu_vendor != CPUVENDOR_INTEL)
147 return val;
148
149 /*
150 * Basic SMP C-states (required for e.g. _CST).
151 */
152 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
153
154 /*
155 * Claim to support dependency coordination.
156 */
157 val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
158
159 /*
160 * If MONITOR/MWAIT is available, announce
161 * support for native instructions in all C-states.
162 */
163 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
164 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
165
166 /*
167 * Set native P- and T-states, if available.
168 */
169 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 val |= ACPICPU_PDC_P_FFH;
171
172 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 val |= ACPICPU_PDC_T_FFH;
174
175 /*
176 * Declare support for APERF and MPERF.
177 */
178 if (cpuid_level >= 0x06) {
179
180 x86_cpuid(0x00000006, regs);
181
182 if ((regs[2] & CPUID_DSPM_HWF) != 0)
183 val |= ACPICPU_PDC_P_HW;
184 }
185
186 return val;
187 }
188
189 uint32_t
190 acpicpu_md_flags(void)
191 {
192 struct cpu_info *ci = curcpu();
193 struct pci_attach_args pa;
194 uint32_t family, val = 0;
195 uint32_t regs[4];
196
197 if (acpi_md_ncpus() == 1)
198 val |= ACPICPU_FLAG_C_BM;
199
200 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
201 val |= ACPICPU_FLAG_C_FFH;
202
203 /*
204 * By default, assume that the local APIC timer
205 * as well as TSC are stalled during C3 sleep.
206 */
207 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
208
209 switch (cpu_vendor) {
210
211 case CPUVENDOR_IDT:
212
213 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
214 val |= ACPICPU_FLAG_P_FFH;
215
216 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
217 val |= ACPICPU_FLAG_T_FFH;
218
219 break;
220
221 case CPUVENDOR_INTEL:
222
223 /*
224 * Bus master control and arbitration should be
225 * available on all supported Intel CPUs (to be
226 * sure, this is double-checked later from the
227 * firmware data). These flags imply that it is
228 * not necessary to flush caches before C3 state.
229 */
230 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
231
232 /*
233 * Check if we can use "native", MSR-based,
234 * access. If not, we have to resort to I/O.
235 */
236 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
237 val |= ACPICPU_FLAG_P_FFH;
238
239 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
240 val |= ACPICPU_FLAG_T_FFH;
241
242 /*
243 * Check whether MSR_APERF, MSR_MPERF, and Turbo
244 * Boost are available. Also see if we might have
245 * an invariant local APIC timer ("ARAT").
246 */
247 if (cpuid_level >= 0x06) {
248
249 x86_cpuid(0x00000006, regs);
250
251 if ((regs[2] & CPUID_DSPM_HWF) != 0)
252 val |= ACPICPU_FLAG_P_HW;
253
254 if ((regs[0] & CPUID_DSPM_IDA) != 0)
255 val |= ACPICPU_FLAG_P_TURBO;
256
257 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
258 val &= ~ACPICPU_FLAG_C_APIC;
259 }
260
261 /*
262 * Detect whether TSC is invariant. If it is not,
263 * we keep the flag to note that TSC will not run
264 * at constant rate. Depending on the CPU, this may
265 * affect P- and T-state changes, but especially
266 * relevant are C-states; with variant TSC, states
267 * larger than C1 may completely stop the counter.
268 */
269 x86_cpuid(0x80000000, regs);
270
271 if (regs[0] >= 0x80000007) {
272
273 x86_cpuid(0x80000007, regs);
274
275 if ((regs[3] & __BIT(8)) != 0)
276 val &= ~ACPICPU_FLAG_C_TSC;
277 }
278
279 break;
280
281 case CPUVENDOR_AMD:
282
283 x86_cpuid(0x80000000, regs);
284
285 if (regs[0] < 0x80000007)
286 break;
287
288 x86_cpuid(0x80000007, regs);
289
290 family = CPUID2FAMILY(ci->ci_signature);
291
292 if (family == 0xf)
293 family += CPUID2EXTFAMILY(ci->ci_signature);
294
295 switch (family) {
296
297 case 0x0f:
298
299 /*
300 * Evaluate support for the "FID/VID
301 * algorithm" also used by powernow(4).
302 */
303 if ((regs[3] & CPUID_APM_FID) == 0)
304 break;
305
306 if ((regs[3] & CPUID_APM_VID) == 0)
307 break;
308
309 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
310 break;
311
312 case 0x10:
313 case 0x11:
314 val |= ACPICPU_FLAG_C_C1E;
315 /* FALLTHROUGH */
316
317 case 0x14: /* AMD Fusion */
318
319 /*
320 * Like with Intel, detect invariant TSC,
321 * MSR-based P-states, and AMD's "turbo"
322 * (Core Performance Boost), respectively.
323 */
324 if ((regs[3] & CPUID_APM_TSC) != 0)
325 val &= ~ACPICPU_FLAG_C_TSC;
326
327 if ((regs[3] & CPUID_APM_HWP) != 0)
328 val |= ACPICPU_FLAG_P_FFH;
329
330 if ((regs[3] & CPUID_APM_CPB) != 0)
331 val |= ACPICPU_FLAG_P_TURBO;
332
333 /*
334 * Also check for APERF and MPERF,
335 * first available in the family 10h.
336 */
337 if (cpuid_level >= 0x06) {
338
339 x86_cpuid(0x00000006, regs);
340
341 if ((regs[2] & CPUID_DSPM_HWF) != 0)
342 val |= ACPICPU_FLAG_P_HW;
343 }
344
345 break;
346 }
347
348 break;
349 }
350
351 /*
352 * There are several erratums for PIIX4.
353 */
354 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
355 val |= ACPICPU_FLAG_PIIX4;
356
357 return val;
358 }
359
360 static int
361 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
362 {
363
364 /*
365 * XXX: The pci_find_device(9) function only
366 * deals with attached devices. Change this
367 * to use something like pci_device_foreach().
368 */
369 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
370 return 0;
371
372 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
373 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
374 return 1;
375
376 return 0;
377 }
378
379 void
380 acpicpu_md_quirk_c1e(void)
381 {
382 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
383 uint64_t val;
384
385 val = rdmsr(MSR_CMPHALT);
386
387 if ((val & c1e) != 0)
388 wrmsr(MSR_CMPHALT, val & ~c1e);
389 }
390
391 int
392 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
393 {
394 const size_t size = sizeof(native_idle_text);
395 struct acpicpu_cstate *cs;
396 bool ipi = false;
397 int i;
398
399 /*
400 * Save the cpu_idle(9) loop used by default.
401 */
402 x86_cpu_idle_get(&native_idle, native_idle_text, size);
403
404 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
405
406 cs = &sc->sc_cstate[i];
407
408 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
409 ipi = true;
410 break;
411 }
412 }
413
414 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
415
416 return 0;
417 }
418
419 int
420 acpicpu_md_cstate_stop(void)
421 {
422 uint64_t xc;
423 bool ipi;
424
425 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
426 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
427
428 /*
429 * Run a cross-call to ensure that all CPUs are
430 * out from the ACPI idle-loop before detachment.
431 */
432 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
433 xc_wait(xc);
434
435 return 0;
436 }
437
438 /*
439 * Called with interrupts disabled.
440 * Caller should enable interrupts after return.
441 */
442 void
443 acpicpu_md_cstate_enter(int method, int state)
444 {
445 struct cpu_info *ci = curcpu();
446
447 switch (method) {
448
449 case ACPICPU_C_STATE_FFH:
450
451 x86_enable_intr();
452 x86_monitor(&ci->ci_want_resched, 0, 0);
453
454 if (__predict_false(ci->ci_want_resched != 0))
455 return;
456
457 x86_mwait((state - 1) << 4, 0);
458 break;
459
460 case ACPICPU_C_STATE_HALT:
461
462 if (__predict_false(ci->ci_want_resched != 0))
463 return;
464
465 x86_stihlt();
466 break;
467 }
468 }
469
470 int
471 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
472 {
473 const uint64_t est = __BIT(16);
474 uint64_t val;
475
476 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
477 return ENODEV;
478
479 switch (cpu_vendor) {
480
481 case CPUVENDOR_IDT:
482 case CPUVENDOR_INTEL:
483
484 /*
485 * Make sure EST is enabled.
486 */
487 val = rdmsr(MSR_MISC_ENABLE);
488
489 if ((val & est) == 0) {
490
491 val |= est;
492
493 wrmsr(MSR_MISC_ENABLE, val);
494 val = rdmsr(MSR_MISC_ENABLE);
495
496 if ((val & est) == 0)
497 return ENOTTY;
498 }
499 }
500
501 /*
502 * Reset the APERF and MPERF counters.
503 */
504 if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
505 acpicpu_md_pstate_percent_reset(sc);
506
507 return acpicpu_md_pstate_sysctl_init();
508 }
509
510 int
511 acpicpu_md_pstate_stop(void)
512 {
513
514 if (acpicpu_log != NULL)
515 sysctl_teardown(&acpicpu_log);
516
517 return 0;
518 }
519
520 int
521 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
522 {
523 struct acpicpu_pstate *ps, msr;
524 struct cpu_info *ci = curcpu();
525 uint32_t family, i = 0;
526
527 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
528
529 switch (cpu_vendor) {
530
531 case CPUVENDOR_IDT:
532 case CPUVENDOR_INTEL:
533
534 /*
535 * If the so-called Turbo Boost is present,
536 * the P0-state is always the "turbo state".
537 *
538 * For discussion, see:
539 *
540 * Intel Corporation: Intel Turbo Boost Technology
541 * in Intel Core(tm) Microarchitectures (Nehalem)
542 * Based Processors. White Paper, November 2008.
543 */
544 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
545 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
546
547 msr.ps_control_addr = MSR_PERF_CTL;
548 msr.ps_control_mask = __BITS(0, 15);
549
550 msr.ps_status_addr = MSR_PERF_STATUS;
551 msr.ps_status_mask = __BITS(0, 15);
552 break;
553
554 case CPUVENDOR_AMD:
555
556 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
557 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
558
559 family = CPUID2FAMILY(ci->ci_signature);
560
561 if (family == 0xf)
562 family += CPUID2EXTFAMILY(ci->ci_signature);
563
564 switch (family) {
565
566 case 0x0f:
567 msr.ps_control_addr = MSR_0FH_CONTROL;
568 msr.ps_status_addr = MSR_0FH_STATUS;
569 break;
570
571 case 0x10:
572 case 0x11:
573 case 0x14: /* AMD Fusion */
574 msr.ps_control_addr = MSR_10H_CONTROL;
575 msr.ps_control_mask = __BITS(0, 2);
576
577 msr.ps_status_addr = MSR_10H_STATUS;
578 msr.ps_status_mask = __BITS(0, 2);
579 break;
580
581 default:
582
583 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
584 return EOPNOTSUPP;
585 }
586
587 break;
588
589 default:
590 return ENODEV;
591 }
592
593 /*
594 * Fill the P-state structures with MSR addresses that are
595 * known to be correct. If we do not know the addresses,
596 * leave the values intact. If a vendor uses XPSS, we do
597 * not necessarily need to do anything to support new CPUs.
598 */
599 while (i < sc->sc_pstate_count) {
600
601 ps = &sc->sc_pstate[i];
602
603 if (msr.ps_flags != 0)
604 ps->ps_flags |= msr.ps_flags;
605
606 if (msr.ps_status_addr != 0)
607 ps->ps_status_addr = msr.ps_status_addr;
608
609 if (msr.ps_status_mask != 0)
610 ps->ps_status_mask = msr.ps_status_mask;
611
612 if (msr.ps_control_addr != 0)
613 ps->ps_control_addr = msr.ps_control_addr;
614
615 if (msr.ps_control_mask != 0)
616 ps->ps_control_mask = msr.ps_control_mask;
617
618 i++;
619 }
620
621 return 0;
622 }
623
624 /*
625 * Returns the percentage of the actual frequency in
626 * terms of the maximum frequency of the calling CPU
627 * since the last call. A value zero implies an error.
628 */
629 uint8_t
630 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
631 {
632 struct cpu_info *ci = sc->sc_ci;
633 uint64_t aperf, mperf;
634 uint64_t xc, rv = 0;
635
636 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
637 return 0;
638
639 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
640 return 0;
641
642 /*
643 * Read the IA32_APERF and IA32_MPERF counters. The first
644 * increments at the rate of the fixed maximum frequency
645 * configured during the boot, whereas APERF counts at the
646 * rate of the actual frequency. Note that the MSRs must be
647 * read without delay, and that only the ratio between
648 * IA32_APERF and IA32_MPERF is architecturally defined.
649 *
650 * For further details, refer to:
651 *
652 * Intel Corporation: Intel 64 and IA-32 Architectures
653 * Software Developer's Manual. Section 13.2, Volume 3A:
654 * System Programming Guide, Part 1. July, 2008.
655 *
656 * Advanced Micro Devices: BIOS and Kernel Developer's
657 * Guide (BKDG) for AMD Family 10h Processors. Section
658 * 2.4.5, Revision 3.48, April 2010.
659 */
660 x86_disable_intr();
661
662 aperf = sc->sc_pstate_aperf;
663 mperf = sc->sc_pstate_mperf;
664
665 xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
666 xc_wait(xc);
667
668 x86_enable_intr();
669
670 aperf = sc->sc_pstate_aperf - aperf;
671 mperf = sc->sc_pstate_mperf - mperf;
672
673 if (__predict_true(mperf != 0))
674 rv = (aperf * 100) / mperf;
675
676 return rv;
677 }
678
679 static void
680 acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
681 {
682 struct acpicpu_softc *sc = arg1;
683
684 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
685 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
686 }
687
688 static void
689 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
690 {
691 struct msr_rw_info msr;
692 uint64_t xc;
693
694 KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
695 KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
696
697 msr.msr_value = 0;
698 msr.msr_read = false;
699 msr.msr_type = MSR_APERF;
700
701 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
702 xc_wait(xc);
703
704 msr.msr_value = 0;
705 msr.msr_read = false;
706 msr.msr_type = MSR_MPERF;
707
708 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
709 xc_wait(xc);
710
711 sc->sc_pstate_aperf = 0;
712 sc->sc_pstate_mperf = 0;
713 }
714
715 int
716 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
717 {
718 struct acpicpu_pstate *ps = NULL;
719 uint64_t val;
720 uint32_t i;
721
722 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
723 return acpicpu_md_pstate_fidvid_get(sc, freq);
724
725 /*
726 * Pick any P-state for the status address.
727 */
728 for (i = 0; i < sc->sc_pstate_count; i++) {
729
730 ps = &sc->sc_pstate[i];
731
732 if (__predict_true(ps->ps_freq != 0))
733 break;
734 }
735
736 if (__predict_false(ps == NULL))
737 return ENODEV;
738
739 if (__predict_false(ps->ps_status_addr == 0))
740 return EINVAL;
741
742 val = rdmsr(ps->ps_status_addr);
743
744 if (__predict_true(ps->ps_status_mask != 0))
745 val = val & ps->ps_status_mask;
746
747 /*
748 * Search for the value from known P-states.
749 */
750 for (i = 0; i < sc->sc_pstate_count; i++) {
751
752 ps = &sc->sc_pstate[i];
753
754 if (__predict_false(ps->ps_freq == 0))
755 continue;
756
757 if (val == ps->ps_status) {
758 *freq = ps->ps_freq;
759 return 0;
760 }
761 }
762
763 return EIO;
764 }
765
766 int
767 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
768 {
769 uint64_t val;
770
771 if (__predict_false(ps->ps_control_addr == 0))
772 return EINVAL;
773
774 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
775 return acpicpu_md_pstate_fidvid_set(ps);
776
777 val = ps->ps_control;
778
779 if (__predict_true(ps->ps_control_mask != 0))
780 val = val & ps->ps_control_mask;
781
782 wrmsr(ps->ps_control_addr, val);
783 DELAY(ps->ps_latency);
784
785 return 0;
786 }
787
788 static int
789 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
790 {
791 struct acpicpu_pstate *ps;
792 uint32_t fid, i, vid;
793 uint32_t cfid, cvid;
794 int rv;
795
796 /*
797 * AMD family 0Fh needs special treatment.
798 * While it wants to use ACPI, it does not
799 * comply with the ACPI specifications.
800 */
801 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
802
803 if (rv != 0)
804 return rv;
805
806 for (i = 0; i < sc->sc_pstate_count; i++) {
807
808 ps = &sc->sc_pstate[i];
809
810 if (__predict_false(ps->ps_freq == 0))
811 continue;
812
813 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
814 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
815
816 if (cfid == fid && cvid == vid) {
817 *freq = ps->ps_freq;
818 return 0;
819 }
820 }
821
822 return EIO;
823 }
824
825 static int
826 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
827 {
828 const uint64_t ctrl = ps->ps_control;
829 uint32_t cfid, cvid, fid, i, irt;
830 uint32_t pll, vco_cfid, vco_fid;
831 uint32_t val, vid, vst;
832 int rv;
833
834 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
835
836 if (rv != 0)
837 return rv;
838
839 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
840 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
841 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
842 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
843 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
844
845 vst = vst * 20;
846 pll = pll * 1000 / 5;
847 irt = 10 * __BIT(irt);
848
849 /*
850 * Phase 1.
851 */
852 while (cvid > vid) {
853
854 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
855 val = (val > cvid) ? 0 : cvid - val;
856
857 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
858 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
859
860 if (rv != 0)
861 return rv;
862 }
863
864 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
865
866 for (; i > 0 && cvid > 0; --i) {
867
868 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
869 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
870
871 if (rv != 0)
872 return rv;
873 }
874
875 /*
876 * Phase 2.
877 */
878 if (cfid != fid) {
879
880 vco_fid = FID_TO_VCO_FID(fid);
881 vco_cfid = FID_TO_VCO_FID(cfid);
882
883 while (abs(vco_fid - vco_cfid) > 2) {
884
885 if (fid <= cfid)
886 val = cfid - 2;
887 else {
888 val = (cfid > 6) ? cfid + 2 :
889 FID_TO_VCO_FID(cfid) + 2;
890 }
891
892 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
893 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
894
895 if (rv != 0)
896 return rv;
897
898 vco_cfid = FID_TO_VCO_FID(cfid);
899 }
900
901 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
902 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
903
904 if (rv != 0)
905 return rv;
906 }
907
908 /*
909 * Phase 3.
910 */
911 if (cvid != vid) {
912
913 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
914 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
915
916 if (rv != 0)
917 return rv;
918 }
919
920 if (cfid != fid || cvid != vid)
921 return EIO;
922
923 return 0;
924 }
925
926 static int
927 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
928 {
929 int i = ACPICPU_P_STATE_RETRY * 100;
930 uint64_t val;
931
932 do {
933 val = rdmsr(MSR_0FH_STATUS);
934
935 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
936
937 if (i == 0)
938 return EAGAIN;
939
940 if (cfid != NULL)
941 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
942
943 if (cvid != NULL)
944 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
945
946 return 0;
947 }
948
949 static void
950 acpicpu_md_pstate_fidvid_write(uint32_t fid,
951 uint32_t vid, uint32_t cnt, uint32_t tmo)
952 {
953 uint64_t val = 0;
954
955 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
956 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
957 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
958 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
959
960 wrmsr(MSR_0FH_CONTROL, val);
961 DELAY(tmo);
962 }
963
964 int
965 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
966 {
967 struct acpicpu_tstate *ts;
968 uint64_t val;
969 uint32_t i;
970
971 val = rdmsr(MSR_THERM_CONTROL);
972
973 for (i = 0; i < sc->sc_tstate_count; i++) {
974
975 ts = &sc->sc_tstate[i];
976
977 if (ts->ts_percent == 0)
978 continue;
979
980 if (val == ts->ts_status) {
981 *percent = ts->ts_percent;
982 return 0;
983 }
984 }
985
986 return EIO;
987 }
988
989 int
990 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
991 {
992 uint64_t val;
993 uint8_t i;
994
995 val = ts->ts_control;
996 val = val & __BITS(1, 4);
997
998 wrmsr(MSR_THERM_CONTROL, val);
999
1000 if (ts->ts_status == 0) {
1001 DELAY(ts->ts_latency);
1002 return 0;
1003 }
1004
1005 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1006
1007 val = rdmsr(MSR_THERM_CONTROL);
1008
1009 if (val == ts->ts_status)
1010 return 0;
1011
1012 DELAY(ts->ts_latency);
1013 }
1014
1015 return EAGAIN;
1016 }
1017
1018 /*
1019 * A kludge for backwards compatibility.
1020 */
1021 static int
1022 acpicpu_md_pstate_sysctl_init(void)
1023 {
1024 const struct sysctlnode *fnode, *mnode, *rnode;
1025 const char *str;
1026 int rv;
1027
1028 switch (cpu_vendor) {
1029
1030 case CPUVENDOR_IDT:
1031 case CPUVENDOR_INTEL:
1032 str = "est";
1033 break;
1034
1035 case CPUVENDOR_AMD:
1036 str = "powernow";
1037 break;
1038
1039 default:
1040 return ENODEV;
1041 }
1042
1043
1044 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1045 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1046 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1047
1048 if (rv != 0)
1049 goto fail;
1050
1051 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1052 0, CTLTYPE_NODE, str, NULL,
1053 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1054
1055 if (rv != 0)
1056 goto fail;
1057
1058 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1059 0, CTLTYPE_NODE, "frequency", NULL,
1060 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1061
1062 if (rv != 0)
1063 goto fail;
1064
1065 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1066 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1067 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1068
1069 if (rv != 0)
1070 goto fail;
1071
1072 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1073 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1074 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1075
1076 if (rv != 0)
1077 goto fail;
1078
1079 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1080 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1081 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1082
1083 if (rv != 0)
1084 goto fail;
1085
1086 return 0;
1087
1088 fail:
1089 if (acpicpu_log != NULL) {
1090 sysctl_teardown(&acpicpu_log);
1091 acpicpu_log = NULL;
1092 }
1093
1094 return rv;
1095 }
1096
1097 static int
1098 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1099 {
1100 struct cpu_info *ci = curcpu();
1101 struct sysctlnode node;
1102 uint32_t freq;
1103 int err;
1104
1105 err = acpicpu_pstate_get(ci, &freq);
1106
1107 if (err != 0)
1108 return err;
1109
1110 node = *rnode;
1111 node.sysctl_data = &freq;
1112
1113 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1114
1115 if (err != 0 || newp == NULL)
1116 return err;
1117
1118 return 0;
1119 }
1120
1121 static int
1122 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1123 {
1124 struct cpu_info *ci = curcpu();
1125 struct sysctlnode node;
1126 uint32_t freq;
1127 int err;
1128
1129 err = acpicpu_pstate_get(ci, &freq);
1130
1131 if (err != 0)
1132 return err;
1133
1134 node = *rnode;
1135 node.sysctl_data = &freq;
1136
1137 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1138
1139 if (err != 0 || newp == NULL)
1140 return err;
1141
1142 acpicpu_pstate_set(ci, freq);
1143
1144 return 0;
1145 }
1146
1147 static int
1148 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1149 {
1150 struct cpu_info *ci = curcpu();
1151 struct acpicpu_softc *sc;
1152 struct sysctlnode node;
1153 char buf[1024];
1154 size_t len;
1155 uint32_t i;
1156 int err;
1157
1158 sc = acpicpu_sc[ci->ci_acpiid];
1159
1160 if (sc == NULL)
1161 return ENXIO;
1162
1163 (void)memset(&buf, 0, sizeof(buf));
1164
1165 mutex_enter(&sc->sc_mtx);
1166
1167 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1168
1169 if (sc->sc_pstate[i].ps_freq == 0)
1170 continue;
1171
1172 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1173 sc->sc_pstate[i].ps_freq,
1174 i < (sc->sc_pstate_count - 1) ? " " : "");
1175 }
1176
1177 mutex_exit(&sc->sc_mtx);
1178
1179 node = *rnode;
1180 node.sysctl_data = buf;
1181
1182 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1183
1184 if (err != 0 || newp == NULL)
1185 return err;
1186
1187 return 0;
1188 }
1189
1190