acpi_cpu_md.c revision 1.50 1 /* $NetBSD: acpi_cpu_md.c,v 1.50 2011/03/01 05:02:16 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.50 2011/03/01 05:02:16 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * AMD C1E.
56 */
57 #define MSR_CMPHALT 0xc0010055
58
59 #define MSR_CMPHALT_SMI __BIT(27)
60 #define MSR_CMPHALT_C1E __BIT(28)
61 #define MSR_CMPHALT_BMSTS __BIT(29)
62
63 /*
64 * AMD families 10h, 11h, and 14h
65 */
66 #define MSR_10H_LIMIT 0xc0010061
67 #define MSR_10H_CONTROL 0xc0010062
68 #define MSR_10H_STATUS 0xc0010063
69 #define MSR_10H_CONFIG 0xc0010064
70
71 /*
72 * AMD family 0Fh.
73 */
74 #define MSR_0FH_CONTROL 0xc0010041
75 #define MSR_0FH_STATUS 0xc0010042
76
77 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
78 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
79 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
80
81 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
82 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
83 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
84 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
85
86 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
87 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
88
89 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
90 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
91 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
92 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
93 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
94 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
95 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
96
97 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
98
99 static char native_idle_text[16];
100 void (*native_idle)(void) = NULL;
101
102 static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
103 static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
104 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
105 uint32_t *);
106 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
107 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
108 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
109 uint32_t, uint32_t);
110 static int acpicpu_md_pstate_sysctl_init(void);
111 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
112 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
113 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
114
115 extern struct acpicpu_softc **acpicpu_sc;
116 static struct sysctllog *acpicpu_log = NULL;
117
118 struct cpu_info *
119 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
120 {
121 struct cpufeature_attach_args *cfaa = aux;
122
123 if (strcmp(cfaa->name, "frequency") != 0)
124 return NULL;
125
126 return cfaa->ci;
127 }
128
129 struct cpu_info *
130 acpicpu_md_attach(device_t parent, device_t self, void *aux)
131 {
132 struct cpufeature_attach_args *cfaa = aux;
133
134 return cfaa->ci;
135 }
136
137 uint32_t
138 acpicpu_md_cap(void)
139 {
140 struct cpu_info *ci = curcpu();
141 uint32_t regs[4];
142 uint32_t val = 0;
143
144 if (cpu_vendor != CPUVENDOR_IDT &&
145 cpu_vendor != CPUVENDOR_INTEL)
146 return val;
147
148 /*
149 * Basic SMP C-states (required for e.g. _CST).
150 */
151 val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
152
153 /*
154 * Claim to support dependency coordination.
155 */
156 val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
157
158 /*
159 * If MONITOR/MWAIT is available, announce
160 * support for native instructions in all C-states.
161 */
162 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
163 val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
164
165 /*
166 * Set native P- and T-states, if available.
167 */
168 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
169 val |= ACPICPU_PDC_P_FFH;
170
171 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
172 val |= ACPICPU_PDC_T_FFH;
173
174 /*
175 * Declare support for APERF and MPERF.
176 */
177 if (cpuid_level >= 0x06) {
178
179 x86_cpuid(0x00000006, regs);
180
181 if ((regs[2] & CPUID_DSPM_HWF) != 0)
182 val |= ACPICPU_PDC_P_HW;
183 }
184
185 return val;
186 }
187
188 uint32_t
189 acpicpu_md_flags(void)
190 {
191 struct cpu_info *ci = curcpu();
192 struct pci_attach_args pa;
193 uint32_t family, val = 0;
194 uint32_t regs[4];
195
196 if (acpi_md_ncpus() == 1)
197 val |= ACPICPU_FLAG_C_BM;
198
199 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
200 val |= ACPICPU_FLAG_C_FFH;
201
202 /*
203 * By default, assume that the local APIC timer
204 * as well as TSC are stalled during C3 sleep.
205 */
206 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
207
208 switch (cpu_vendor) {
209
210 case CPUVENDOR_IDT:
211
212 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
213 val |= ACPICPU_FLAG_P_FFH;
214
215 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
216 val |= ACPICPU_FLAG_T_FFH;
217
218 break;
219
220 case CPUVENDOR_INTEL:
221
222 /*
223 * Bus master control and arbitration should be
224 * available on all supported Intel CPUs (to be
225 * sure, this is double-checked later from the
226 * firmware data). These flags imply that it is
227 * not necessary to flush caches before C3 state.
228 */
229 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
230
231 /*
232 * Check if we can use "native", MSR-based,
233 * access. If not, we have to resort to I/O.
234 */
235 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
236 val |= ACPICPU_FLAG_P_FFH;
237
238 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
239 val |= ACPICPU_FLAG_T_FFH;
240
241 /*
242 * Check whether MSR_APERF, MSR_MPERF, and Turbo
243 * Boost are available. Also see if we might have
244 * an invariant local APIC timer ("ARAT").
245 */
246 if (cpuid_level >= 0x06) {
247
248 x86_cpuid(0x00000006, regs);
249
250 if ((regs[2] & CPUID_DSPM_HWF) != 0)
251 val |= ACPICPU_FLAG_P_HW;
252
253 if ((regs[0] & CPUID_DSPM_IDA) != 0)
254 val |= ACPICPU_FLAG_P_TURBO;
255
256 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
257 val &= ~ACPICPU_FLAG_C_APIC;
258 }
259
260 /*
261 * Detect whether TSC is invariant. If it is not,
262 * we keep the flag to note that TSC will not run
263 * at constant rate. Depending on the CPU, this may
264 * affect P- and T-state changes, but especially
265 * relevant are C-states; with variant TSC, states
266 * larger than C1 may completely stop the counter.
267 */
268 x86_cpuid(0x80000000, regs);
269
270 if (regs[0] >= 0x80000007) {
271
272 x86_cpuid(0x80000007, regs);
273
274 if ((regs[3] & __BIT(8)) != 0)
275 val &= ~ACPICPU_FLAG_C_TSC;
276 }
277
278 break;
279
280 case CPUVENDOR_AMD:
281
282 x86_cpuid(0x80000000, regs);
283
284 if (regs[0] < 0x80000007)
285 break;
286
287 x86_cpuid(0x80000007, regs);
288
289 family = CPUID2FAMILY(ci->ci_signature);
290
291 if (family == 0xf)
292 family += CPUID2EXTFAMILY(ci->ci_signature);
293
294 switch (family) {
295
296 case 0x0f:
297
298 /*
299 * Evaluate support for the "FID/VID
300 * algorithm" also used by powernow(4).
301 */
302 if ((regs[3] & CPUID_APM_FID) == 0)
303 break;
304
305 if ((regs[3] & CPUID_APM_VID) == 0)
306 break;
307
308 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
309 break;
310
311 case 0x10:
312 case 0x11:
313 val |= ACPICPU_FLAG_C_C1E;
314 /* FALLTHROUGH */
315
316 case 0x14: /* AMD Fusion */
317
318 /*
319 * Like with Intel, detect invariant TSC,
320 * MSR-based P-states, and AMD's "turbo"
321 * (Core Performance Boost), respectively.
322 */
323 if ((regs[3] & CPUID_APM_TSC) != 0)
324 val &= ~ACPICPU_FLAG_C_TSC;
325
326 if ((regs[3] & CPUID_APM_HWP) != 0)
327 val |= ACPICPU_FLAG_P_FFH;
328
329 if ((regs[3] & CPUID_APM_CPB) != 0)
330 val |= ACPICPU_FLAG_P_TURBO;
331
332 /*
333 * Also check for APERF and MPERF,
334 * first available in the family 10h.
335 */
336 if (cpuid_level >= 0x06) {
337
338 x86_cpuid(0x00000006, regs);
339
340 if ((regs[2] & CPUID_DSPM_HWF) != 0)
341 val |= ACPICPU_FLAG_P_HW;
342 }
343
344 break;
345 }
346
347 break;
348 }
349
350 /*
351 * There are several erratums for PIIX4.
352 */
353 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
354 val |= ACPICPU_FLAG_PIIX4;
355
356 return val;
357 }
358
359 static int
360 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
361 {
362
363 /*
364 * XXX: The pci_find_device(9) function only
365 * deals with attached devices. Change this
366 * to use something like pci_device_foreach().
367 */
368 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
369 return 0;
370
371 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
372 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
373 return 1;
374
375 return 0;
376 }
377
378 void
379 acpicpu_md_quirk_c1e(void)
380 {
381 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
382 uint64_t val;
383
384 val = rdmsr(MSR_CMPHALT);
385
386 if ((val & c1e) != 0)
387 wrmsr(MSR_CMPHALT, val & ~c1e);
388 }
389
390 int
391 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
392 {
393 const size_t size = sizeof(native_idle_text);
394 struct acpicpu_cstate *cs;
395 bool ipi = false;
396 int i;
397
398 /*
399 * Save the cpu_idle(9) loop used by default.
400 */
401 x86_cpu_idle_get(&native_idle, native_idle_text, size);
402
403 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
404
405 cs = &sc->sc_cstate[i];
406
407 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
408 ipi = true;
409 break;
410 }
411 }
412
413 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
414
415 return 0;
416 }
417
418 int
419 acpicpu_md_cstate_stop(void)
420 {
421 uint64_t xc;
422 bool ipi;
423
424 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
425 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
426
427 /*
428 * Run a cross-call to ensure that all CPUs are
429 * out from the ACPI idle-loop before detachment.
430 */
431 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
432 xc_wait(xc);
433
434 return 0;
435 }
436
437 /*
438 * Called with interrupts disabled.
439 * Caller should enable interrupts after return.
440 */
441 void
442 acpicpu_md_cstate_enter(int method, int state)
443 {
444 struct cpu_info *ci = curcpu();
445
446 switch (method) {
447
448 case ACPICPU_C_STATE_FFH:
449
450 x86_enable_intr();
451 x86_monitor(&ci->ci_want_resched, 0, 0);
452
453 if (__predict_false(ci->ci_want_resched != 0))
454 return;
455
456 x86_mwait((state - 1) << 4, 0);
457 break;
458
459 case ACPICPU_C_STATE_HALT:
460
461 if (__predict_false(ci->ci_want_resched != 0))
462 return;
463
464 x86_stihlt();
465 break;
466 }
467 }
468
469 int
470 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
471 {
472 const uint64_t est = __BIT(16);
473 uint64_t val;
474
475 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
476 return ENODEV;
477
478 switch (cpu_vendor) {
479
480 case CPUVENDOR_IDT:
481 case CPUVENDOR_INTEL:
482
483 /*
484 * Make sure EST is enabled.
485 */
486 val = rdmsr(MSR_MISC_ENABLE);
487
488 if ((val & est) == 0) {
489
490 val |= est;
491
492 wrmsr(MSR_MISC_ENABLE, val);
493 val = rdmsr(MSR_MISC_ENABLE);
494
495 if ((val & est) == 0)
496 return ENOTTY;
497 }
498 }
499
500 /*
501 * Reset the APERF and MPERF counters.
502 */
503 if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
504 acpicpu_md_pstate_percent_reset(sc);
505
506 return acpicpu_md_pstate_sysctl_init();
507 }
508
509 int
510 acpicpu_md_pstate_stop(void)
511 {
512
513 if (acpicpu_log != NULL)
514 sysctl_teardown(&acpicpu_log);
515
516 return 0;
517 }
518
519 int
520 acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
521 {
522 struct acpicpu_pstate *ps, msr;
523 struct cpu_info *ci = curcpu();
524 uint32_t family, i = 0;
525
526 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
527
528 switch (cpu_vendor) {
529
530 case CPUVENDOR_IDT:
531 case CPUVENDOR_INTEL:
532
533 /*
534 * If the so-called Turbo Boost is present,
535 * the P0-state is always the "turbo state".
536 *
537 * For discussion, see:
538 *
539 * Intel Corporation: Intel Turbo Boost Technology
540 * in Intel Core(tm) Microarchitectures (Nehalem)
541 * Based Processors. White Paper, November 2008.
542 */
543 if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
544 sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
545
546 msr.ps_control_addr = MSR_PERF_CTL;
547 msr.ps_control_mask = __BITS(0, 15);
548
549 msr.ps_status_addr = MSR_PERF_STATUS;
550 msr.ps_status_mask = __BITS(0, 15);
551 break;
552
553 case CPUVENDOR_AMD:
554
555 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
556 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
557
558 family = CPUID2FAMILY(ci->ci_signature);
559
560 if (family == 0xf)
561 family += CPUID2EXTFAMILY(ci->ci_signature);
562
563 switch (family) {
564
565 case 0x0f:
566 msr.ps_control_addr = MSR_0FH_CONTROL;
567 msr.ps_status_addr = MSR_0FH_STATUS;
568 break;
569
570 case 0x10:
571 case 0x11:
572 case 0x14: /* AMD Fusion */
573 msr.ps_control_addr = MSR_10H_CONTROL;
574 msr.ps_control_mask = __BITS(0, 2);
575
576 msr.ps_status_addr = MSR_10H_STATUS;
577 msr.ps_status_mask = __BITS(0, 2);
578 break;
579
580 default:
581
582 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
583 return EOPNOTSUPP;
584 }
585
586 break;
587
588 default:
589 return ENODEV;
590 }
591
592 /*
593 * Fill the P-state structures with MSR addresses that are
594 * known to be correct. If we do not know the addresses,
595 * leave the values intact. If a vendor uses XPSS, we do
596 * not necessarily need to do anything to support new CPUs.
597 */
598 while (i < sc->sc_pstate_count) {
599
600 ps = &sc->sc_pstate[i];
601
602 if (msr.ps_flags != 0)
603 ps->ps_flags |= msr.ps_flags;
604
605 if (msr.ps_status_addr != 0)
606 ps->ps_status_addr = msr.ps_status_addr;
607
608 if (msr.ps_status_mask != 0)
609 ps->ps_status_mask = msr.ps_status_mask;
610
611 if (msr.ps_control_addr != 0)
612 ps->ps_control_addr = msr.ps_control_addr;
613
614 if (msr.ps_control_mask != 0)
615 ps->ps_control_mask = msr.ps_control_mask;
616
617 i++;
618 }
619
620 return 0;
621 }
622
623 uint8_t
624 acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
625 {
626 uint64_t aperf, mperf;
627 uint64_t rv = 0;
628
629 /*
630 * Read the IA32_APERF and IA32_MPERF counters. The first
631 * increments at the rate of the fixed maximum frequency
632 * configured during the boot, whereas APERF counts at the
633 * rate of the actual frequency. Note that the MSRs must be
634 * read without delay, and that only the ratio between
635 * IA32_APERF and IA32_MPERF is architecturally defined.
636 *
637 * The function thus returns the percentage of the actual
638 * frequency in terms of the maximum frequency of the calling
639 * CPU since the last call. A value zero implies an error.
640 *
641 * For further details, refer to:
642 *
643 * Intel Corporation: Intel 64 and IA-32 Architectures
644 * Software Developer's Manual. Section 13.2, Volume 3A:
645 * System Programming Guide, Part 1. July, 2008.
646 *
647 * Advanced Micro Devices: BIOS and Kernel Developer's
648 * Guide (BKDG) for AMD Family 10h Processors. Section
649 * 2.4.5, Revision 3.48, April 2010.
650 */
651 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
652 return 0;
653
654 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
655 return 0;
656
657 aperf = sc->sc_pstate_aperf;
658 mperf = sc->sc_pstate_mperf;
659
660 x86_disable_intr();
661
662 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
663 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
664
665 x86_enable_intr();
666
667 aperf = sc->sc_pstate_aperf - aperf;
668 mperf = sc->sc_pstate_mperf - mperf;
669
670 if (__predict_true(mperf != 0))
671 rv = (aperf * 100) / mperf;
672
673 return rv;
674 }
675
676 static void
677 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
678 {
679 struct msr_rw_info msr;
680 uint64_t xc;
681
682 KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
683 KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
684
685 msr.msr_value = 0;
686 msr.msr_read = false;
687 msr.msr_type = MSR_APERF;
688
689 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
690 xc_wait(xc);
691
692 msr.msr_value = 0;
693 msr.msr_read = false;
694 msr.msr_type = MSR_MPERF;
695
696 xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
697 xc_wait(xc);
698
699 sc->sc_pstate_aperf = 0;
700 sc->sc_pstate_mperf = 0;
701 }
702
703 int
704 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
705 {
706 struct acpicpu_pstate *ps = NULL;
707 uint64_t val;
708 uint32_t i;
709
710 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
711 return acpicpu_md_pstate_fidvid_get(sc, freq);
712
713 /*
714 * Pick any P-state for the status address.
715 */
716 for (i = 0; i < sc->sc_pstate_count; i++) {
717
718 ps = &sc->sc_pstate[i];
719
720 if (__predict_true(ps->ps_freq != 0))
721 break;
722 }
723
724 if (__predict_false(ps == NULL))
725 return ENODEV;
726
727 if (__predict_false(ps->ps_status_addr == 0))
728 return EINVAL;
729
730 val = rdmsr(ps->ps_status_addr);
731
732 if (__predict_true(ps->ps_status_mask != 0))
733 val = val & ps->ps_status_mask;
734
735 /*
736 * Search for the value from known P-states.
737 */
738 for (i = 0; i < sc->sc_pstate_count; i++) {
739
740 ps = &sc->sc_pstate[i];
741
742 if (__predict_false(ps->ps_freq == 0))
743 continue;
744
745 if (val == ps->ps_status) {
746 *freq = ps->ps_freq;
747 return 0;
748 }
749 }
750
751 return EIO;
752 }
753
754 int
755 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
756 {
757 uint64_t val;
758
759 if (__predict_false(ps->ps_control_addr == 0))
760 return EINVAL;
761
762 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
763 return acpicpu_md_pstate_fidvid_set(ps);
764
765 val = ps->ps_control;
766
767 if (__predict_true(ps->ps_control_mask != 0))
768 val = val & ps->ps_control_mask;
769
770 wrmsr(ps->ps_control_addr, val);
771 DELAY(ps->ps_latency);
772
773 return 0;
774 }
775
776 static int
777 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
778 {
779 struct acpicpu_pstate *ps;
780 uint32_t fid, i, vid;
781 uint32_t cfid, cvid;
782 int rv;
783
784 /*
785 * AMD family 0Fh needs special treatment.
786 * While it wants to use ACPI, it does not
787 * comply with the ACPI specifications.
788 */
789 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
790
791 if (rv != 0)
792 return rv;
793
794 for (i = 0; i < sc->sc_pstate_count; i++) {
795
796 ps = &sc->sc_pstate[i];
797
798 if (__predict_false(ps->ps_freq == 0))
799 continue;
800
801 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
802 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
803
804 if (cfid == fid && cvid == vid) {
805 *freq = ps->ps_freq;
806 return 0;
807 }
808 }
809
810 return EIO;
811 }
812
813 static int
814 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
815 {
816 const uint64_t ctrl = ps->ps_control;
817 uint32_t cfid, cvid, fid, i, irt;
818 uint32_t pll, vco_cfid, vco_fid;
819 uint32_t val, vid, vst;
820 int rv;
821
822 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
823
824 if (rv != 0)
825 return rv;
826
827 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
828 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
829 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
830 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
831 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
832
833 vst = vst * 20;
834 pll = pll * 1000 / 5;
835 irt = 10 * __BIT(irt);
836
837 /*
838 * Phase 1.
839 */
840 while (cvid > vid) {
841
842 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
843 val = (val > cvid) ? 0 : cvid - val;
844
845 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
846 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
847
848 if (rv != 0)
849 return rv;
850 }
851
852 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
853
854 for (; i > 0 && cvid > 0; --i) {
855
856 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
857 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
858
859 if (rv != 0)
860 return rv;
861 }
862
863 /*
864 * Phase 2.
865 */
866 if (cfid != fid) {
867
868 vco_fid = FID_TO_VCO_FID(fid);
869 vco_cfid = FID_TO_VCO_FID(cfid);
870
871 while (abs(vco_fid - vco_cfid) > 2) {
872
873 if (fid <= cfid)
874 val = cfid - 2;
875 else {
876 val = (cfid > 6) ? cfid + 2 :
877 FID_TO_VCO_FID(cfid) + 2;
878 }
879
880 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
881 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
882
883 if (rv != 0)
884 return rv;
885
886 vco_cfid = FID_TO_VCO_FID(cfid);
887 }
888
889 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
890 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
891
892 if (rv != 0)
893 return rv;
894 }
895
896 /*
897 * Phase 3.
898 */
899 if (cvid != vid) {
900
901 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
902 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
903
904 if (rv != 0)
905 return rv;
906 }
907
908 if (cfid != fid || cvid != vid)
909 return EIO;
910
911 return 0;
912 }
913
914 static int
915 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
916 {
917 int i = ACPICPU_P_STATE_RETRY * 100;
918 uint64_t val;
919
920 do {
921 val = rdmsr(MSR_0FH_STATUS);
922
923 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
924
925 if (i == 0)
926 return EAGAIN;
927
928 if (cfid != NULL)
929 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
930
931 if (cvid != NULL)
932 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
933
934 return 0;
935 }
936
937 static void
938 acpicpu_md_pstate_fidvid_write(uint32_t fid,
939 uint32_t vid, uint32_t cnt, uint32_t tmo)
940 {
941 uint64_t val = 0;
942
943 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
944 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
945 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
946 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
947
948 wrmsr(MSR_0FH_CONTROL, val);
949 DELAY(tmo);
950 }
951
952 int
953 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
954 {
955 struct acpicpu_tstate *ts;
956 uint64_t val;
957 uint32_t i;
958
959 val = rdmsr(MSR_THERM_CONTROL);
960
961 for (i = 0; i < sc->sc_tstate_count; i++) {
962
963 ts = &sc->sc_tstate[i];
964
965 if (ts->ts_percent == 0)
966 continue;
967
968 if (val == ts->ts_status) {
969 *percent = ts->ts_percent;
970 return 0;
971 }
972 }
973
974 return EIO;
975 }
976
977 int
978 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
979 {
980 uint64_t val;
981 uint8_t i;
982
983 val = ts->ts_control;
984 val = val & __BITS(1, 4);
985
986 wrmsr(MSR_THERM_CONTROL, val);
987
988 if (ts->ts_status == 0) {
989 DELAY(ts->ts_latency);
990 return 0;
991 }
992
993 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
994
995 val = rdmsr(MSR_THERM_CONTROL);
996
997 if (val == ts->ts_status)
998 return 0;
999
1000 DELAY(ts->ts_latency);
1001 }
1002
1003 return EAGAIN;
1004 }
1005
1006 /*
1007 * A kludge for backwards compatibility.
1008 */
1009 static int
1010 acpicpu_md_pstate_sysctl_init(void)
1011 {
1012 const struct sysctlnode *fnode, *mnode, *rnode;
1013 const char *str;
1014 int rv;
1015
1016 switch (cpu_vendor) {
1017
1018 case CPUVENDOR_IDT:
1019 case CPUVENDOR_INTEL:
1020 str = "est";
1021 break;
1022
1023 case CPUVENDOR_AMD:
1024 str = "powernow";
1025 break;
1026
1027 default:
1028 return ENODEV;
1029 }
1030
1031
1032 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1033 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1034 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1035
1036 if (rv != 0)
1037 goto fail;
1038
1039 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1040 0, CTLTYPE_NODE, str, NULL,
1041 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1042
1043 if (rv != 0)
1044 goto fail;
1045
1046 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1047 0, CTLTYPE_NODE, "frequency", NULL,
1048 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1049
1050 if (rv != 0)
1051 goto fail;
1052
1053 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1054 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1055 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1056
1057 if (rv != 0)
1058 goto fail;
1059
1060 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1061 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1062 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1063
1064 if (rv != 0)
1065 goto fail;
1066
1067 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1068 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1069 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1070
1071 if (rv != 0)
1072 goto fail;
1073
1074 return 0;
1075
1076 fail:
1077 if (acpicpu_log != NULL) {
1078 sysctl_teardown(&acpicpu_log);
1079 acpicpu_log = NULL;
1080 }
1081
1082 return rv;
1083 }
1084
1085 static int
1086 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1087 {
1088 struct cpu_info *ci = curcpu();
1089 struct sysctlnode node;
1090 uint32_t freq;
1091 int err;
1092
1093 err = acpicpu_pstate_get(ci, &freq);
1094
1095 if (err != 0)
1096 return err;
1097
1098 node = *rnode;
1099 node.sysctl_data = &freq;
1100
1101 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1102
1103 if (err != 0 || newp == NULL)
1104 return err;
1105
1106 return 0;
1107 }
1108
1109 static int
1110 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1111 {
1112 struct cpu_info *ci = curcpu();
1113 struct sysctlnode node;
1114 uint32_t freq;
1115 int err;
1116
1117 err = acpicpu_pstate_get(ci, &freq);
1118
1119 if (err != 0)
1120 return err;
1121
1122 node = *rnode;
1123 node.sysctl_data = &freq;
1124
1125 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1126
1127 if (err != 0 || newp == NULL)
1128 return err;
1129
1130 acpicpu_pstate_set(ci, freq);
1131
1132 return 0;
1133 }
1134
1135 static int
1136 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1137 {
1138 struct cpu_info *ci = curcpu();
1139 struct acpicpu_softc *sc;
1140 struct sysctlnode node;
1141 char buf[1024];
1142 size_t len;
1143 uint32_t i;
1144 int err;
1145
1146 sc = acpicpu_sc[ci->ci_acpiid];
1147
1148 if (sc == NULL)
1149 return ENXIO;
1150
1151 (void)memset(&buf, 0, sizeof(buf));
1152
1153 mutex_enter(&sc->sc_mtx);
1154
1155 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1156
1157 if (sc->sc_pstate[i].ps_freq == 0)
1158 continue;
1159
1160 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1161 sc->sc_pstate[i].ps_freq,
1162 i < (sc->sc_pstate_count - 1) ? " " : "");
1163 }
1164
1165 mutex_exit(&sc->sc_mtx);
1166
1167 node = *rnode;
1168 node.sysctl_data = buf;
1169
1170 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1171
1172 if (err != 0 || newp == NULL)
1173 return err;
1174
1175 return 0;
1176 }
1177
1178