Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.57
      1 /* $NetBSD: acpi_cpu_md.c,v 1.57 2011/03/24 11:52:53 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.57 2011/03/24 11:52:53 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/device.h>
     35 #include <sys/kcore.h>
     36 #include <sys/sysctl.h>
     37 #include <sys/xcall.h>
     38 
     39 #include <x86/cpu.h>
     40 #include <x86/cpufunc.h>
     41 #include <x86/cputypes.h>
     42 #include <x86/cpuvar.h>
     43 #include <x86/cpu_msr.h>
     44 #include <x86/machdep.h>
     45 
     46 #include <dev/acpi/acpica.h>
     47 #include <dev/acpi/acpi_cpu.h>
     48 
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <machine/acpi_machdep.h>
     53 
     54 /*
     55  * Intel IA32_MISC_ENABLE.
     56  */
     57 #define MSR_MISC_ENABLE_EST	__BIT(16)
     58 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     59 
     60 /*
     61  * AMD C1E.
     62  */
     63 #define MSR_CMPHALT		0xc0010055
     64 
     65 #define MSR_CMPHALT_SMI		__BIT(27)
     66 #define MSR_CMPHALT_C1E		__BIT(28)
     67 #define MSR_CMPHALT_BMSTS	__BIT(29)
     68 
     69 /*
     70  * AMD families 10h, 11h, and 14h
     71  */
     72 #define MSR_10H_LIMIT		0xc0010061
     73 #define MSR_10H_CONTROL		0xc0010062
     74 #define MSR_10H_STATUS		0xc0010063
     75 #define MSR_10H_CONFIG		0xc0010064
     76 
     77 /*
     78  * AMD family 0Fh.
     79  */
     80 #define MSR_0FH_CONTROL		0xc0010041
     81 #define MSR_0FH_STATUS		0xc0010042
     82 
     83 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     84 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     85 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     86 
     87 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     88 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     89 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     90 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     91 
     92 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     93 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     94 
     95 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     96 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     97 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     98 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     99 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    100 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    101 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    102 
    103 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    104 
    105 static char	  native_idle_text[16];
    106 void		(*native_idle)(void) = NULL;
    107 
    108 static int	 acpicpu_md_quirk_piix4(struct pci_attach_args *);
    109 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    110 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    111                                               uint32_t *);
    112 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    113 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    114 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    115 					        uint32_t, uint32_t);
    116 static int	 acpicpu_md_pstate_sysctl_init(void);
    117 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    118 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    120 
    121 extern struct acpicpu_softc **acpicpu_sc;
    122 static struct sysctllog *acpicpu_log = NULL;
    123 
    124 struct cpu_info *
    125 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    126 {
    127 	struct cpufeature_attach_args *cfaa = aux;
    128 
    129 	if (strcmp(cfaa->name, "frequency") != 0)
    130 		return NULL;
    131 
    132 	return cfaa->ci;
    133 }
    134 
    135 struct cpu_info *
    136 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    137 {
    138 	struct cpufeature_attach_args *cfaa = aux;
    139 
    140 	return cfaa->ci;
    141 }
    142 
    143 uint32_t
    144 acpicpu_md_cap(void)
    145 {
    146 	struct cpu_info *ci = curcpu();
    147 	uint32_t regs[4];
    148 	uint32_t val = 0;
    149 
    150 	if (cpu_vendor != CPUVENDOR_IDT &&
    151 	    cpu_vendor != CPUVENDOR_INTEL)
    152 		return val;
    153 
    154 	/*
    155 	 * Basic SMP C-states (required for e.g. _CST).
    156 	 */
    157 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    158 
    159 	/*
    160 	 * Claim to support dependency coordination.
    161 	 */
    162 	val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
    163 
    164         /*
    165 	 * If MONITOR/MWAIT is available, announce
    166 	 * support for native instructions in all C-states.
    167 	 */
    168         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    169 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    170 
    171 	/*
    172 	 * Set native P- and T-states, if available.
    173 	 */
    174         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    175 		val |= ACPICPU_PDC_P_FFH;
    176 
    177 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    178 		val |= ACPICPU_PDC_T_FFH;
    179 
    180 	/*
    181 	 * Declare support for APERF and MPERF.
    182 	 */
    183 	if (cpuid_level >= 0x06) {
    184 
    185 		x86_cpuid(0x00000006, regs);
    186 
    187 		if ((regs[2] & CPUID_DSPM_HWF) != 0)
    188 			val |= ACPICPU_PDC_P_HWF;
    189 	}
    190 
    191 	return val;
    192 }
    193 
    194 uint32_t
    195 acpicpu_md_flags(void)
    196 {
    197 	struct cpu_info *ci = curcpu();
    198 	struct pci_attach_args pa;
    199 	uint32_t family, val = 0;
    200 	uint32_t regs[4];
    201 
    202 	if (acpi_md_ncpus() == 1)
    203 		val |= ACPICPU_FLAG_C_BM;
    204 
    205 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    206 		val |= ACPICPU_FLAG_C_FFH;
    207 
    208 	/*
    209 	 * By default, assume that the local APIC timer
    210 	 * as well as TSC are stalled during C3 sleep.
    211 	 */
    212 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    213 
    214 	switch (cpu_vendor) {
    215 
    216 	case CPUVENDOR_IDT:
    217 
    218 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    219 			val |= ACPICPU_FLAG_P_FFH;
    220 
    221 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    222 			val |= ACPICPU_FLAG_T_FFH;
    223 
    224 		break;
    225 
    226 	case CPUVENDOR_INTEL:
    227 
    228 		/*
    229 		 * Bus master control and arbitration should be
    230 		 * available on all supported Intel CPUs (to be
    231 		 * sure, this is double-checked later from the
    232 		 * firmware data). These flags imply that it is
    233 		 * not necessary to flush caches before C3 state.
    234 		 */
    235 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    236 
    237 		/*
    238 		 * Check if we can use "native", MSR-based,
    239 		 * access. If not, we have to resort to I/O.
    240 		 */
    241 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    242 			val |= ACPICPU_FLAG_P_FFH;
    243 
    244 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    245 			val |= ACPICPU_FLAG_T_FFH;
    246 
    247 		/*
    248 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    249 		 * Boost are available. Also see if we might have
    250 		 * an invariant local APIC timer ("ARAT").
    251 		 */
    252 		if (cpuid_level >= 0x06) {
    253 
    254 			x86_cpuid(0x00000006, regs);
    255 
    256 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    257 				val |= ACPICPU_FLAG_P_HWF;
    258 
    259 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    260 				val |= ACPICPU_FLAG_P_TURBO;
    261 
    262 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    263 				val &= ~ACPICPU_FLAG_C_APIC;
    264 		}
    265 
    266 		/*
    267 		 * Detect whether TSC is invariant. If it is not,
    268 		 * we keep the flag to note that TSC will not run
    269 		 * at constant rate. Depending on the CPU, this may
    270 		 * affect P- and T-state changes, but especially
    271 		 * relevant are C-states; with variant TSC, states
    272 		 * larger than C1 may completely stop the counter.
    273 		 */
    274 		x86_cpuid(0x80000000, regs);
    275 
    276 		if (regs[0] >= 0x80000007) {
    277 
    278 			x86_cpuid(0x80000007, regs);
    279 
    280 			if ((regs[3] & __BIT(8)) != 0)
    281 				val &= ~ACPICPU_FLAG_C_TSC;
    282 		}
    283 
    284 		break;
    285 
    286 	case CPUVENDOR_AMD:
    287 
    288 		x86_cpuid(0x80000000, regs);
    289 
    290 		if (regs[0] < 0x80000007)
    291 			break;
    292 
    293 		x86_cpuid(0x80000007, regs);
    294 
    295 		family = CPUID2FAMILY(ci->ci_signature);
    296 
    297 		if (family == 0xf)
    298 			family += CPUID2EXTFAMILY(ci->ci_signature);
    299 
    300     		switch (family) {
    301 
    302 		case 0x0f:
    303 
    304 			/*
    305 			 * Evaluate support for the "FID/VID
    306 			 * algorithm" also used by powernow(4).
    307 			 */
    308 			if ((regs[3] & CPUID_APM_FID) == 0)
    309 				break;
    310 
    311 			if ((regs[3] & CPUID_APM_VID) == 0)
    312 				break;
    313 
    314 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    315 			break;
    316 
    317 		case 0x10:
    318 		case 0x11:
    319 			val |= ACPICPU_FLAG_C_C1E;
    320 			/* FALLTHROUGH */
    321 
    322 		case 0x14: /* AMD Fusion */
    323 
    324 			/*
    325 			 * Like with Intel, detect invariant TSC,
    326 			 * MSR-based P-states, and AMD's "turbo"
    327 			 * (Core Performance Boost), respectively.
    328 			 */
    329 			if ((regs[3] & CPUID_APM_TSC) != 0)
    330 				val &= ~ACPICPU_FLAG_C_TSC;
    331 
    332 			if ((regs[3] & CPUID_APM_HWP) != 0)
    333 				val |= ACPICPU_FLAG_P_FFH;
    334 
    335 			if ((regs[3] & CPUID_APM_CPB) != 0)
    336 				val |= ACPICPU_FLAG_P_TURBO;
    337 
    338 			/*
    339 			 * Also check for APERF and MPERF,
    340 			 * first available in the family 10h.
    341 			 */
    342 			if (cpuid_level >= 0x06) {
    343 
    344 				x86_cpuid(0x00000006, regs);
    345 
    346 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    347 					val |= ACPICPU_FLAG_P_HWF;
    348 			}
    349 
    350 			break;
    351 		}
    352 
    353 		break;
    354 	}
    355 
    356 	/*
    357 	 * There are several erratums for PIIX4.
    358 	 */
    359 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    360 		val |= ACPICPU_FLAG_PIIX4;
    361 
    362 	return val;
    363 }
    364 
    365 static int
    366 acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
    367 {
    368 
    369 	/*
    370 	 * XXX: The pci_find_device(9) function only
    371 	 *	deals with attached devices. Change this
    372 	 *	to use something like pci_device_foreach().
    373 	 */
    374 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    375 		return 0;
    376 
    377 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    378 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    379 		return 1;
    380 
    381 	return 0;
    382 }
    383 
    384 void
    385 acpicpu_md_quirk_c1e(void)
    386 {
    387 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    388 	uint64_t val;
    389 
    390 	val = rdmsr(MSR_CMPHALT);
    391 
    392 	if ((val & c1e) != 0)
    393 		wrmsr(MSR_CMPHALT, val & ~c1e);
    394 }
    395 
    396 int
    397 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    398 {
    399 	const size_t size = sizeof(native_idle_text);
    400 	struct acpicpu_cstate *cs;
    401 	bool ipi = false;
    402 	int i;
    403 
    404 	/*
    405 	 * Save the cpu_idle(9) loop used by default.
    406 	 */
    407 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    408 
    409 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    410 
    411 		cs = &sc->sc_cstate[i];
    412 
    413 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    414 			ipi = true;
    415 			break;
    416 		}
    417 	}
    418 
    419 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    420 
    421 	return 0;
    422 }
    423 
    424 int
    425 acpicpu_md_cstate_stop(void)
    426 {
    427 	uint64_t xc;
    428 	bool ipi;
    429 
    430 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    431 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    432 
    433 	/*
    434 	 * Run a cross-call to ensure that all CPUs are
    435 	 * out from the ACPI idle-loop before detachment.
    436 	 */
    437 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    438 	xc_wait(xc);
    439 
    440 	return 0;
    441 }
    442 
    443 /*
    444  * Called with interrupts disabled.
    445  * Caller should enable interrupts after return.
    446  */
    447 void
    448 acpicpu_md_cstate_enter(int method, int state)
    449 {
    450 	struct cpu_info *ci = curcpu();
    451 
    452 	switch (method) {
    453 
    454 	case ACPICPU_C_STATE_FFH:
    455 
    456 		x86_enable_intr();
    457 		x86_monitor(&ci->ci_want_resched, 0, 0);
    458 
    459 		if (__predict_false(ci->ci_want_resched != 0))
    460 			return;
    461 
    462 		x86_mwait((state - 1) << 4, 0);
    463 		break;
    464 
    465 	case ACPICPU_C_STATE_HALT:
    466 
    467 		if (__predict_false(ci->ci_want_resched != 0))
    468 			return;
    469 
    470 		x86_stihlt();
    471 		break;
    472 	}
    473 }
    474 
    475 int
    476 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    477 {
    478 	uint64_t xc;
    479 
    480 	/*
    481 	 * Reset the APERF and MPERF counters.
    482 	 */
    483 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    484 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    485 		xc_wait(xc);
    486 	}
    487 
    488 	return acpicpu_md_pstate_sysctl_init();
    489 }
    490 
    491 int
    492 acpicpu_md_pstate_stop(void)
    493 {
    494 	if (acpicpu_log != NULL)
    495 		sysctl_teardown(&acpicpu_log);
    496 
    497 	return 0;
    498 }
    499 
    500 int
    501 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    502 {
    503 	struct cpu_info *ci = sc->sc_ci;
    504 	struct acpicpu_pstate *ps, msr;
    505 	uint32_t family, i = 0;
    506 	uint64_t val;
    507 
    508 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    509 
    510 	switch (cpu_vendor) {
    511 
    512 	case CPUVENDOR_IDT:
    513 	case CPUVENDOR_INTEL:
    514 
    515 		/*
    516 		 * Make sure EST is enabled.
    517 		 */
    518 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    519 
    520 			val = rdmsr(MSR_MISC_ENABLE);
    521 
    522 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    523 
    524 				val |= MSR_MISC_ENABLE_EST;
    525 				wrmsr(MSR_MISC_ENABLE, val);
    526 				val = rdmsr(MSR_MISC_ENABLE);
    527 
    528 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    529 					return ENOTTY;
    530 			}
    531 		}
    532 
    533 		/*
    534 		 * If the so-called Turbo Boost is present,
    535 		 * the P0-state is always the "turbo state".
    536 		 * It is shown as the P1 frequency + 1 MHz.
    537 		 *
    538 		 * For discussion, see:
    539 		 *
    540 		 *	Intel Corporation: Intel Turbo Boost Technology
    541 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    542 		 *	Based Processors. White Paper, November 2008.
    543 		 */
    544 		if (sc->sc_pstate_count >= 2 &&
    545 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    546 
    547 			ps = &sc->sc_pstate[0];
    548 
    549 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    550 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    551 		}
    552 
    553 		msr.ps_control_addr = MSR_PERF_CTL;
    554 		msr.ps_control_mask = __BITS(0, 15);
    555 
    556 		msr.ps_status_addr  = MSR_PERF_STATUS;
    557 		msr.ps_status_mask  = __BITS(0, 15);
    558 		break;
    559 
    560 	case CPUVENDOR_AMD:
    561 
    562 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    563 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    564 
    565 		family = CPUID2FAMILY(ci->ci_signature);
    566 
    567 		if (family == 0xf)
    568 			family += CPUID2EXTFAMILY(ci->ci_signature);
    569 
    570 		switch (family) {
    571 
    572 		case 0x0f:
    573 			msr.ps_control_addr = MSR_0FH_CONTROL;
    574 			msr.ps_status_addr  = MSR_0FH_STATUS;
    575 			break;
    576 
    577 		case 0x10:
    578 		case 0x11:
    579 		case 0x14: /* AMD Fusion */
    580 			msr.ps_control_addr = MSR_10H_CONTROL;
    581 			msr.ps_control_mask = __BITS(0, 2);
    582 
    583 			msr.ps_status_addr  = MSR_10H_STATUS;
    584 			msr.ps_status_mask  = __BITS(0, 2);
    585 			break;
    586 
    587 		default:
    588 			/*
    589 			 * If we have an unknown AMD CPU, rely on XPSS.
    590 			 */
    591 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    592 				return EOPNOTSUPP;
    593 		}
    594 
    595 		break;
    596 
    597 	default:
    598 		return ENODEV;
    599 	}
    600 
    601 	/*
    602 	 * Fill the P-state structures with MSR addresses that are
    603 	 * known to be correct. If we do not know the addresses,
    604 	 * leave the values intact. If a vendor uses XPSS, we do
    605 	 * not necessarily need to do anything to support new CPUs.
    606 	 */
    607 	while (i < sc->sc_pstate_count) {
    608 
    609 		ps = &sc->sc_pstate[i];
    610 
    611 		if (msr.ps_flags != 0)
    612 			ps->ps_flags |= msr.ps_flags;
    613 
    614 		if (msr.ps_status_addr != 0)
    615 			ps->ps_status_addr = msr.ps_status_addr;
    616 
    617 		if (msr.ps_status_mask != 0)
    618 			ps->ps_status_mask = msr.ps_status_mask;
    619 
    620 		if (msr.ps_control_addr != 0)
    621 			ps->ps_control_addr = msr.ps_control_addr;
    622 
    623 		if (msr.ps_control_mask != 0)
    624 			ps->ps_control_mask = msr.ps_control_mask;
    625 
    626 		i++;
    627 	}
    628 
    629 	return 0;
    630 }
    631 
    632 /*
    633  * Read the IA32_APERF and IA32_MPERF counters. The first
    634  * increments at the rate of the fixed maximum frequency
    635  * configured during the boot, whereas APERF counts at the
    636  * rate of the actual frequency. Note that the MSRs must be
    637  * read without delay, and that only the ratio between
    638  * IA32_APERF and IA32_MPERF is architecturally defined.
    639  *
    640  * The function thus returns the percentage of the actual
    641  * frequency in terms of the maximum frequency of the calling
    642  * CPU since the last call. A value zero implies an error.
    643  *
    644  * For further details, refer to:
    645  *
    646  *	Intel Corporation: Intel 64 and IA-32 Architectures
    647  *	Software Developer's Manual. Section 13.2, Volume 3A:
    648  *	System Programming Guide, Part 1. July, 2008.
    649  *
    650  *	Advanced Micro Devices: BIOS and Kernel Developer's
    651  *	Guide (BKDG) for AMD Family 10h Processors. Section
    652  *	2.4.5, Revision 3.48, April 2010.
    653  */
    654 uint8_t
    655 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    656 {
    657 	struct acpicpu_softc *sc;
    658 	uint64_t aperf, mperf;
    659 	uint8_t rv = 0;
    660 
    661 	sc = acpicpu_sc[ci->ci_acpiid];
    662 
    663 	if (__predict_false(sc == NULL))
    664 		return 0;
    665 
    666 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    667 		return 0;
    668 
    669 	aperf = sc->sc_pstate_aperf;
    670 	mperf = sc->sc_pstate_mperf;
    671 
    672 	x86_disable_intr();
    673 
    674 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    675 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    676 
    677 	x86_enable_intr();
    678 
    679 	aperf = sc->sc_pstate_aperf - aperf;
    680 	mperf = sc->sc_pstate_mperf - mperf;
    681 
    682 	if (__predict_true(mperf != 0))
    683 		rv = (aperf * 100) / mperf;
    684 
    685 	return rv;
    686 }
    687 
    688 static void
    689 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    690 {
    691 	struct cpu_info *ci = curcpu();
    692 	struct acpicpu_softc *sc;
    693 
    694 	sc = acpicpu_sc[ci->ci_acpiid];
    695 
    696 	if (__predict_false(sc == NULL))
    697 		return;
    698 
    699 	x86_disable_intr();
    700 
    701 	wrmsr(MSR_APERF, 0);
    702 	wrmsr(MSR_MPERF, 0);
    703 
    704 	x86_enable_intr();
    705 
    706 	sc->sc_pstate_aperf = 0;
    707 	sc->sc_pstate_mperf = 0;
    708 }
    709 
    710 int
    711 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    712 {
    713 	struct acpicpu_pstate *ps = NULL;
    714 	uint64_t val;
    715 	uint32_t i;
    716 
    717 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    718 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    719 
    720 	/*
    721 	 * Pick any P-state for the status address.
    722 	*/
    723 	for (i = 0; i < sc->sc_pstate_count; i++) {
    724 
    725 		ps = &sc->sc_pstate[i];
    726 
    727 		if (__predict_true(ps->ps_freq != 0))
    728 			break;
    729 	}
    730 
    731 	if (__predict_false(ps == NULL))
    732 		return ENODEV;
    733 
    734 	if (__predict_false(ps->ps_status_addr == 0))
    735 		return EINVAL;
    736 
    737 	val = rdmsr(ps->ps_status_addr);
    738 
    739 	if (__predict_true(ps->ps_status_mask != 0))
    740 		val = val & ps->ps_status_mask;
    741 
    742 	/*
    743 	 * Search for the value from known P-states.
    744 	 */
    745 	for (i = 0; i < sc->sc_pstate_count; i++) {
    746 
    747 		ps = &sc->sc_pstate[i];
    748 
    749 		if (__predict_false(ps->ps_freq == 0))
    750 			continue;
    751 
    752 		if (val == ps->ps_status) {
    753 			*freq = ps->ps_freq;
    754 			return 0;
    755 		}
    756 	}
    757 
    758 	return EIO;
    759 }
    760 
    761 int
    762 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    763 {
    764 	uint64_t val = 0;
    765 
    766 	if (__predict_false(ps->ps_control_addr == 0))
    767 		return EINVAL;
    768 
    769 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    770 		return acpicpu_md_pstate_fidvid_set(ps);
    771 
    772 	/*
    773 	 * If the mask is set, do a read-modify-write.
    774 	 */
    775 	if (__predict_true(ps->ps_control_mask != 0)) {
    776 		val = rdmsr(ps->ps_control_addr);
    777 		val &= ~ps->ps_control_mask;
    778 	}
    779 
    780 	val |= ps->ps_control;
    781 
    782 	wrmsr(ps->ps_control_addr, val);
    783 	DELAY(ps->ps_latency);
    784 
    785 	return 0;
    786 }
    787 
    788 static int
    789 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    790 {
    791 	struct acpicpu_pstate *ps;
    792 	uint32_t fid, i, vid;
    793 	uint32_t cfid, cvid;
    794 	int rv;
    795 
    796 	/*
    797 	 * AMD family 0Fh needs special treatment.
    798 	 * While it wants to use ACPI, it does not
    799 	 * comply with the ACPI specifications.
    800 	 */
    801 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    802 
    803 	if (rv != 0)
    804 		return rv;
    805 
    806 	for (i = 0; i < sc->sc_pstate_count; i++) {
    807 
    808 		ps = &sc->sc_pstate[i];
    809 
    810 		if (__predict_false(ps->ps_freq == 0))
    811 			continue;
    812 
    813 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    814 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    815 
    816 		if (cfid == fid && cvid == vid) {
    817 			*freq = ps->ps_freq;
    818 			return 0;
    819 		}
    820 	}
    821 
    822 	return EIO;
    823 }
    824 
    825 static int
    826 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    827 {
    828 	const uint64_t ctrl = ps->ps_control;
    829 	uint32_t cfid, cvid, fid, i, irt;
    830 	uint32_t pll, vco_cfid, vco_fid;
    831 	uint32_t val, vid, vst;
    832 	int rv;
    833 
    834 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    835 
    836 	if (rv != 0)
    837 		return rv;
    838 
    839 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    840 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    841 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    842 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    843 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    844 
    845 	vst = vst * 20;
    846 	pll = pll * 1000 / 5;
    847 	irt = 10 * __BIT(irt);
    848 
    849 	/*
    850 	 * Phase 1.
    851 	 */
    852 	while (cvid > vid) {
    853 
    854 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    855 		val = (val > cvid) ? 0 : cvid - val;
    856 
    857 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    858 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    859 
    860 		if (rv != 0)
    861 			return rv;
    862 	}
    863 
    864 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    865 
    866 	for (; i > 0 && cvid > 0; --i) {
    867 
    868 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    869 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    870 
    871 		if (rv != 0)
    872 			return rv;
    873 	}
    874 
    875 	/*
    876 	 * Phase 2.
    877 	 */
    878 	if (cfid != fid) {
    879 
    880 		vco_fid  = FID_TO_VCO_FID(fid);
    881 		vco_cfid = FID_TO_VCO_FID(cfid);
    882 
    883 		while (abs(vco_fid - vco_cfid) > 2) {
    884 
    885 			if (fid <= cfid)
    886 				val = cfid - 2;
    887 			else {
    888 				val = (cfid > 6) ? cfid + 2 :
    889 				    FID_TO_VCO_FID(cfid) + 2;
    890 			}
    891 
    892 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    893 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    894 
    895 			if (rv != 0)
    896 				return rv;
    897 
    898 			vco_cfid = FID_TO_VCO_FID(cfid);
    899 		}
    900 
    901 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    902 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    903 
    904 		if (rv != 0)
    905 			return rv;
    906 	}
    907 
    908 	/*
    909 	 * Phase 3.
    910 	 */
    911 	if (cvid != vid) {
    912 
    913 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    914 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    915 
    916 		if (rv != 0)
    917 			return rv;
    918 	}
    919 
    920 	if (cfid != fid || cvid != vid)
    921 		return EIO;
    922 
    923 	return 0;
    924 }
    925 
    926 static int
    927 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    928 {
    929 	int i = ACPICPU_P_STATE_RETRY * 100;
    930 	uint64_t val;
    931 
    932 	do {
    933 		val = rdmsr(MSR_0FH_STATUS);
    934 
    935 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    936 
    937 	if (i == 0)
    938 		return EAGAIN;
    939 
    940 	if (cfid != NULL)
    941 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    942 
    943 	if (cvid != NULL)
    944 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    945 
    946 	return 0;
    947 }
    948 
    949 static void
    950 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    951     uint32_t vid, uint32_t cnt, uint32_t tmo)
    952 {
    953 	uint64_t val = 0;
    954 
    955 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    956 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    957 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    958 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    959 
    960 	wrmsr(MSR_0FH_CONTROL, val);
    961 	DELAY(tmo);
    962 }
    963 
    964 int
    965 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    966 {
    967 	struct acpicpu_tstate *ts;
    968 	uint64_t val;
    969 	uint32_t i;
    970 
    971 	val = rdmsr(MSR_THERM_CONTROL);
    972 
    973 	for (i = 0; i < sc->sc_tstate_count; i++) {
    974 
    975 		ts = &sc->sc_tstate[i];
    976 
    977 		if (ts->ts_percent == 0)
    978 			continue;
    979 
    980 		if (val == ts->ts_status) {
    981 			*percent = ts->ts_percent;
    982 			return 0;
    983 		}
    984 	}
    985 
    986 	return EIO;
    987 }
    988 
    989 int
    990 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    991 {
    992 	uint64_t val;
    993 	uint8_t i;
    994 
    995 	val = ts->ts_control;
    996 	val = val & __BITS(1, 4);
    997 
    998 	wrmsr(MSR_THERM_CONTROL, val);
    999 
   1000 	if (ts->ts_status == 0) {
   1001 		DELAY(ts->ts_latency);
   1002 		return 0;
   1003 	}
   1004 
   1005 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1006 
   1007 		val = rdmsr(MSR_THERM_CONTROL);
   1008 
   1009 		if (val == ts->ts_status)
   1010 			return 0;
   1011 
   1012 		DELAY(ts->ts_latency);
   1013 	}
   1014 
   1015 	return EAGAIN;
   1016 }
   1017 
   1018 /*
   1019  * A kludge for backwards compatibility.
   1020  */
   1021 static int
   1022 acpicpu_md_pstate_sysctl_init(void)
   1023 {
   1024 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1025 	const char *str;
   1026 	int rv;
   1027 
   1028 	switch (cpu_vendor) {
   1029 
   1030 	case CPUVENDOR_IDT:
   1031 	case CPUVENDOR_INTEL:
   1032 		str = "est";
   1033 		break;
   1034 
   1035 	case CPUVENDOR_AMD:
   1036 		str = "powernow";
   1037 		break;
   1038 
   1039 	default:
   1040 		return ENODEV;
   1041 	}
   1042 
   1043 
   1044 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1045 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1046 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1047 
   1048 	if (rv != 0)
   1049 		goto fail;
   1050 
   1051 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1052 	    0, CTLTYPE_NODE, str, NULL,
   1053 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1054 
   1055 	if (rv != 0)
   1056 		goto fail;
   1057 
   1058 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1059 	    0, CTLTYPE_NODE, "frequency", NULL,
   1060 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1061 
   1062 	if (rv != 0)
   1063 		goto fail;
   1064 
   1065 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1066 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1067 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1068 
   1069 	if (rv != 0)
   1070 		goto fail;
   1071 
   1072 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1073 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1074 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1075 
   1076 	if (rv != 0)
   1077 		goto fail;
   1078 
   1079 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1080 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1081 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1082 
   1083 	if (rv != 0)
   1084 		goto fail;
   1085 
   1086 	return 0;
   1087 
   1088 fail:
   1089 	if (acpicpu_log != NULL) {
   1090 		sysctl_teardown(&acpicpu_log);
   1091 		acpicpu_log = NULL;
   1092 	}
   1093 
   1094 	return rv;
   1095 }
   1096 
   1097 static int
   1098 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1099 {
   1100 	struct cpu_info *ci = curcpu();
   1101 	struct sysctlnode node;
   1102 	uint32_t freq;
   1103 	int err;
   1104 
   1105 	err = acpicpu_pstate_get(ci, &freq);
   1106 
   1107 	if (err != 0)
   1108 		return err;
   1109 
   1110 	node = *rnode;
   1111 	node.sysctl_data = &freq;
   1112 
   1113 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1114 
   1115 	if (err != 0 || newp == NULL)
   1116 		return err;
   1117 
   1118 	return 0;
   1119 }
   1120 
   1121 static int
   1122 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1123 {
   1124 	struct cpu_info *ci = curcpu();
   1125 	struct sysctlnode node;
   1126 	uint32_t freq;
   1127 	int err;
   1128 
   1129 	err = acpicpu_pstate_get(ci, &freq);
   1130 
   1131 	if (err != 0)
   1132 		return err;
   1133 
   1134 	node = *rnode;
   1135 	node.sysctl_data = &freq;
   1136 
   1137 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1138 
   1139 	if (err != 0 || newp == NULL)
   1140 		return err;
   1141 
   1142 	acpicpu_pstate_set(ci, freq);
   1143 
   1144 	return 0;
   1145 }
   1146 
   1147 static int
   1148 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1149 {
   1150 	struct cpu_info *ci = curcpu();
   1151 	struct acpicpu_softc *sc;
   1152 	struct sysctlnode node;
   1153 	char buf[1024];
   1154 	size_t len;
   1155 	uint32_t i;
   1156 	int err;
   1157 
   1158 	sc = acpicpu_sc[ci->ci_acpiid];
   1159 
   1160 	if (sc == NULL)
   1161 		return ENXIO;
   1162 
   1163 	(void)memset(&buf, 0, sizeof(buf));
   1164 
   1165 	mutex_enter(&sc->sc_mtx);
   1166 
   1167 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1168 
   1169 		if (sc->sc_pstate[i].ps_freq == 0)
   1170 			continue;
   1171 
   1172 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1173 		    sc->sc_pstate[i].ps_freq,
   1174 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1175 	}
   1176 
   1177 	mutex_exit(&sc->sc_mtx);
   1178 
   1179 	node = *rnode;
   1180 	node.sysctl_data = buf;
   1181 
   1182 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1183 
   1184 	if (err != 0 || newp == NULL)
   1185 		return err;
   1186 
   1187 	return 0;
   1188 }
   1189 
   1190