acpi_cpu_md.c revision 1.61 1 /* $NetBSD: acpi_cpu_md.c,v 1.61 2011/06/12 10:11:52 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.61 2011/06/12 10:11:52 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * Intel IA32_MISC_ENABLE.
56 */
57 #define MSR_MISC_ENABLE_EST __BIT(16)
58 #define MSR_MISC_ENABLE_TURBO __BIT(38)
59
60 /*
61 * AMD C1E.
62 */
63 #define MSR_CMPHALT 0xc0010055
64
65 #define MSR_CMPHALT_SMI __BIT(27)
66 #define MSR_CMPHALT_C1E __BIT(28)
67 #define MSR_CMPHALT_BMSTS __BIT(29)
68
69 /*
70 * AMD families 10h, 11h, and 14h
71 */
72 #define MSR_10H_LIMIT 0xc0010061
73 #define MSR_10H_CONTROL 0xc0010062
74 #define MSR_10H_STATUS 0xc0010063
75 #define MSR_10H_CONFIG 0xc0010064
76
77 /*
78 * AMD family 0Fh.
79 */
80 #define MSR_0FH_CONTROL 0xc0010041
81 #define MSR_0FH_STATUS 0xc0010042
82
83 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86
87 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91
92 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94
95 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102
103 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104
105 static char native_idle_text[16];
106 void (*native_idle)(void) = NULL;
107
108 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
109 static void acpicpu_md_pstate_hwf_reset(void *, void *);
110 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
111 uint32_t *);
112 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
113 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
114 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
115 uint32_t, uint32_t);
116 static int acpicpu_md_pstate_sysctl_init(void);
117 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
118 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
119 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
120
121 extern struct acpicpu_softc **acpicpu_sc;
122 static struct sysctllog *acpicpu_log = NULL;
123
124 struct cpu_info *
125 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
126 {
127 struct cpufeature_attach_args *cfaa = aux;
128
129 if (strcmp(cfaa->name, "frequency") != 0)
130 return NULL;
131
132 return cfaa->ci;
133 }
134
135 struct cpu_info *
136 acpicpu_md_attach(device_t parent, device_t self, void *aux)
137 {
138 struct cpufeature_attach_args *cfaa = aux;
139
140 return cfaa->ci;
141 }
142
143 uint32_t
144 acpicpu_md_flags(void)
145 {
146 struct cpu_info *ci = curcpu();
147 struct pci_attach_args pa;
148 uint32_t family, val = 0;
149 uint32_t regs[4];
150
151 if (acpi_md_ncpus() == 1)
152 val |= ACPICPU_FLAG_C_BM;
153
154 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
155 val |= ACPICPU_FLAG_C_FFH;
156
157 /*
158 * By default, assume that the local APIC timer
159 * as well as TSC are stalled during C3 sleep.
160 */
161 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
162
163 switch (cpu_vendor) {
164
165 case CPUVENDOR_IDT:
166
167 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
168 val |= ACPICPU_FLAG_P_FFH;
169
170 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
171 val |= ACPICPU_FLAG_T_FFH;
172
173 break;
174
175 case CPUVENDOR_INTEL:
176
177 /*
178 * Bus master control and arbitration should be
179 * available on all supported Intel CPUs (to be
180 * sure, this is double-checked later from the
181 * firmware data). These flags imply that it is
182 * not necessary to flush caches before C3 state.
183 */
184 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
185
186 /*
187 * Check if we can use "native", MSR-based,
188 * access. If not, we have to resort to I/O.
189 */
190 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
191 val |= ACPICPU_FLAG_P_FFH;
192
193 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
194 val |= ACPICPU_FLAG_T_FFH;
195
196 /*
197 * Check whether MSR_APERF, MSR_MPERF, and Turbo
198 * Boost are available. Also see if we might have
199 * an invariant local APIC timer ("ARAT").
200 */
201 if (cpuid_level >= 0x06) {
202
203 x86_cpuid(0x00000006, regs);
204
205 if ((regs[2] & CPUID_DSPM_HWF) != 0)
206 val |= ACPICPU_FLAG_P_HWF;
207
208 if ((regs[0] & CPUID_DSPM_IDA) != 0)
209 val |= ACPICPU_FLAG_P_TURBO;
210
211 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
212 val &= ~ACPICPU_FLAG_C_APIC;
213 }
214
215 /*
216 * Detect whether TSC is invariant. If it is not,
217 * we keep the flag to note that TSC will not run
218 * at constant rate. Depending on the CPU, this may
219 * affect P- and T-state changes, but especially
220 * relevant are C-states; with variant TSC, states
221 * larger than C1 may completely stop the counter.
222 */
223 x86_cpuid(0x80000000, regs);
224
225 if (regs[0] >= 0x80000007) {
226
227 x86_cpuid(0x80000007, regs);
228
229 if ((regs[3] & __BIT(8)) != 0)
230 val &= ~ACPICPU_FLAG_C_TSC;
231 }
232
233 break;
234
235 case CPUVENDOR_AMD:
236
237 x86_cpuid(0x80000000, regs);
238
239 if (regs[0] < 0x80000007)
240 break;
241
242 x86_cpuid(0x80000007, regs);
243
244 family = CPUID2FAMILY(ci->ci_signature);
245
246 if (family == 0xf)
247 family += CPUID2EXTFAMILY(ci->ci_signature);
248
249 switch (family) {
250
251 case 0x0f:
252
253 /*
254 * Evaluate support for the "FID/VID
255 * algorithm" also used by powernow(4).
256 */
257 if ((regs[3] & CPUID_APM_FID) == 0)
258 break;
259
260 if ((regs[3] & CPUID_APM_VID) == 0)
261 break;
262
263 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
264 break;
265
266 case 0x10:
267 case 0x11:
268 val |= ACPICPU_FLAG_C_C1E;
269 /* FALLTHROUGH */
270
271 case 0x14: /* AMD Fusion */
272
273 /*
274 * Like with Intel, detect invariant TSC,
275 * MSR-based P-states, and AMD's "turbo"
276 * (Core Performance Boost), respectively.
277 */
278 if ((regs[3] & CPUID_APM_TSC) != 0)
279 val &= ~ACPICPU_FLAG_C_TSC;
280
281 if ((regs[3] & CPUID_APM_HWP) != 0)
282 val |= ACPICPU_FLAG_P_FFH;
283
284 if ((regs[3] & CPUID_APM_CPB) != 0)
285 val |= ACPICPU_FLAG_P_TURBO;
286
287 /*
288 * Also check for APERF and MPERF,
289 * first available in the family 10h.
290 */
291 if (cpuid_level >= 0x06) {
292
293 x86_cpuid(0x00000006, regs);
294
295 if ((regs[2] & CPUID_DSPM_HWF) != 0)
296 val |= ACPICPU_FLAG_P_HWF;
297 }
298
299 break;
300 }
301
302 break;
303 }
304
305 /*
306 * There are several erratums for PIIX4.
307 */
308 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
309 val |= ACPICPU_FLAG_PIIX4;
310
311 return val;
312 }
313
314 static int
315 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
316 {
317
318 /*
319 * XXX: The pci_find_device(9) function only
320 * deals with attached devices. Change this
321 * to use something like pci_device_foreach().
322 */
323 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
324 return 0;
325
326 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
327 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
328 return 1;
329
330 return 0;
331 }
332
333 void
334 acpicpu_md_quirk_c1e(void)
335 {
336 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
337 uint64_t val;
338
339 val = rdmsr(MSR_CMPHALT);
340
341 if ((val & c1e) != 0)
342 wrmsr(MSR_CMPHALT, val & ~c1e);
343 }
344
345 int
346 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
347 {
348 const size_t size = sizeof(native_idle_text);
349 struct acpicpu_cstate *cs;
350 bool ipi = false;
351 int i;
352
353 /*
354 * Save the cpu_idle(9) loop used by default.
355 */
356 x86_cpu_idle_get(&native_idle, native_idle_text, size);
357
358 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
359
360 cs = &sc->sc_cstate[i];
361
362 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
363 ipi = true;
364 break;
365 }
366 }
367
368 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
369
370 return 0;
371 }
372
373 int
374 acpicpu_md_cstate_stop(void)
375 {
376 uint64_t xc;
377 bool ipi;
378
379 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
380 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
381
382 /*
383 * Run a cross-call to ensure that all CPUs are
384 * out from the ACPI idle-loop before detachment.
385 */
386 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
387 xc_wait(xc);
388
389 return 0;
390 }
391
392 /*
393 * Called with interrupts disabled.
394 * Caller should enable interrupts after return.
395 */
396 void
397 acpicpu_md_cstate_enter(int method, int state)
398 {
399 struct cpu_info *ci = curcpu();
400
401 switch (method) {
402
403 case ACPICPU_C_STATE_FFH:
404
405 x86_enable_intr();
406 x86_monitor(&ci->ci_want_resched, 0, 0);
407
408 if (__predict_false(ci->ci_want_resched != 0))
409 return;
410
411 x86_mwait((state - 1) << 4, 0);
412 break;
413
414 case ACPICPU_C_STATE_HALT:
415
416 if (__predict_false(ci->ci_want_resched != 0))
417 return;
418
419 x86_stihlt();
420 break;
421 }
422 }
423
424 int
425 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
426 {
427 uint64_t xc;
428
429 /*
430 * Reset the APERF and MPERF counters.
431 */
432 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
433 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
434 xc_wait(xc);
435 }
436
437 return acpicpu_md_pstate_sysctl_init();
438 }
439
440 int
441 acpicpu_md_pstate_stop(void)
442 {
443 if (acpicpu_log != NULL)
444 sysctl_teardown(&acpicpu_log);
445
446 return 0;
447 }
448
449 int
450 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
451 {
452 struct cpu_info *ci = sc->sc_ci;
453 struct acpicpu_pstate *ps, msr;
454 uint32_t family, i = 0;
455 uint64_t val;
456
457 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
458
459 switch (cpu_vendor) {
460
461 case CPUVENDOR_IDT:
462 case CPUVENDOR_INTEL:
463
464 /*
465 * Make sure EST is enabled.
466 */
467 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
468
469 val = rdmsr(MSR_MISC_ENABLE);
470
471 if ((val & MSR_MISC_ENABLE_EST) == 0) {
472
473 val |= MSR_MISC_ENABLE_EST;
474 wrmsr(MSR_MISC_ENABLE, val);
475 val = rdmsr(MSR_MISC_ENABLE);
476
477 if ((val & MSR_MISC_ENABLE_EST) == 0)
478 return ENOTTY;
479 }
480 }
481
482 /*
483 * If the so-called Turbo Boost is present,
484 * the P0-state is always the "turbo state".
485 * It is shown as the P1 frequency + 1 MHz.
486 *
487 * For discussion, see:
488 *
489 * Intel Corporation: Intel Turbo Boost Technology
490 * in Intel Core(tm) Microarchitectures (Nehalem)
491 * Based Processors. White Paper, November 2008.
492 */
493 if (sc->sc_pstate_count >= 2 &&
494 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
495
496 ps = &sc->sc_pstate[0];
497
498 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
499 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
500 }
501
502 msr.ps_control_addr = MSR_PERF_CTL;
503 msr.ps_control_mask = __BITS(0, 15);
504
505 msr.ps_status_addr = MSR_PERF_STATUS;
506 msr.ps_status_mask = __BITS(0, 15);
507 break;
508
509 case CPUVENDOR_AMD:
510
511 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
512 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
513
514 family = CPUID2FAMILY(ci->ci_signature);
515
516 if (family == 0xf)
517 family += CPUID2EXTFAMILY(ci->ci_signature);
518
519 switch (family) {
520
521 case 0x0f:
522 msr.ps_control_addr = MSR_0FH_CONTROL;
523 msr.ps_status_addr = MSR_0FH_STATUS;
524 break;
525
526 case 0x10:
527 case 0x11:
528 case 0x14: /* AMD Fusion */
529 msr.ps_control_addr = MSR_10H_CONTROL;
530 msr.ps_control_mask = __BITS(0, 2);
531
532 msr.ps_status_addr = MSR_10H_STATUS;
533 msr.ps_status_mask = __BITS(0, 2);
534 break;
535
536 default:
537 /*
538 * If we have an unknown AMD CPU, rely on XPSS.
539 */
540 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
541 return EOPNOTSUPP;
542 }
543
544 break;
545
546 default:
547 return ENODEV;
548 }
549
550 /*
551 * Fill the P-state structures with MSR addresses that are
552 * known to be correct. If we do not know the addresses,
553 * leave the values intact. If a vendor uses XPSS, we do
554 * not necessarily need to do anything to support new CPUs.
555 */
556 while (i < sc->sc_pstate_count) {
557
558 ps = &sc->sc_pstate[i];
559
560 if (msr.ps_flags != 0)
561 ps->ps_flags |= msr.ps_flags;
562
563 if (msr.ps_status_addr != 0)
564 ps->ps_status_addr = msr.ps_status_addr;
565
566 if (msr.ps_status_mask != 0)
567 ps->ps_status_mask = msr.ps_status_mask;
568
569 if (msr.ps_control_addr != 0)
570 ps->ps_control_addr = msr.ps_control_addr;
571
572 if (msr.ps_control_mask != 0)
573 ps->ps_control_mask = msr.ps_control_mask;
574
575 i++;
576 }
577
578 return 0;
579 }
580
581 /*
582 * Read the IA32_APERF and IA32_MPERF counters. The first
583 * increments at the rate of the fixed maximum frequency
584 * configured during the boot, whereas APERF counts at the
585 * rate of the actual frequency. Note that the MSRs must be
586 * read without delay, and that only the ratio between
587 * IA32_APERF and IA32_MPERF is architecturally defined.
588 *
589 * The function thus returns the percentage of the actual
590 * frequency in terms of the maximum frequency of the calling
591 * CPU since the last call. A value zero implies an error.
592 *
593 * For further details, refer to:
594 *
595 * Intel Corporation: Intel 64 and IA-32 Architectures
596 * Software Developer's Manual. Section 13.2, Volume 3A:
597 * System Programming Guide, Part 1. July, 2008.
598 *
599 * Advanced Micro Devices: BIOS and Kernel Developer's
600 * Guide (BKDG) for AMD Family 10h Processors. Section
601 * 2.4.5, Revision 3.48, April 2010.
602 */
603 uint8_t
604 acpicpu_md_pstate_hwf(struct cpu_info *ci)
605 {
606 struct acpicpu_softc *sc;
607 uint64_t aperf, mperf;
608 uint8_t rv = 0;
609
610 sc = acpicpu_sc[ci->ci_acpiid];
611
612 if (__predict_false(sc == NULL))
613 return 0;
614
615 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
616 return 0;
617
618 aperf = sc->sc_pstate_aperf;
619 mperf = sc->sc_pstate_mperf;
620
621 x86_disable_intr();
622
623 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
624 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
625
626 x86_enable_intr();
627
628 aperf = sc->sc_pstate_aperf - aperf;
629 mperf = sc->sc_pstate_mperf - mperf;
630
631 if (__predict_true(mperf != 0))
632 rv = (aperf * 100) / mperf;
633
634 return rv;
635 }
636
637 static void
638 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
639 {
640 struct cpu_info *ci = curcpu();
641 struct acpicpu_softc *sc;
642
643 sc = acpicpu_sc[ci->ci_acpiid];
644
645 if (__predict_false(sc == NULL))
646 return;
647
648 x86_disable_intr();
649
650 wrmsr(MSR_APERF, 0);
651 wrmsr(MSR_MPERF, 0);
652
653 x86_enable_intr();
654
655 sc->sc_pstate_aperf = 0;
656 sc->sc_pstate_mperf = 0;
657 }
658
659 int
660 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
661 {
662 struct acpicpu_pstate *ps = NULL;
663 uint64_t val;
664 uint32_t i;
665
666 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
667 return acpicpu_md_pstate_fidvid_get(sc, freq);
668
669 /*
670 * Pick any P-state for the status address.
671 */
672 for (i = 0; i < sc->sc_pstate_count; i++) {
673
674 ps = &sc->sc_pstate[i];
675
676 if (__predict_true(ps->ps_freq != 0))
677 break;
678 }
679
680 if (__predict_false(ps == NULL))
681 return ENODEV;
682
683 if (__predict_false(ps->ps_status_addr == 0))
684 return EINVAL;
685
686 val = rdmsr(ps->ps_status_addr);
687
688 if (__predict_true(ps->ps_status_mask != 0))
689 val = val & ps->ps_status_mask;
690
691 /*
692 * Search for the value from known P-states.
693 */
694 for (i = 0; i < sc->sc_pstate_count; i++) {
695
696 ps = &sc->sc_pstate[i];
697
698 if (__predict_false(ps->ps_freq == 0))
699 continue;
700
701 if (val == ps->ps_status) {
702 *freq = ps->ps_freq;
703 return 0;
704 }
705 }
706
707 /*
708 * If the value was not found, try APERF/MPERF.
709 * The state is P0 if the return value is 100 %.
710 */
711 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
712
713 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
714 *freq = sc->sc_pstate[0].ps_freq;
715 return 0;
716 }
717 }
718
719 return EIO;
720 }
721
722 int
723 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
724 {
725 uint64_t val = 0;
726
727 if (__predict_false(ps->ps_control_addr == 0))
728 return EINVAL;
729
730 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
731 return acpicpu_md_pstate_fidvid_set(ps);
732
733 /*
734 * If the mask is set, do a read-modify-write.
735 */
736 if (__predict_true(ps->ps_control_mask != 0)) {
737 val = rdmsr(ps->ps_control_addr);
738 val &= ~ps->ps_control_mask;
739 }
740
741 val |= ps->ps_control;
742
743 wrmsr(ps->ps_control_addr, val);
744 DELAY(ps->ps_latency);
745
746 return 0;
747 }
748
749 static int
750 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
751 {
752 struct acpicpu_pstate *ps;
753 uint32_t fid, i, vid;
754 uint32_t cfid, cvid;
755 int rv;
756
757 /*
758 * AMD family 0Fh needs special treatment.
759 * While it wants to use ACPI, it does not
760 * comply with the ACPI specifications.
761 */
762 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
763
764 if (rv != 0)
765 return rv;
766
767 for (i = 0; i < sc->sc_pstate_count; i++) {
768
769 ps = &sc->sc_pstate[i];
770
771 if (__predict_false(ps->ps_freq == 0))
772 continue;
773
774 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
775 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
776
777 if (cfid == fid && cvid == vid) {
778 *freq = ps->ps_freq;
779 return 0;
780 }
781 }
782
783 return EIO;
784 }
785
786 static int
787 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
788 {
789 const uint64_t ctrl = ps->ps_control;
790 uint32_t cfid, cvid, fid, i, irt;
791 uint32_t pll, vco_cfid, vco_fid;
792 uint32_t val, vid, vst;
793 int rv;
794
795 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
796
797 if (rv != 0)
798 return rv;
799
800 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
801 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
802 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
803 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
804 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
805
806 vst = vst * 20;
807 pll = pll * 1000 / 5;
808 irt = 10 * __BIT(irt);
809
810 /*
811 * Phase 1.
812 */
813 while (cvid > vid) {
814
815 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
816 val = (val > cvid) ? 0 : cvid - val;
817
818 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
819 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
820
821 if (rv != 0)
822 return rv;
823 }
824
825 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
826
827 for (; i > 0 && cvid > 0; --i) {
828
829 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
830 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
831
832 if (rv != 0)
833 return rv;
834 }
835
836 /*
837 * Phase 2.
838 */
839 if (cfid != fid) {
840
841 vco_fid = FID_TO_VCO_FID(fid);
842 vco_cfid = FID_TO_VCO_FID(cfid);
843
844 while (abs(vco_fid - vco_cfid) > 2) {
845
846 if (fid <= cfid)
847 val = cfid - 2;
848 else {
849 val = (cfid > 6) ? cfid + 2 :
850 FID_TO_VCO_FID(cfid) + 2;
851 }
852
853 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
854 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
855
856 if (rv != 0)
857 return rv;
858
859 vco_cfid = FID_TO_VCO_FID(cfid);
860 }
861
862 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
863 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
864
865 if (rv != 0)
866 return rv;
867 }
868
869 /*
870 * Phase 3.
871 */
872 if (cvid != vid) {
873
874 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
875 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
876
877 if (rv != 0)
878 return rv;
879 }
880
881 return 0;
882 }
883
884 static int
885 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
886 {
887 int i = ACPICPU_P_STATE_RETRY * 100;
888 uint64_t val;
889
890 do {
891 val = rdmsr(MSR_0FH_STATUS);
892
893 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
894
895 if (i == 0)
896 return EAGAIN;
897
898 if (cfid != NULL)
899 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
900
901 if (cvid != NULL)
902 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
903
904 return 0;
905 }
906
907 static void
908 acpicpu_md_pstate_fidvid_write(uint32_t fid,
909 uint32_t vid, uint32_t cnt, uint32_t tmo)
910 {
911 uint64_t val = 0;
912
913 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
914 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
915 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
916 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
917
918 wrmsr(MSR_0FH_CONTROL, val);
919 DELAY(tmo);
920 }
921
922 int
923 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
924 {
925 struct acpicpu_tstate *ts;
926 uint64_t val;
927 uint32_t i;
928
929 val = rdmsr(MSR_THERM_CONTROL);
930
931 for (i = 0; i < sc->sc_tstate_count; i++) {
932
933 ts = &sc->sc_tstate[i];
934
935 if (ts->ts_percent == 0)
936 continue;
937
938 if (val == ts->ts_status) {
939 *percent = ts->ts_percent;
940 return 0;
941 }
942 }
943
944 return EIO;
945 }
946
947 int
948 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
949 {
950 uint64_t val;
951 uint8_t i;
952
953 val = ts->ts_control;
954 val = val & __BITS(1, 4);
955
956 wrmsr(MSR_THERM_CONTROL, val);
957
958 if (ts->ts_status == 0) {
959 DELAY(ts->ts_latency);
960 return 0;
961 }
962
963 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
964
965 val = rdmsr(MSR_THERM_CONTROL);
966
967 if (val == ts->ts_status)
968 return 0;
969
970 DELAY(ts->ts_latency);
971 }
972
973 return EAGAIN;
974 }
975
976 /*
977 * A kludge for backwards compatibility.
978 */
979 static int
980 acpicpu_md_pstate_sysctl_init(void)
981 {
982 const struct sysctlnode *fnode, *mnode, *rnode;
983 const char *str;
984 int rv;
985
986 switch (cpu_vendor) {
987
988 case CPUVENDOR_IDT:
989 case CPUVENDOR_INTEL:
990 str = "est";
991 break;
992
993 case CPUVENDOR_AMD:
994 str = "powernow";
995 break;
996
997 default:
998 return ENODEV;
999 }
1000
1001
1002 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1003 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1004 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1005
1006 if (rv != 0)
1007 goto fail;
1008
1009 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1010 0, CTLTYPE_NODE, str, NULL,
1011 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1012
1013 if (rv != 0)
1014 goto fail;
1015
1016 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1017 0, CTLTYPE_NODE, "frequency", NULL,
1018 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1019
1020 if (rv != 0)
1021 goto fail;
1022
1023 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1024 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1025 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1026
1027 if (rv != 0)
1028 goto fail;
1029
1030 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1031 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1032 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1033
1034 if (rv != 0)
1035 goto fail;
1036
1037 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1038 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1039 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1040
1041 if (rv != 0)
1042 goto fail;
1043
1044 return 0;
1045
1046 fail:
1047 if (acpicpu_log != NULL) {
1048 sysctl_teardown(&acpicpu_log);
1049 acpicpu_log = NULL;
1050 }
1051
1052 return rv;
1053 }
1054
1055 static int
1056 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1057 {
1058 struct cpu_info *ci = curcpu();
1059 struct sysctlnode node;
1060 uint32_t freq;
1061 int err;
1062
1063 err = acpicpu_pstate_get(ci, &freq);
1064
1065 if (err != 0)
1066 return err;
1067
1068 node = *rnode;
1069 node.sysctl_data = &freq;
1070
1071 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1072
1073 if (err != 0 || newp == NULL)
1074 return err;
1075
1076 return 0;
1077 }
1078
1079 static int
1080 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1081 {
1082 struct cpu_info *ci = curcpu();
1083 struct sysctlnode node;
1084 uint32_t freq;
1085 int err;
1086
1087 err = acpicpu_pstate_get(ci, &freq);
1088
1089 if (err != 0)
1090 return err;
1091
1092 node = *rnode;
1093 node.sysctl_data = &freq;
1094
1095 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1096
1097 if (err != 0 || newp == NULL)
1098 return err;
1099
1100 acpicpu_pstate_set(ci, freq);
1101
1102 return 0;
1103 }
1104
1105 static int
1106 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1107 {
1108 struct cpu_info *ci = curcpu();
1109 struct acpicpu_softc *sc;
1110 struct sysctlnode node;
1111 char buf[1024];
1112 size_t len;
1113 uint32_t i;
1114 int err;
1115
1116 sc = acpicpu_sc[ci->ci_acpiid];
1117
1118 if (sc == NULL)
1119 return ENXIO;
1120
1121 (void)memset(&buf, 0, sizeof(buf));
1122
1123 mutex_enter(&sc->sc_mtx);
1124
1125 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1126
1127 if (sc->sc_pstate[i].ps_freq == 0)
1128 continue;
1129
1130 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1131 sc->sc_pstate[i].ps_freq,
1132 i < (sc->sc_pstate_count - 1) ? " " : "");
1133 }
1134
1135 mutex_exit(&sc->sc_mtx);
1136
1137 node = *rnode;
1138 node.sysctl_data = buf;
1139
1140 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1141
1142 if (err != 0 || newp == NULL)
1143 return err;
1144
1145 return 0;
1146 }
1147
1148