acpi_cpu_md.c revision 1.62 1 /* $NetBSD: acpi_cpu_md.c,v 1.62 2011/06/22 08:49:54 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.62 2011/06/22 08:49:54 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * Intel IA32_MISC_ENABLE.
56 */
57 #define MSR_MISC_ENABLE_EST __BIT(16)
58 #define MSR_MISC_ENABLE_TURBO __BIT(38)
59
60 /*
61 * AMD C1E.
62 */
63 #define MSR_CMPHALT 0xc0010055
64
65 #define MSR_CMPHALT_SMI __BIT(27)
66 #define MSR_CMPHALT_C1E __BIT(28)
67 #define MSR_CMPHALT_BMSTS __BIT(29)
68
69 /*
70 * AMD families 10h, 11h, and 14h
71 */
72 #define MSR_10H_LIMIT 0xc0010061
73 #define MSR_10H_CONTROL 0xc0010062
74 #define MSR_10H_STATUS 0xc0010063
75 #define MSR_10H_CONFIG 0xc0010064
76
77 /*
78 * AMD family 0Fh.
79 */
80 #define MSR_0FH_CONTROL 0xc0010041
81 #define MSR_0FH_STATUS 0xc0010042
82
83 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86
87 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91
92 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94
95 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102
103 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104
105 static char native_idle_text[16];
106 void (*native_idle)(void) = NULL;
107
108 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
109 static void acpicpu_md_pstate_hwf_reset(void *, void *);
110 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
111 uint32_t *);
112 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
113 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
114 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
115 uint32_t, uint32_t);
116 static int acpicpu_md_pstate_sysctl_init(void);
117 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
118 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
119 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
120
121 extern struct acpicpu_softc **acpicpu_sc;
122 static struct sysctllog *acpicpu_log = NULL;
123
124 struct cpu_info *
125 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
126 {
127 struct cpufeature_attach_args *cfaa = aux;
128
129 if (strcmp(cfaa->name, "frequency") != 0)
130 return NULL;
131
132 return cfaa->ci;
133 }
134
135 struct cpu_info *
136 acpicpu_md_attach(device_t parent, device_t self, void *aux)
137 {
138 struct cpufeature_attach_args *cfaa = aux;
139
140 return cfaa->ci;
141 }
142
143 uint32_t
144 acpicpu_md_flags(void)
145 {
146 struct cpu_info *ci = curcpu();
147 struct pci_attach_args pa;
148 uint32_t family, val = 0;
149 uint32_t regs[4];
150
151 if (acpi_md_ncpus() == 1)
152 val |= ACPICPU_FLAG_C_BM;
153
154 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
155 val |= ACPICPU_FLAG_C_FFH;
156
157 /*
158 * By default, assume that the local APIC timer
159 * as well as TSC are stalled during C3 sleep.
160 */
161 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
162
163 switch (cpu_vendor) {
164
165 case CPUVENDOR_IDT:
166
167 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
168 val |= ACPICPU_FLAG_P_FFH;
169
170 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
171 val |= ACPICPU_FLAG_T_FFH;
172
173 break;
174
175 case CPUVENDOR_INTEL:
176
177 /*
178 * Bus master control and arbitration should be
179 * available on all supported Intel CPUs (to be
180 * sure, this is double-checked later from the
181 * firmware data). These flags imply that it is
182 * not necessary to flush caches before C3 state.
183 */
184 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
185
186 /*
187 * Check if we can use "native", MSR-based,
188 * access. If not, we have to resort to I/O.
189 */
190 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
191 val |= ACPICPU_FLAG_P_FFH;
192
193 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
194 val |= ACPICPU_FLAG_T_FFH;
195
196 /*
197 * Check whether MSR_APERF, MSR_MPERF, and Turbo
198 * Boost are available. Also see if we might have
199 * an invariant local APIC timer ("ARAT").
200 */
201 if (cpuid_level >= 0x06) {
202
203 x86_cpuid(0x00000006, regs);
204
205 if ((regs[2] & CPUID_DSPM_HWF) != 0)
206 val |= ACPICPU_FLAG_P_HWF;
207
208 if ((regs[0] & CPUID_DSPM_IDA) != 0)
209 val |= ACPICPU_FLAG_P_TURBO;
210
211 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
212 val &= ~ACPICPU_FLAG_C_APIC;
213 }
214
215 /*
216 * Detect whether TSC is invariant. If it is not,
217 * we keep the flag to note that TSC will not run
218 * at constant rate. Depending on the CPU, this may
219 * affect P- and T-state changes, but especially
220 * relevant are C-states; with variant TSC, states
221 * larger than C1 may completely stop the counter.
222 */
223 x86_cpuid(0x80000000, regs);
224
225 if (regs[0] >= 0x80000007) {
226
227 x86_cpuid(0x80000007, regs);
228
229 if ((regs[3] & __BIT(8)) != 0)
230 val &= ~ACPICPU_FLAG_C_TSC;
231 }
232
233 break;
234
235 case CPUVENDOR_AMD:
236
237 x86_cpuid(0x80000000, regs);
238
239 if (regs[0] < 0x80000007)
240 break;
241
242 x86_cpuid(0x80000007, regs);
243
244 family = CPUID2FAMILY(ci->ci_signature);
245
246 if (family == 0xf)
247 family += CPUID2EXTFAMILY(ci->ci_signature);
248
249 switch (family) {
250
251 case 0x0f:
252
253 /*
254 * Evaluate support for the "FID/VID
255 * algorithm" also used by powernow(4).
256 */
257 if ((regs[3] & CPUID_APM_FID) == 0)
258 break;
259
260 if ((regs[3] & CPUID_APM_VID) == 0)
261 break;
262
263 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
264 break;
265
266 case 0x10:
267 case 0x11:
268 val |= ACPICPU_FLAG_C_C1E;
269 /* FALLTHROUGH */
270
271 case 0x14: /* AMD Fusion */
272
273 /*
274 * Like with Intel, detect invariant TSC,
275 * MSR-based P-states, and AMD's "turbo"
276 * (Core Performance Boost), respectively.
277 */
278 if ((regs[3] & CPUID_APM_TSC) != 0)
279 val &= ~ACPICPU_FLAG_C_TSC;
280
281 if ((regs[3] & CPUID_APM_HWP) != 0)
282 val |= ACPICPU_FLAG_P_FFH;
283
284 if ((regs[3] & CPUID_APM_CPB) != 0)
285 val |= ACPICPU_FLAG_P_TURBO;
286
287 /*
288 * Also check for APERF and MPERF,
289 * first available in the family 10h.
290 */
291 if (cpuid_level >= 0x06) {
292
293 x86_cpuid(0x00000006, regs);
294
295 if ((regs[2] & CPUID_DSPM_HWF) != 0)
296 val |= ACPICPU_FLAG_P_HWF;
297 }
298
299 break;
300 }
301
302 break;
303 }
304
305 /*
306 * There are several erratums for PIIX4.
307 */
308 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
309 val |= ACPICPU_FLAG_PIIX4;
310
311 return val;
312 }
313
314 static int
315 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
316 {
317
318 /*
319 * XXX: The pci_find_device(9) function only
320 * deals with attached devices. Change this
321 * to use something like pci_device_foreach().
322 */
323 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
324 return 0;
325
326 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
327 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
328 return 1;
329
330 return 0;
331 }
332
333 void
334 acpicpu_md_quirk_c1e(void)
335 {
336 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
337 uint64_t val;
338
339 val = rdmsr(MSR_CMPHALT);
340
341 if ((val & c1e) != 0)
342 wrmsr(MSR_CMPHALT, val & ~c1e);
343 }
344
345 int
346 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
347 {
348 const size_t size = sizeof(native_idle_text);
349 struct acpicpu_cstate *cs;
350 bool ipi = false;
351 int i;
352
353 /*
354 * Save the cpu_idle(9) loop used by default.
355 */
356 x86_cpu_idle_get(&native_idle, native_idle_text, size);
357
358 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
359
360 cs = &sc->sc_cstate[i];
361
362 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
363 ipi = true;
364 break;
365 }
366 }
367
368 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
369
370 return 0;
371 }
372
373 int
374 acpicpu_md_cstate_stop(void)
375 {
376 static char text[16];
377 void (*func)(void);
378 uint64_t xc;
379 bool ipi;
380
381 x86_cpu_idle_get(&func, text, sizeof(text));
382
383 if (func == native_idle)
384 return EALREADY;
385
386 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
387 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
388
389 /*
390 * Run a cross-call to ensure that all CPUs are
391 * out from the ACPI idle-loop before detachment.
392 */
393 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
394 xc_wait(xc);
395
396 return 0;
397 }
398
399 /*
400 * Called with interrupts disabled.
401 * Caller should enable interrupts after return.
402 */
403 void
404 acpicpu_md_cstate_enter(int method, int state)
405 {
406 struct cpu_info *ci = curcpu();
407
408 switch (method) {
409
410 case ACPICPU_C_STATE_FFH:
411
412 x86_enable_intr();
413 x86_monitor(&ci->ci_want_resched, 0, 0);
414
415 if (__predict_false(ci->ci_want_resched != 0))
416 return;
417
418 x86_mwait((state - 1) << 4, 0);
419 break;
420
421 case ACPICPU_C_STATE_HALT:
422
423 if (__predict_false(ci->ci_want_resched != 0))
424 return;
425
426 x86_stihlt();
427 break;
428 }
429 }
430
431 int
432 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
433 {
434 uint64_t xc, val;
435
436 /*
437 * Make sure EST is enabled.
438 */
439 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
440
441 val = rdmsr(MSR_MISC_ENABLE);
442
443 if ((val & MSR_MISC_ENABLE_EST) == 0) {
444
445 val |= MSR_MISC_ENABLE_EST;
446 wrmsr(MSR_MISC_ENABLE, val);
447 val = rdmsr(MSR_MISC_ENABLE);
448
449 if ((val & MSR_MISC_ENABLE_EST) == 0)
450 return ENOTTY;
451 }
452 }
453
454 /*
455 * Reset the APERF and MPERF counters.
456 */
457 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
458 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
459 xc_wait(xc);
460 }
461
462 return acpicpu_md_pstate_sysctl_init();
463 }
464
465 int
466 acpicpu_md_pstate_stop(void)
467 {
468
469 if (acpicpu_log == NULL)
470 return EALREADY;
471
472 sysctl_teardown(&acpicpu_log);
473 acpicpu_log = NULL;
474
475 return 0;
476 }
477
478 int
479 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
480 {
481 struct cpu_info *ci = sc->sc_ci;
482 struct acpicpu_pstate *ps, msr;
483 uint32_t family, i = 0;
484
485 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
486
487 switch (cpu_vendor) {
488
489 case CPUVENDOR_IDT:
490 case CPUVENDOR_INTEL:
491
492 /*
493 * If the so-called Turbo Boost is present,
494 * the P0-state is always the "turbo state".
495 * It is shown as the P1 frequency + 1 MHz.
496 *
497 * For discussion, see:
498 *
499 * Intel Corporation: Intel Turbo Boost Technology
500 * in Intel Core(tm) Microarchitectures (Nehalem)
501 * Based Processors. White Paper, November 2008.
502 */
503 if (sc->sc_pstate_count >= 2 &&
504 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
505
506 ps = &sc->sc_pstate[0];
507
508 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
509 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
510 }
511
512 msr.ps_control_addr = MSR_PERF_CTL;
513 msr.ps_control_mask = __BITS(0, 15);
514
515 msr.ps_status_addr = MSR_PERF_STATUS;
516 msr.ps_status_mask = __BITS(0, 15);
517 break;
518
519 case CPUVENDOR_AMD:
520
521 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
522 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
523
524 family = CPUID2FAMILY(ci->ci_signature);
525
526 if (family == 0xf)
527 family += CPUID2EXTFAMILY(ci->ci_signature);
528
529 switch (family) {
530
531 case 0x0f:
532 msr.ps_control_addr = MSR_0FH_CONTROL;
533 msr.ps_status_addr = MSR_0FH_STATUS;
534 break;
535
536 case 0x10:
537 case 0x11:
538 case 0x14: /* AMD Fusion */
539 msr.ps_control_addr = MSR_10H_CONTROL;
540 msr.ps_control_mask = __BITS(0, 2);
541
542 msr.ps_status_addr = MSR_10H_STATUS;
543 msr.ps_status_mask = __BITS(0, 2);
544 break;
545
546 default:
547 /*
548 * If we have an unknown AMD CPU, rely on XPSS.
549 */
550 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
551 return EOPNOTSUPP;
552 }
553
554 break;
555
556 default:
557 return ENODEV;
558 }
559
560 /*
561 * Fill the P-state structures with MSR addresses that are
562 * known to be correct. If we do not know the addresses,
563 * leave the values intact. If a vendor uses XPSS, we do
564 * not necessarily need to do anything to support new CPUs.
565 */
566 while (i < sc->sc_pstate_count) {
567
568 ps = &sc->sc_pstate[i];
569
570 if (msr.ps_flags != 0)
571 ps->ps_flags |= msr.ps_flags;
572
573 if (msr.ps_status_addr != 0)
574 ps->ps_status_addr = msr.ps_status_addr;
575
576 if (msr.ps_status_mask != 0)
577 ps->ps_status_mask = msr.ps_status_mask;
578
579 if (msr.ps_control_addr != 0)
580 ps->ps_control_addr = msr.ps_control_addr;
581
582 if (msr.ps_control_mask != 0)
583 ps->ps_control_mask = msr.ps_control_mask;
584
585 i++;
586 }
587
588 return 0;
589 }
590
591 /*
592 * Read the IA32_APERF and IA32_MPERF counters. The first
593 * increments at the rate of the fixed maximum frequency
594 * configured during the boot, whereas APERF counts at the
595 * rate of the actual frequency. Note that the MSRs must be
596 * read without delay, and that only the ratio between
597 * IA32_APERF and IA32_MPERF is architecturally defined.
598 *
599 * The function thus returns the percentage of the actual
600 * frequency in terms of the maximum frequency of the calling
601 * CPU since the last call. A value zero implies an error.
602 *
603 * For further details, refer to:
604 *
605 * Intel Corporation: Intel 64 and IA-32 Architectures
606 * Software Developer's Manual. Section 13.2, Volume 3A:
607 * System Programming Guide, Part 1. July, 2008.
608 *
609 * Advanced Micro Devices: BIOS and Kernel Developer's
610 * Guide (BKDG) for AMD Family 10h Processors. Section
611 * 2.4.5, Revision 3.48, April 2010.
612 */
613 uint8_t
614 acpicpu_md_pstate_hwf(struct cpu_info *ci)
615 {
616 struct acpicpu_softc *sc;
617 uint64_t aperf, mperf;
618 uint8_t rv = 0;
619
620 sc = acpicpu_sc[ci->ci_acpiid];
621
622 if (__predict_false(sc == NULL))
623 return 0;
624
625 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
626 return 0;
627
628 aperf = sc->sc_pstate_aperf;
629 mperf = sc->sc_pstate_mperf;
630
631 x86_disable_intr();
632
633 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
634 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
635
636 x86_enable_intr();
637
638 aperf = sc->sc_pstate_aperf - aperf;
639 mperf = sc->sc_pstate_mperf - mperf;
640
641 if (__predict_true(mperf != 0))
642 rv = (aperf * 100) / mperf;
643
644 return rv;
645 }
646
647 static void
648 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
649 {
650 struct cpu_info *ci = curcpu();
651 struct acpicpu_softc *sc;
652
653 sc = acpicpu_sc[ci->ci_acpiid];
654
655 if (__predict_false(sc == NULL))
656 return;
657
658 x86_disable_intr();
659
660 wrmsr(MSR_APERF, 0);
661 wrmsr(MSR_MPERF, 0);
662
663 x86_enable_intr();
664
665 sc->sc_pstate_aperf = 0;
666 sc->sc_pstate_mperf = 0;
667 }
668
669 int
670 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
671 {
672 struct acpicpu_pstate *ps = NULL;
673 uint64_t val;
674 uint32_t i;
675
676 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
677 return acpicpu_md_pstate_fidvid_get(sc, freq);
678
679 /*
680 * Pick any P-state for the status address.
681 */
682 for (i = 0; i < sc->sc_pstate_count; i++) {
683
684 ps = &sc->sc_pstate[i];
685
686 if (__predict_true(ps->ps_freq != 0))
687 break;
688 }
689
690 if (__predict_false(ps == NULL))
691 return ENODEV;
692
693 if (__predict_false(ps->ps_status_addr == 0))
694 return EINVAL;
695
696 val = rdmsr(ps->ps_status_addr);
697
698 if (__predict_true(ps->ps_status_mask != 0))
699 val = val & ps->ps_status_mask;
700
701 /*
702 * Search for the value from known P-states.
703 */
704 for (i = 0; i < sc->sc_pstate_count; i++) {
705
706 ps = &sc->sc_pstate[i];
707
708 if (__predict_false(ps->ps_freq == 0))
709 continue;
710
711 if (val == ps->ps_status) {
712 *freq = ps->ps_freq;
713 return 0;
714 }
715 }
716
717 /*
718 * If the value was not found, try APERF/MPERF.
719 * The state is P0 if the return value is 100 %.
720 */
721 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
722
723 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
724 *freq = sc->sc_pstate[0].ps_freq;
725 return 0;
726 }
727 }
728
729 return EIO;
730 }
731
732 int
733 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
734 {
735 uint64_t val = 0;
736
737 if (__predict_false(ps->ps_control_addr == 0))
738 return EINVAL;
739
740 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
741 return acpicpu_md_pstate_fidvid_set(ps);
742
743 /*
744 * If the mask is set, do a read-modify-write.
745 */
746 if (__predict_true(ps->ps_control_mask != 0)) {
747 val = rdmsr(ps->ps_control_addr);
748 val &= ~ps->ps_control_mask;
749 }
750
751 val |= ps->ps_control;
752
753 wrmsr(ps->ps_control_addr, val);
754 DELAY(ps->ps_latency);
755
756 return 0;
757 }
758
759 static int
760 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
761 {
762 struct acpicpu_pstate *ps;
763 uint32_t fid, i, vid;
764 uint32_t cfid, cvid;
765 int rv;
766
767 /*
768 * AMD family 0Fh needs special treatment.
769 * While it wants to use ACPI, it does not
770 * comply with the ACPI specifications.
771 */
772 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
773
774 if (rv != 0)
775 return rv;
776
777 for (i = 0; i < sc->sc_pstate_count; i++) {
778
779 ps = &sc->sc_pstate[i];
780
781 if (__predict_false(ps->ps_freq == 0))
782 continue;
783
784 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
785 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
786
787 if (cfid == fid && cvid == vid) {
788 *freq = ps->ps_freq;
789 return 0;
790 }
791 }
792
793 return EIO;
794 }
795
796 static int
797 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
798 {
799 const uint64_t ctrl = ps->ps_control;
800 uint32_t cfid, cvid, fid, i, irt;
801 uint32_t pll, vco_cfid, vco_fid;
802 uint32_t val, vid, vst;
803 int rv;
804
805 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
806
807 if (rv != 0)
808 return rv;
809
810 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
811 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
812 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
813 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
814 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
815
816 vst = vst * 20;
817 pll = pll * 1000 / 5;
818 irt = 10 * __BIT(irt);
819
820 /*
821 * Phase 1.
822 */
823 while (cvid > vid) {
824
825 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
826 val = (val > cvid) ? 0 : cvid - val;
827
828 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
829 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
830
831 if (rv != 0)
832 return rv;
833 }
834
835 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
836
837 for (; i > 0 && cvid > 0; --i) {
838
839 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
840 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
841
842 if (rv != 0)
843 return rv;
844 }
845
846 /*
847 * Phase 2.
848 */
849 if (cfid != fid) {
850
851 vco_fid = FID_TO_VCO_FID(fid);
852 vco_cfid = FID_TO_VCO_FID(cfid);
853
854 while (abs(vco_fid - vco_cfid) > 2) {
855
856 if (fid <= cfid)
857 val = cfid - 2;
858 else {
859 val = (cfid > 6) ? cfid + 2 :
860 FID_TO_VCO_FID(cfid) + 2;
861 }
862
863 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
864 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
865
866 if (rv != 0)
867 return rv;
868
869 vco_cfid = FID_TO_VCO_FID(cfid);
870 }
871
872 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
873 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
874
875 if (rv != 0)
876 return rv;
877 }
878
879 /*
880 * Phase 3.
881 */
882 if (cvid != vid) {
883
884 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
885 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
886
887 if (rv != 0)
888 return rv;
889 }
890
891 return 0;
892 }
893
894 static int
895 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
896 {
897 int i = ACPICPU_P_STATE_RETRY * 100;
898 uint64_t val;
899
900 do {
901 val = rdmsr(MSR_0FH_STATUS);
902
903 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
904
905 if (i == 0)
906 return EAGAIN;
907
908 if (cfid != NULL)
909 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
910
911 if (cvid != NULL)
912 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
913
914 return 0;
915 }
916
917 static void
918 acpicpu_md_pstate_fidvid_write(uint32_t fid,
919 uint32_t vid, uint32_t cnt, uint32_t tmo)
920 {
921 uint64_t val = 0;
922
923 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
924 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
925 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
926 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
927
928 wrmsr(MSR_0FH_CONTROL, val);
929 DELAY(tmo);
930 }
931
932 int
933 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
934 {
935 struct acpicpu_tstate *ts;
936 uint64_t val;
937 uint32_t i;
938
939 val = rdmsr(MSR_THERM_CONTROL);
940
941 for (i = 0; i < sc->sc_tstate_count; i++) {
942
943 ts = &sc->sc_tstate[i];
944
945 if (ts->ts_percent == 0)
946 continue;
947
948 if (val == ts->ts_status) {
949 *percent = ts->ts_percent;
950 return 0;
951 }
952 }
953
954 return EIO;
955 }
956
957 int
958 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
959 {
960 uint64_t val;
961 uint8_t i;
962
963 val = ts->ts_control;
964 val = val & __BITS(1, 4);
965
966 wrmsr(MSR_THERM_CONTROL, val);
967
968 if (ts->ts_status == 0) {
969 DELAY(ts->ts_latency);
970 return 0;
971 }
972
973 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
974
975 val = rdmsr(MSR_THERM_CONTROL);
976
977 if (val == ts->ts_status)
978 return 0;
979
980 DELAY(ts->ts_latency);
981 }
982
983 return EAGAIN;
984 }
985
986 /*
987 * A kludge for backwards compatibility.
988 */
989 static int
990 acpicpu_md_pstate_sysctl_init(void)
991 {
992 const struct sysctlnode *fnode, *mnode, *rnode;
993 const char *str;
994 int rv;
995
996 switch (cpu_vendor) {
997
998 case CPUVENDOR_IDT:
999 case CPUVENDOR_INTEL:
1000 str = "est";
1001 break;
1002
1003 case CPUVENDOR_AMD:
1004 str = "powernow";
1005 break;
1006
1007 default:
1008 return ENODEV;
1009 }
1010
1011
1012 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1013 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1014 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1015
1016 if (rv != 0)
1017 goto fail;
1018
1019 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1020 0, CTLTYPE_NODE, str, NULL,
1021 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1022
1023 if (rv != 0)
1024 goto fail;
1025
1026 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1027 0, CTLTYPE_NODE, "frequency", NULL,
1028 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1029
1030 if (rv != 0)
1031 goto fail;
1032
1033 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1034 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1035 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1036
1037 if (rv != 0)
1038 goto fail;
1039
1040 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1041 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1042 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1043
1044 if (rv != 0)
1045 goto fail;
1046
1047 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1048 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1049 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1050
1051 if (rv != 0)
1052 goto fail;
1053
1054 return 0;
1055
1056 fail:
1057 if (acpicpu_log != NULL) {
1058 sysctl_teardown(&acpicpu_log);
1059 acpicpu_log = NULL;
1060 }
1061
1062 return rv;
1063 }
1064
1065 static int
1066 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1067 {
1068 struct cpu_info *ci = curcpu();
1069 struct sysctlnode node;
1070 uint32_t freq;
1071 int err;
1072
1073 err = acpicpu_pstate_get(ci, &freq);
1074
1075 if (err != 0)
1076 return err;
1077
1078 node = *rnode;
1079 node.sysctl_data = &freq;
1080
1081 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1082
1083 if (err != 0 || newp == NULL)
1084 return err;
1085
1086 return 0;
1087 }
1088
1089 static int
1090 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1091 {
1092 struct cpu_info *ci = curcpu();
1093 struct sysctlnode node;
1094 uint32_t freq;
1095 int err;
1096
1097 err = acpicpu_pstate_get(ci, &freq);
1098
1099 if (err != 0)
1100 return err;
1101
1102 node = *rnode;
1103 node.sysctl_data = &freq;
1104
1105 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1106
1107 if (err != 0 || newp == NULL)
1108 return err;
1109
1110 acpicpu_pstate_set(ci, freq);
1111
1112 return 0;
1113 }
1114
1115 static int
1116 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1117 {
1118 struct cpu_info *ci = curcpu();
1119 struct acpicpu_softc *sc;
1120 struct sysctlnode node;
1121 char buf[1024];
1122 size_t len;
1123 uint32_t i;
1124 int err;
1125
1126 sc = acpicpu_sc[ci->ci_acpiid];
1127
1128 if (sc == NULL)
1129 return ENXIO;
1130
1131 (void)memset(&buf, 0, sizeof(buf));
1132
1133 mutex_enter(&sc->sc_mtx);
1134
1135 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1136
1137 if (sc->sc_pstate[i].ps_freq == 0)
1138 continue;
1139
1140 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1141 sc->sc_pstate[i].ps_freq,
1142 i < (sc->sc_pstate_count - 1) ? " " : "");
1143 }
1144
1145 mutex_exit(&sc->sc_mtx);
1146
1147 node = *rnode;
1148 node.sysctl_data = buf;
1149
1150 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1151
1152 if (err != 0 || newp == NULL)
1153 return err;
1154
1155 return 0;
1156 }
1157
1158