Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.66
      1 /* $NetBSD: acpi_cpu_md.c,v 1.66 2011/09/24 11:17:25 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.66 2011/09/24 11:17:25 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/device.h>
     35 #include <sys/kcore.h>
     36 #include <sys/sysctl.h>
     37 #include <sys/xcall.h>
     38 
     39 #include <x86/cpu.h>
     40 #include <x86/cpufunc.h>
     41 #include <x86/cputypes.h>
     42 #include <x86/cpuvar.h>
     43 #include <x86/cpu_msr.h>
     44 #include <x86/machdep.h>
     45 
     46 #include <dev/acpi/acpica.h>
     47 #include <dev/acpi/acpi_cpu.h>
     48 
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <machine/acpi_machdep.h>
     53 
     54 /*
     55  * Intel IA32_MISC_ENABLE.
     56  */
     57 #define MSR_MISC_ENABLE_EST	__BIT(16)
     58 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     59 
     60 /*
     61  * AMD C1E.
     62  */
     63 #define MSR_CMPHALT		0xc0010055
     64 
     65 #define MSR_CMPHALT_SMI		__BIT(27)
     66 #define MSR_CMPHALT_C1E		__BIT(28)
     67 #define MSR_CMPHALT_BMSTS	__BIT(29)
     68 
     69 /*
     70  * AMD families 10h, 11h, and 14h
     71  */
     72 #define MSR_10H_LIMIT		0xc0010061
     73 #define MSR_10H_CONTROL		0xc0010062
     74 #define MSR_10H_STATUS		0xc0010063
     75 #define MSR_10H_CONFIG		0xc0010064
     76 
     77 /*
     78  * AMD family 0Fh.
     79  */
     80 #define MSR_0FH_CONTROL		0xc0010041
     81 #define MSR_0FH_STATUS		0xc0010042
     82 
     83 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     84 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     85 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     86 
     87 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     88 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     89 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     90 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     91 
     92 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     93 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     94 
     95 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     96 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     97 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     98 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     99 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    100 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    101 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    102 
    103 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    104 
    105 static char	  native_idle_text[16];
    106 void		(*native_idle)(void) = NULL;
    107 
    108 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    109 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    110 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    111                                               uint32_t *);
    112 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    113 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    114 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    115 					        uint32_t, uint32_t);
    116 static int	 acpicpu_md_pstate_sysctl_init(void);
    117 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    118 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    120 
    121 extern struct acpicpu_softc **acpicpu_sc;
    122 static struct sysctllog *acpicpu_log = NULL;
    123 
    124 struct cpu_info *
    125 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    126 {
    127 	struct cpufeature_attach_args *cfaa = aux;
    128 
    129 	if (strcmp(cfaa->name, "frequency") != 0)
    130 		return NULL;
    131 
    132 	return cfaa->ci;
    133 }
    134 
    135 struct cpu_info *
    136 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    137 {
    138 	struct cpufeature_attach_args *cfaa = aux;
    139 
    140 	return cfaa->ci;
    141 }
    142 
    143 uint32_t
    144 acpicpu_md_flags(void)
    145 {
    146 	struct cpu_info *ci = curcpu();
    147 	struct pci_attach_args pa;
    148 	uint32_t family, val = 0;
    149 	uint32_t regs[4];
    150 	uint64_t msr;
    151 
    152 	if (acpi_md_ncpus() == 1)
    153 		val |= ACPICPU_FLAG_C_BM;
    154 
    155 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    156 		val |= ACPICPU_FLAG_C_FFH;
    157 
    158 	/*
    159 	 * By default, assume that the local APIC timer
    160 	 * as well as TSC are stalled during C3 sleep.
    161 	 */
    162 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    163 
    164 	switch (cpu_vendor) {
    165 
    166 	case CPUVENDOR_IDT:
    167 
    168 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    169 			val |= ACPICPU_FLAG_P_FFH;
    170 
    171 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    172 			val |= ACPICPU_FLAG_T_FFH;
    173 
    174 		break;
    175 
    176 	case CPUVENDOR_INTEL:
    177 
    178 		/*
    179 		 * Bus master control and arbitration should be
    180 		 * available on all supported Intel CPUs (to be
    181 		 * sure, this is double-checked later from the
    182 		 * firmware data). These flags imply that it is
    183 		 * not necessary to flush caches before C3 state.
    184 		 */
    185 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    186 
    187 		/*
    188 		 * Check if we can use "native", MSR-based,
    189 		 * access. If not, we have to resort to I/O.
    190 		 */
    191 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    192 			val |= ACPICPU_FLAG_P_FFH;
    193 
    194 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    195 			val |= ACPICPU_FLAG_T_FFH;
    196 
    197 		/*
    198 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    199 		 * Boost are available. Also see if we might have
    200 		 * an invariant local APIC timer ("ARAT").
    201 		 */
    202 		if (cpuid_level >= 0x06) {
    203 
    204 			x86_cpuid(0x00000006, regs);
    205 
    206 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    207 				val |= ACPICPU_FLAG_P_HWF;
    208 
    209 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    210 				val |= ACPICPU_FLAG_P_TURBO;
    211 
    212 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    213 				val &= ~ACPICPU_FLAG_C_APIC;
    214 		}
    215 
    216 		/*
    217 		 * Detect whether TSC is invariant. If it is not,
    218 		 * we keep the flag to note that TSC will not run
    219 		 * at constant rate. Depending on the CPU, this may
    220 		 * affect P- and T-state changes, but especially
    221 		 * relevant are C-states; with variant TSC, states
    222 		 * larger than C1 may completely stop the counter.
    223 		 */
    224 		x86_cpuid(0x80000000, regs);
    225 
    226 		if (regs[0] >= 0x80000007) {
    227 
    228 			x86_cpuid(0x80000007, regs);
    229 
    230 			if ((regs[3] & __BIT(8)) != 0)
    231 				val &= ~ACPICPU_FLAG_C_TSC;
    232 		}
    233 
    234 		break;
    235 
    236 	case CPUVENDOR_AMD:
    237 
    238 		x86_cpuid(0x80000000, regs);
    239 
    240 		if (regs[0] < 0x80000007)
    241 			break;
    242 
    243 		x86_cpuid(0x80000007, regs);
    244 
    245 		family = CPUID2FAMILY(ci->ci_signature);
    246 
    247 		if (family == 0xf)
    248 			family += CPUID2EXTFAMILY(ci->ci_signature);
    249 
    250     		switch (family) {
    251 
    252 		case 0x0f:
    253 
    254 			/*
    255 			 * Evaluate support for the "FID/VID
    256 			 * algorithm" also used by powernow(4).
    257 			 */
    258 			if ((regs[3] & CPUID_APM_FID) == 0)
    259 				break;
    260 
    261 			if ((regs[3] & CPUID_APM_VID) == 0)
    262 				break;
    263 
    264 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    265 			break;
    266 
    267 		case 0x10:
    268 		case 0x11:
    269 
    270 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    271 				val |= ACPICPU_FLAG_C_C1E;
    272 
    273 			/* FALLTHROUGH */
    274 
    275 		case 0x14: /* AMD Fusion */
    276 
    277 			/*
    278 			 * Like with Intel, detect invariant TSC,
    279 			 * MSR-based P-states, and AMD's "turbo"
    280 			 * (Core Performance Boost), respectively.
    281 			 */
    282 			if ((regs[3] & CPUID_APM_TSC) != 0)
    283 				val &= ~ACPICPU_FLAG_C_TSC;
    284 
    285 			if ((regs[3] & CPUID_APM_HWP) != 0)
    286 				val |= ACPICPU_FLAG_P_FFH;
    287 
    288 			if ((regs[3] & CPUID_APM_CPB) != 0)
    289 				val |= ACPICPU_FLAG_P_TURBO;
    290 
    291 			/*
    292 			 * Also check for APERF and MPERF,
    293 			 * first available in the family 10h.
    294 			 */
    295 			if (cpuid_level >= 0x06) {
    296 
    297 				x86_cpuid(0x00000006, regs);
    298 
    299 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    300 					val |= ACPICPU_FLAG_P_HWF;
    301 			}
    302 
    303 			break;
    304 		}
    305 
    306 		break;
    307 	}
    308 
    309 	/*
    310 	 * There are several erratums for PIIX4.
    311 	 */
    312 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    313 		val |= ACPICPU_FLAG_PIIX4;
    314 
    315 	return val;
    316 }
    317 
    318 static int
    319 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    320 {
    321 
    322 	/*
    323 	 * XXX: The pci_find_device(9) function only
    324 	 *	deals with attached devices. Change this
    325 	 *	to use something like pci_device_foreach().
    326 	 */
    327 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    328 		return 0;
    329 
    330 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    331 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    332 		return 1;
    333 
    334 	return 0;
    335 }
    336 
    337 void
    338 acpicpu_md_quirk_c1e(void)
    339 {
    340 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    341 	uint64_t val;
    342 
    343 	val = rdmsr(MSR_CMPHALT);
    344 
    345 	if ((val & c1e) != 0)
    346 		wrmsr(MSR_CMPHALT, val & ~c1e);
    347 }
    348 
    349 int
    350 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    351 {
    352 	const size_t size = sizeof(native_idle_text);
    353 	struct acpicpu_cstate *cs;
    354 	bool ipi = false;
    355 	int i;
    356 
    357 	/*
    358 	 * Save the cpu_idle(9) loop used by default.
    359 	 */
    360 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    361 
    362 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    363 
    364 		cs = &sc->sc_cstate[i];
    365 
    366 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    367 			ipi = true;
    368 			break;
    369 		}
    370 	}
    371 
    372 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    373 
    374 	return 0;
    375 }
    376 
    377 int
    378 acpicpu_md_cstate_stop(void)
    379 {
    380 	static char text[16];
    381 	void (*func)(void);
    382 	uint64_t xc;
    383 	bool ipi;
    384 
    385 	x86_cpu_idle_get(&func, text, sizeof(text));
    386 
    387 	if (func == native_idle)
    388 		return EALREADY;
    389 
    390 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    391 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    392 
    393 	/*
    394 	 * Run a cross-call to ensure that all CPUs are
    395 	 * out from the ACPI idle-loop before detachment.
    396 	 */
    397 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    398 	xc_wait(xc);
    399 
    400 	return 0;
    401 }
    402 
    403 /*
    404  * Called with interrupts enabled.
    405  */
    406 void
    407 acpicpu_md_cstate_enter(int method, int state)
    408 {
    409 	struct cpu_info *ci = curcpu();
    410 
    411 	KASSERT(ci->ci_ilevel == IPL_NONE);
    412 
    413 	switch (method) {
    414 
    415 	case ACPICPU_C_STATE_FFH:
    416 
    417 		x86_monitor(&ci->ci_want_resched, 0, 0);
    418 
    419 		if (__predict_false(ci->ci_want_resched != 0))
    420 			return;
    421 
    422 		x86_mwait((state - 1) << 4, 0);
    423 		break;
    424 
    425 	case ACPICPU_C_STATE_HALT:
    426 
    427 		x86_disable_intr();
    428 
    429 		if (__predict_false(ci->ci_want_resched != 0)) {
    430 			x86_enable_intr();
    431 			return;
    432 		}
    433 
    434 		x86_stihlt();
    435 		break;
    436 	}
    437 }
    438 
    439 int
    440 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    441 {
    442 	uint64_t xc, val;
    443 
    444 	switch (cpu_vendor) {
    445 
    446 	case CPUVENDOR_IDT:
    447 	case CPUVENDOR_INTEL:
    448 
    449 		/*
    450 		 * Make sure EST is enabled.
    451 		 */
    452 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    453 
    454 			val = rdmsr(MSR_MISC_ENABLE);
    455 
    456 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    457 
    458 				val |= MSR_MISC_ENABLE_EST;
    459 				wrmsr(MSR_MISC_ENABLE, val);
    460 				val = rdmsr(MSR_MISC_ENABLE);
    461 
    462 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    463 					return ENOTTY;
    464 			}
    465 		}
    466 	}
    467 
    468 	/*
    469 	 * Reset the APERF and MPERF counters.
    470 	 */
    471 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    472 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    473 		xc_wait(xc);
    474 	}
    475 
    476 	return acpicpu_md_pstate_sysctl_init();
    477 }
    478 
    479 int
    480 acpicpu_md_pstate_stop(void)
    481 {
    482 
    483 	if (acpicpu_log == NULL)
    484 		return EALREADY;
    485 
    486 	sysctl_teardown(&acpicpu_log);
    487 	acpicpu_log = NULL;
    488 
    489 	return 0;
    490 }
    491 
    492 int
    493 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    494 {
    495 	struct cpu_info *ci = sc->sc_ci;
    496 	struct acpicpu_pstate *ps, msr;
    497 	uint32_t family, i = 0;
    498 
    499 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    500 
    501 	switch (cpu_vendor) {
    502 
    503 	case CPUVENDOR_IDT:
    504 	case CPUVENDOR_INTEL:
    505 
    506 		/*
    507 		 * If the so-called Turbo Boost is present,
    508 		 * the P0-state is always the "turbo state".
    509 		 * It is shown as the P1 frequency + 1 MHz.
    510 		 *
    511 		 * For discussion, see:
    512 		 *
    513 		 *	Intel Corporation: Intel Turbo Boost Technology
    514 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    515 		 *	Based Processors. White Paper, November 2008.
    516 		 */
    517 		if (sc->sc_pstate_count >= 2 &&
    518 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    519 
    520 			ps = &sc->sc_pstate[0];
    521 
    522 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    523 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    524 		}
    525 
    526 		msr.ps_control_addr = MSR_PERF_CTL;
    527 		msr.ps_control_mask = __BITS(0, 15);
    528 
    529 		msr.ps_status_addr  = MSR_PERF_STATUS;
    530 		msr.ps_status_mask  = __BITS(0, 15);
    531 		break;
    532 
    533 	case CPUVENDOR_AMD:
    534 
    535 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    536 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    537 
    538 		family = CPUID2FAMILY(ci->ci_signature);
    539 
    540 		if (family == 0xf)
    541 			family += CPUID2EXTFAMILY(ci->ci_signature);
    542 
    543 		switch (family) {
    544 
    545 		case 0x0f:
    546 			msr.ps_control_addr = MSR_0FH_CONTROL;
    547 			msr.ps_status_addr  = MSR_0FH_STATUS;
    548 			break;
    549 
    550 		case 0x10:
    551 		case 0x11:
    552 		case 0x14: /* AMD Fusion */
    553 			msr.ps_control_addr = MSR_10H_CONTROL;
    554 			msr.ps_control_mask = __BITS(0, 2);
    555 
    556 			msr.ps_status_addr  = MSR_10H_STATUS;
    557 			msr.ps_status_mask  = __BITS(0, 2);
    558 			break;
    559 
    560 		default:
    561 			/*
    562 			 * If we have an unknown AMD CPU, rely on XPSS.
    563 			 */
    564 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    565 				return EOPNOTSUPP;
    566 		}
    567 
    568 		break;
    569 
    570 	default:
    571 		return ENODEV;
    572 	}
    573 
    574 	/*
    575 	 * Fill the P-state structures with MSR addresses that are
    576 	 * known to be correct. If we do not know the addresses,
    577 	 * leave the values intact. If a vendor uses XPSS, we do
    578 	 * not necessarily need to do anything to support new CPUs.
    579 	 */
    580 	while (i < sc->sc_pstate_count) {
    581 
    582 		ps = &sc->sc_pstate[i];
    583 
    584 		if (msr.ps_flags != 0)
    585 			ps->ps_flags |= msr.ps_flags;
    586 
    587 		if (msr.ps_status_addr != 0)
    588 			ps->ps_status_addr = msr.ps_status_addr;
    589 
    590 		if (msr.ps_status_mask != 0)
    591 			ps->ps_status_mask = msr.ps_status_mask;
    592 
    593 		if (msr.ps_control_addr != 0)
    594 			ps->ps_control_addr = msr.ps_control_addr;
    595 
    596 		if (msr.ps_control_mask != 0)
    597 			ps->ps_control_mask = msr.ps_control_mask;
    598 
    599 		i++;
    600 	}
    601 
    602 	return 0;
    603 }
    604 
    605 /*
    606  * Read the IA32_APERF and IA32_MPERF counters. The first
    607  * increments at the rate of the fixed maximum frequency
    608  * configured during the boot, whereas APERF counts at the
    609  * rate of the actual frequency. Note that the MSRs must be
    610  * read without delay, and that only the ratio between
    611  * IA32_APERF and IA32_MPERF is architecturally defined.
    612  *
    613  * The function thus returns the percentage of the actual
    614  * frequency in terms of the maximum frequency of the calling
    615  * CPU since the last call. A value zero implies an error.
    616  *
    617  * For further details, refer to:
    618  *
    619  *	Intel Corporation: Intel 64 and IA-32 Architectures
    620  *	Software Developer's Manual. Section 13.2, Volume 3A:
    621  *	System Programming Guide, Part 1. July, 2008.
    622  *
    623  *	Advanced Micro Devices: BIOS and Kernel Developer's
    624  *	Guide (BKDG) for AMD Family 10h Processors. Section
    625  *	2.4.5, Revision 3.48, April 2010.
    626  */
    627 uint8_t
    628 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    629 {
    630 	struct acpicpu_softc *sc;
    631 	uint64_t aperf, mperf;
    632 	uint8_t rv = 0;
    633 
    634 	sc = acpicpu_sc[ci->ci_acpiid];
    635 
    636 	if (__predict_false(sc == NULL))
    637 		return 0;
    638 
    639 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    640 		return 0;
    641 
    642 	aperf = sc->sc_pstate_aperf;
    643 	mperf = sc->sc_pstate_mperf;
    644 
    645 	x86_disable_intr();
    646 
    647 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    648 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    649 
    650 	x86_enable_intr();
    651 
    652 	aperf = sc->sc_pstate_aperf - aperf;
    653 	mperf = sc->sc_pstate_mperf - mperf;
    654 
    655 	if (__predict_true(mperf != 0))
    656 		rv = (aperf * 100) / mperf;
    657 
    658 	return rv;
    659 }
    660 
    661 static void
    662 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    663 {
    664 	struct cpu_info *ci = curcpu();
    665 	struct acpicpu_softc *sc;
    666 
    667 	sc = acpicpu_sc[ci->ci_acpiid];
    668 
    669 	if (__predict_false(sc == NULL))
    670 		return;
    671 
    672 	x86_disable_intr();
    673 
    674 	wrmsr(MSR_APERF, 0);
    675 	wrmsr(MSR_MPERF, 0);
    676 
    677 	x86_enable_intr();
    678 
    679 	sc->sc_pstate_aperf = 0;
    680 	sc->sc_pstate_mperf = 0;
    681 }
    682 
    683 int
    684 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    685 {
    686 	struct acpicpu_pstate *ps = NULL;
    687 	uint64_t val;
    688 	uint32_t i;
    689 
    690 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    691 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    692 
    693 	/*
    694 	 * Pick any P-state for the status address.
    695 	*/
    696 	for (i = 0; i < sc->sc_pstate_count; i++) {
    697 
    698 		ps = &sc->sc_pstate[i];
    699 
    700 		if (__predict_true(ps->ps_freq != 0))
    701 			break;
    702 	}
    703 
    704 	if (__predict_false(ps == NULL))
    705 		return ENODEV;
    706 
    707 	if (__predict_false(ps->ps_status_addr == 0))
    708 		return EINVAL;
    709 
    710 	val = rdmsr(ps->ps_status_addr);
    711 
    712 	if (__predict_true(ps->ps_status_mask != 0))
    713 		val = val & ps->ps_status_mask;
    714 
    715 	/*
    716 	 * Search for the value from known P-states.
    717 	 */
    718 	for (i = 0; i < sc->sc_pstate_count; i++) {
    719 
    720 		ps = &sc->sc_pstate[i];
    721 
    722 		if (__predict_false(ps->ps_freq == 0))
    723 			continue;
    724 
    725 		if (val == ps->ps_status) {
    726 			*freq = ps->ps_freq;
    727 			return 0;
    728 		}
    729 	}
    730 
    731 	/*
    732 	 * If the value was not found, try APERF/MPERF.
    733 	 * The state is P0 if the return value is 100 %.
    734 	 */
    735 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    736 
    737 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    738 			*freq = sc->sc_pstate[0].ps_freq;
    739 			return 0;
    740 		}
    741 	}
    742 
    743 	return EIO;
    744 }
    745 
    746 int
    747 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    748 {
    749 	uint64_t val = 0;
    750 
    751 	if (__predict_false(ps->ps_control_addr == 0))
    752 		return EINVAL;
    753 
    754 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    755 		return acpicpu_md_pstate_fidvid_set(ps);
    756 
    757 	/*
    758 	 * If the mask is set, do a read-modify-write.
    759 	 */
    760 	if (__predict_true(ps->ps_control_mask != 0)) {
    761 		val = rdmsr(ps->ps_control_addr);
    762 		val &= ~ps->ps_control_mask;
    763 	}
    764 
    765 	val |= ps->ps_control;
    766 
    767 	wrmsr(ps->ps_control_addr, val);
    768 	DELAY(ps->ps_latency);
    769 
    770 	return 0;
    771 }
    772 
    773 static int
    774 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    775 {
    776 	struct acpicpu_pstate *ps;
    777 	uint32_t fid, i, vid;
    778 	uint32_t cfid, cvid;
    779 	int rv;
    780 
    781 	/*
    782 	 * AMD family 0Fh needs special treatment.
    783 	 * While it wants to use ACPI, it does not
    784 	 * comply with the ACPI specifications.
    785 	 */
    786 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    787 
    788 	if (rv != 0)
    789 		return rv;
    790 
    791 	for (i = 0; i < sc->sc_pstate_count; i++) {
    792 
    793 		ps = &sc->sc_pstate[i];
    794 
    795 		if (__predict_false(ps->ps_freq == 0))
    796 			continue;
    797 
    798 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    799 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    800 
    801 		if (cfid == fid && cvid == vid) {
    802 			*freq = ps->ps_freq;
    803 			return 0;
    804 		}
    805 	}
    806 
    807 	return EIO;
    808 }
    809 
    810 static int
    811 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    812 {
    813 	const uint64_t ctrl = ps->ps_control;
    814 	uint32_t cfid, cvid, fid, i, irt;
    815 	uint32_t pll, vco_cfid, vco_fid;
    816 	uint32_t val, vid, vst;
    817 	int rv;
    818 
    819 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    820 
    821 	if (rv != 0)
    822 		return rv;
    823 
    824 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    825 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    826 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    827 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    828 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    829 
    830 	vst = vst * 20;
    831 	pll = pll * 1000 / 5;
    832 	irt = 10 * __BIT(irt);
    833 
    834 	/*
    835 	 * Phase 1.
    836 	 */
    837 	while (cvid > vid) {
    838 
    839 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    840 		val = (val > cvid) ? 0 : cvid - val;
    841 
    842 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    843 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    844 
    845 		if (rv != 0)
    846 			return rv;
    847 	}
    848 
    849 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    850 
    851 	for (; i > 0 && cvid > 0; --i) {
    852 
    853 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    854 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    855 
    856 		if (rv != 0)
    857 			return rv;
    858 	}
    859 
    860 	/*
    861 	 * Phase 2.
    862 	 */
    863 	if (cfid != fid) {
    864 
    865 		vco_fid  = FID_TO_VCO_FID(fid);
    866 		vco_cfid = FID_TO_VCO_FID(cfid);
    867 
    868 		while (abs(vco_fid - vco_cfid) > 2) {
    869 
    870 			if (fid <= cfid)
    871 				val = cfid - 2;
    872 			else {
    873 				val = (cfid > 6) ? cfid + 2 :
    874 				    FID_TO_VCO_FID(cfid) + 2;
    875 			}
    876 
    877 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    878 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    879 
    880 			if (rv != 0)
    881 				return rv;
    882 
    883 			vco_cfid = FID_TO_VCO_FID(cfid);
    884 		}
    885 
    886 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    887 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    888 
    889 		if (rv != 0)
    890 			return rv;
    891 	}
    892 
    893 	/*
    894 	 * Phase 3.
    895 	 */
    896 	if (cvid != vid) {
    897 
    898 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    899 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    900 
    901 		if (rv != 0)
    902 			return rv;
    903 	}
    904 
    905 	return 0;
    906 }
    907 
    908 static int
    909 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    910 {
    911 	int i = ACPICPU_P_STATE_RETRY * 100;
    912 	uint64_t val;
    913 
    914 	do {
    915 		val = rdmsr(MSR_0FH_STATUS);
    916 
    917 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    918 
    919 	if (i == 0)
    920 		return EAGAIN;
    921 
    922 	if (cfid != NULL)
    923 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    924 
    925 	if (cvid != NULL)
    926 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    927 
    928 	return 0;
    929 }
    930 
    931 static void
    932 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    933     uint32_t vid, uint32_t cnt, uint32_t tmo)
    934 {
    935 	uint64_t val = 0;
    936 
    937 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    938 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    939 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    940 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    941 
    942 	wrmsr(MSR_0FH_CONTROL, val);
    943 	DELAY(tmo);
    944 }
    945 
    946 int
    947 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    948 {
    949 	struct acpicpu_tstate *ts;
    950 	uint64_t val;
    951 	uint32_t i;
    952 
    953 	val = rdmsr(MSR_THERM_CONTROL);
    954 
    955 	for (i = 0; i < sc->sc_tstate_count; i++) {
    956 
    957 		ts = &sc->sc_tstate[i];
    958 
    959 		if (ts->ts_percent == 0)
    960 			continue;
    961 
    962 		if (val == ts->ts_status) {
    963 			*percent = ts->ts_percent;
    964 			return 0;
    965 		}
    966 	}
    967 
    968 	return EIO;
    969 }
    970 
    971 int
    972 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    973 {
    974 	uint64_t val;
    975 	uint8_t i;
    976 
    977 	val = ts->ts_control;
    978 	val = val & __BITS(1, 4);
    979 
    980 	wrmsr(MSR_THERM_CONTROL, val);
    981 
    982 	if (ts->ts_status == 0) {
    983 		DELAY(ts->ts_latency);
    984 		return 0;
    985 	}
    986 
    987 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    988 
    989 		val = rdmsr(MSR_THERM_CONTROL);
    990 
    991 		if (val == ts->ts_status)
    992 			return 0;
    993 
    994 		DELAY(ts->ts_latency);
    995 	}
    996 
    997 	return EAGAIN;
    998 }
    999 
   1000 /*
   1001  * A kludge for backwards compatibility.
   1002  */
   1003 static int
   1004 acpicpu_md_pstate_sysctl_init(void)
   1005 {
   1006 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1007 	const char *str;
   1008 	int rv;
   1009 
   1010 	switch (cpu_vendor) {
   1011 
   1012 	case CPUVENDOR_IDT:
   1013 	case CPUVENDOR_INTEL:
   1014 		str = "est";
   1015 		break;
   1016 
   1017 	case CPUVENDOR_AMD:
   1018 		str = "powernow";
   1019 		break;
   1020 
   1021 	default:
   1022 		return ENODEV;
   1023 	}
   1024 
   1025 
   1026 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1027 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1028 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1029 
   1030 	if (rv != 0)
   1031 		goto fail;
   1032 
   1033 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1034 	    0, CTLTYPE_NODE, str, NULL,
   1035 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1036 
   1037 	if (rv != 0)
   1038 		goto fail;
   1039 
   1040 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1041 	    0, CTLTYPE_NODE, "frequency", NULL,
   1042 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1043 
   1044 	if (rv != 0)
   1045 		goto fail;
   1046 
   1047 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1048 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1049 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1050 
   1051 	if (rv != 0)
   1052 		goto fail;
   1053 
   1054 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1055 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1056 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1057 
   1058 	if (rv != 0)
   1059 		goto fail;
   1060 
   1061 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1062 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1063 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1064 
   1065 	if (rv != 0)
   1066 		goto fail;
   1067 
   1068 	return 0;
   1069 
   1070 fail:
   1071 	if (acpicpu_log != NULL) {
   1072 		sysctl_teardown(&acpicpu_log);
   1073 		acpicpu_log = NULL;
   1074 	}
   1075 
   1076 	return rv;
   1077 }
   1078 
   1079 static int
   1080 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1081 {
   1082 	struct cpu_info *ci = curcpu();
   1083 	struct sysctlnode node;
   1084 	uint32_t freq;
   1085 	int err;
   1086 
   1087 	err = acpicpu_pstate_get(ci, &freq);
   1088 
   1089 	if (err != 0)
   1090 		return err;
   1091 
   1092 	node = *rnode;
   1093 	node.sysctl_data = &freq;
   1094 
   1095 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1096 
   1097 	if (err != 0 || newp == NULL)
   1098 		return err;
   1099 
   1100 	return 0;
   1101 }
   1102 
   1103 static int
   1104 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1105 {
   1106 	struct cpu_info *ci = curcpu();
   1107 	struct sysctlnode node;
   1108 	uint32_t freq;
   1109 	int err;
   1110 
   1111 	err = acpicpu_pstate_get(ci, &freq);
   1112 
   1113 	if (err != 0)
   1114 		return err;
   1115 
   1116 	node = *rnode;
   1117 	node.sysctl_data = &freq;
   1118 
   1119 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1120 
   1121 	if (err != 0 || newp == NULL)
   1122 		return err;
   1123 
   1124 	acpicpu_pstate_set(ci, freq);
   1125 
   1126 	return 0;
   1127 }
   1128 
   1129 static int
   1130 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1131 {
   1132 	struct cpu_info *ci = curcpu();
   1133 	struct acpicpu_softc *sc;
   1134 	struct sysctlnode node;
   1135 	char buf[1024];
   1136 	size_t len;
   1137 	uint32_t i;
   1138 	int err;
   1139 
   1140 	sc = acpicpu_sc[ci->ci_acpiid];
   1141 
   1142 	if (sc == NULL)
   1143 		return ENXIO;
   1144 
   1145 	(void)memset(&buf, 0, sizeof(buf));
   1146 
   1147 	mutex_enter(&sc->sc_mtx);
   1148 
   1149 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1150 
   1151 		if (sc->sc_pstate[i].ps_freq == 0)
   1152 			continue;
   1153 
   1154 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1155 		    sc->sc_pstate[i].ps_freq,
   1156 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1157 	}
   1158 
   1159 	mutex_exit(&sc->sc_mtx);
   1160 
   1161 	node = *rnode;
   1162 	node.sysctl_data = buf;
   1163 
   1164 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1165 
   1166 	if (err != 0 || newp == NULL)
   1167 		return err;
   1168 
   1169 	return 0;
   1170 }
   1171 
   1172