acpi_cpu_md.c revision 1.67 1 /* $NetBSD: acpi_cpu_md.c,v 1.67 2011/09/24 19:41:40 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.67 2011/09/24 19:41:40 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/device.h>
35 #include <sys/kcore.h>
36 #include <sys/sysctl.h>
37 #include <sys/xcall.h>
38
39 #include <x86/cpu.h>
40 #include <x86/cpufunc.h>
41 #include <x86/cputypes.h>
42 #include <x86/cpuvar.h>
43 #include <x86/cpu_msr.h>
44 #include <x86/machdep.h>
45
46 #include <dev/acpi/acpica.h>
47 #include <dev/acpi/acpi_cpu.h>
48
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <machine/acpi_machdep.h>
53
54 /*
55 * Intel IA32_MISC_ENABLE.
56 */
57 #define MSR_MISC_ENABLE_EST __BIT(16)
58 #define MSR_MISC_ENABLE_TURBO __BIT(38)
59
60 /*
61 * AMD C1E.
62 */
63 #define MSR_CMPHALT 0xc0010055
64
65 #define MSR_CMPHALT_SMI __BIT(27)
66 #define MSR_CMPHALT_C1E __BIT(28)
67 #define MSR_CMPHALT_BMSTS __BIT(29)
68
69 /*
70 * AMD families 10h, 11h, and 14h
71 */
72 #define MSR_10H_LIMIT 0xc0010061
73 #define MSR_10H_CONTROL 0xc0010062
74 #define MSR_10H_STATUS 0xc0010063
75 #define MSR_10H_CONFIG 0xc0010064
76
77 /*
78 * AMD family 0Fh.
79 */
80 #define MSR_0FH_CONTROL 0xc0010041
81 #define MSR_0FH_STATUS 0xc0010042
82
83 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86
87 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91
92 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94
95 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102
103 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104
105 static char native_idle_text[16];
106 void (*native_idle)(void) = NULL;
107
108 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
109 static void acpicpu_md_quirk_amd(struct acpicpu_pstate *, uint32_t);
110 static void acpicpu_md_pstate_hwf_reset(void *, void *);
111 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
112 uint32_t *);
113 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
114 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
115 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
116 uint32_t, uint32_t);
117 static int acpicpu_md_pstate_sysctl_init(void);
118 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
119 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
120 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
121
122 extern struct acpicpu_softc **acpicpu_sc;
123 static struct sysctllog *acpicpu_log = NULL;
124
125 struct cpu_info *
126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
127 {
128 struct cpufeature_attach_args *cfaa = aux;
129
130 if (strcmp(cfaa->name, "frequency") != 0)
131 return NULL;
132
133 return cfaa->ci;
134 }
135
136 struct cpu_info *
137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
138 {
139 struct cpufeature_attach_args *cfaa = aux;
140
141 return cfaa->ci;
142 }
143
144 uint32_t
145 acpicpu_md_flags(void)
146 {
147 struct cpu_info *ci = curcpu();
148 struct pci_attach_args pa;
149 uint32_t family, val = 0;
150 uint32_t regs[4];
151 uint64_t msr;
152
153 if (acpi_md_ncpus() == 1)
154 val |= ACPICPU_FLAG_C_BM;
155
156 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
157 val |= ACPICPU_FLAG_C_FFH;
158
159 /*
160 * By default, assume that the local APIC timer
161 * as well as TSC are stalled during C3 sleep.
162 */
163 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
164
165 switch (cpu_vendor) {
166
167 case CPUVENDOR_IDT:
168
169 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 val |= ACPICPU_FLAG_P_FFH;
171
172 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 val |= ACPICPU_FLAG_T_FFH;
174
175 break;
176
177 case CPUVENDOR_INTEL:
178
179 /*
180 * Bus master control and arbitration should be
181 * available on all supported Intel CPUs (to be
182 * sure, this is double-checked later from the
183 * firmware data). These flags imply that it is
184 * not necessary to flush caches before C3 state.
185 */
186 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
187
188 /*
189 * Check if we can use "native", MSR-based,
190 * access. If not, we have to resort to I/O.
191 */
192 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
193 val |= ACPICPU_FLAG_P_FFH;
194
195 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
196 val |= ACPICPU_FLAG_T_FFH;
197
198 /*
199 * Check whether MSR_APERF, MSR_MPERF, and Turbo
200 * Boost are available. Also see if we might have
201 * an invariant local APIC timer ("ARAT").
202 */
203 if (cpuid_level >= 0x06) {
204
205 x86_cpuid(0x00000006, regs);
206
207 if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 val |= ACPICPU_FLAG_P_HWF;
209
210 if ((regs[0] & CPUID_DSPM_IDA) != 0)
211 val |= ACPICPU_FLAG_P_TURBO;
212
213 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
214 val &= ~ACPICPU_FLAG_C_APIC;
215 }
216
217 /*
218 * Detect whether TSC is invariant. If it is not,
219 * we keep the flag to note that TSC will not run
220 * at constant rate. Depending on the CPU, this may
221 * affect P- and T-state changes, but especially
222 * relevant are C-states; with variant TSC, states
223 * larger than C1 may completely stop the counter.
224 */
225 x86_cpuid(0x80000000, regs);
226
227 if (regs[0] >= 0x80000007) {
228
229 x86_cpuid(0x80000007, regs);
230
231 if ((regs[3] & __BIT(8)) != 0)
232 val &= ~ACPICPU_FLAG_C_TSC;
233 }
234
235 break;
236
237 case CPUVENDOR_AMD:
238
239 x86_cpuid(0x80000000, regs);
240
241 if (regs[0] < 0x80000007)
242 break;
243
244 x86_cpuid(0x80000007, regs);
245
246 family = CPUID2FAMILY(ci->ci_signature);
247
248 if (family == 0xf)
249 family += CPUID2EXTFAMILY(ci->ci_signature);
250
251 switch (family) {
252
253 case 0x0f:
254
255 /*
256 * Evaluate support for the "FID/VID
257 * algorithm" also used by powernow(4).
258 */
259 if ((regs[3] & CPUID_APM_FID) == 0)
260 break;
261
262 if ((regs[3] & CPUID_APM_VID) == 0)
263 break;
264
265 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
266 break;
267
268 case 0x10:
269 case 0x11:
270
271 if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
272 val |= ACPICPU_FLAG_C_C1E;
273
274 /* FALLTHROUGH */
275
276 case 0x14: /* AMD Fusion */
277
278 /*
279 * Like with Intel, detect invariant TSC,
280 * MSR-based P-states, and AMD's "turbo"
281 * (Core Performance Boost), respectively.
282 */
283 if ((regs[3] & CPUID_APM_TSC) != 0)
284 val &= ~ACPICPU_FLAG_C_TSC;
285
286 if ((regs[3] & CPUID_APM_HWP) != 0)
287 val |= ACPICPU_FLAG_P_FFH;
288
289 if ((regs[3] & CPUID_APM_CPB) != 0)
290 val |= ACPICPU_FLAG_P_TURBO;
291
292 /*
293 * Also check for APERF and MPERF,
294 * first available in the family 10h.
295 */
296 if (cpuid_level >= 0x06) {
297
298 x86_cpuid(0x00000006, regs);
299
300 if ((regs[2] & CPUID_DSPM_HWF) != 0)
301 val |= ACPICPU_FLAG_P_HWF;
302 }
303
304 break;
305 }
306
307 break;
308 }
309
310 /*
311 * There are several erratums for PIIX4.
312 */
313 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
314 val |= ACPICPU_FLAG_PIIX4;
315
316 return val;
317 }
318
319 static int
320 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
321 {
322
323 /*
324 * XXX: The pci_find_device(9) function only
325 * deals with attached devices. Change this
326 * to use something like pci_device_foreach().
327 */
328 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
329 return 0;
330
331 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
332 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
333 return 1;
334
335 return 0;
336 }
337
338 static void
339 acpicpu_md_quirk_amd(struct acpicpu_pstate *ps, uint32_t i)
340 {
341 struct cpu_info *ci = &cpu_info_primary;
342 uint32_t family, fid, freq, did, zeta;
343 uint64_t val;
344
345 if (i > 7 || cpu_vendor != CPUVENDOR_AMD)
346 return;
347
348 family = CPUID2FAMILY(ci->ci_signature);
349
350 if (family == 0xf)
351 family += CPUID2EXTFAMILY(ci->ci_signature);
352
353 switch (family) {
354
355 case 0x10:
356 zeta = 0x10;
357 break;
358
359 case 0x11:
360 zeta = 0x08;
361 break;
362
363 default:
364 return;
365 }
366
367 /*
368 * The following eight P-state control MSRs define
369 * the static per-core values; the MSB indicates
370 * whether the state is enabled, and the first eight
371 * bits define the frequency divisor and multiplier.
372 */
373 val = rdmsr(MSR_10H_CONFIG + i);
374
375 if ((val & __BIT(63)) == 0)
376 return;
377
378 fid = __SHIFTOUT(val, __BITS(0, 5));
379 did = __SHIFTOUT(val, __BITS(6, 8));
380
381 freq = 100 * (fid + zeta) >> did;
382
383 if (freq != 0 && ps->ps_freq != freq)
384 ps->ps_freq = freq;
385 }
386
387 void
388 acpicpu_md_quirk_c1e(void)
389 {
390 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
391 uint64_t val;
392
393 val = rdmsr(MSR_CMPHALT);
394
395 if ((val & c1e) != 0)
396 wrmsr(MSR_CMPHALT, val & ~c1e);
397 }
398
399 int
400 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
401 {
402 const size_t size = sizeof(native_idle_text);
403 struct acpicpu_cstate *cs;
404 bool ipi = false;
405 int i;
406
407 /*
408 * Save the cpu_idle(9) loop used by default.
409 */
410 x86_cpu_idle_get(&native_idle, native_idle_text, size);
411
412 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
413
414 cs = &sc->sc_cstate[i];
415
416 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
417 ipi = true;
418 break;
419 }
420 }
421
422 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
423
424 return 0;
425 }
426
427 int
428 acpicpu_md_cstate_stop(void)
429 {
430 static char text[16];
431 void (*func)(void);
432 uint64_t xc;
433 bool ipi;
434
435 x86_cpu_idle_get(&func, text, sizeof(text));
436
437 if (func == native_idle)
438 return EALREADY;
439
440 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
441 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
442
443 /*
444 * Run a cross-call to ensure that all CPUs are
445 * out from the ACPI idle-loop before detachment.
446 */
447 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
448 xc_wait(xc);
449
450 return 0;
451 }
452
453 /*
454 * Called with interrupts enabled.
455 */
456 void
457 acpicpu_md_cstate_enter(int method, int state)
458 {
459 struct cpu_info *ci = curcpu();
460
461 KASSERT(ci->ci_ilevel == IPL_NONE);
462
463 switch (method) {
464
465 case ACPICPU_C_STATE_FFH:
466
467 x86_monitor(&ci->ci_want_resched, 0, 0);
468
469 if (__predict_false(ci->ci_want_resched != 0))
470 return;
471
472 x86_mwait((state - 1) << 4, 0);
473 break;
474
475 case ACPICPU_C_STATE_HALT:
476
477 x86_disable_intr();
478
479 if (__predict_false(ci->ci_want_resched != 0)) {
480 x86_enable_intr();
481 return;
482 }
483
484 x86_stihlt();
485 break;
486 }
487 }
488
489 int
490 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
491 {
492 uint64_t xc, val;
493
494 switch (cpu_vendor) {
495
496 case CPUVENDOR_IDT:
497 case CPUVENDOR_INTEL:
498
499 /*
500 * Make sure EST is enabled.
501 */
502 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
503
504 val = rdmsr(MSR_MISC_ENABLE);
505
506 if ((val & MSR_MISC_ENABLE_EST) == 0) {
507
508 val |= MSR_MISC_ENABLE_EST;
509 wrmsr(MSR_MISC_ENABLE, val);
510 val = rdmsr(MSR_MISC_ENABLE);
511
512 if ((val & MSR_MISC_ENABLE_EST) == 0)
513 return ENOTTY;
514 }
515 }
516 }
517
518 /*
519 * Reset the APERF and MPERF counters.
520 */
521 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
522 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
523 xc_wait(xc);
524 }
525
526 return acpicpu_md_pstate_sysctl_init();
527 }
528
529 int
530 acpicpu_md_pstate_stop(void)
531 {
532
533 if (acpicpu_log == NULL)
534 return EALREADY;
535
536 sysctl_teardown(&acpicpu_log);
537 acpicpu_log = NULL;
538
539 return 0;
540 }
541
542 int
543 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
544 {
545 struct cpu_info *ci = sc->sc_ci;
546 struct acpicpu_pstate *ps, msr;
547 uint32_t family, i = 0;
548
549 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
550
551 switch (cpu_vendor) {
552
553 case CPUVENDOR_IDT:
554 case CPUVENDOR_INTEL:
555
556 /*
557 * If the so-called Turbo Boost is present,
558 * the P0-state is always the "turbo state".
559 * It is shown as the P1 frequency + 1 MHz.
560 *
561 * For discussion, see:
562 *
563 * Intel Corporation: Intel Turbo Boost Technology
564 * in Intel Core(tm) Microarchitectures (Nehalem)
565 * Based Processors. White Paper, November 2008.
566 */
567 if (sc->sc_pstate_count >= 2 &&
568 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
569
570 ps = &sc->sc_pstate[0];
571
572 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
573 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
574 }
575
576 msr.ps_control_addr = MSR_PERF_CTL;
577 msr.ps_control_mask = __BITS(0, 15);
578
579 msr.ps_status_addr = MSR_PERF_STATUS;
580 msr.ps_status_mask = __BITS(0, 15);
581 break;
582
583 case CPUVENDOR_AMD:
584
585 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
586 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
587
588 family = CPUID2FAMILY(ci->ci_signature);
589
590 if (family == 0xf)
591 family += CPUID2EXTFAMILY(ci->ci_signature);
592
593 switch (family) {
594
595 case 0x0f:
596 msr.ps_control_addr = MSR_0FH_CONTROL;
597 msr.ps_status_addr = MSR_0FH_STATUS;
598 break;
599
600 case 0x10:
601 case 0x11:
602 case 0x14: /* AMD Fusion */
603 msr.ps_control_addr = MSR_10H_CONTROL;
604 msr.ps_control_mask = __BITS(0, 2);
605
606 msr.ps_status_addr = MSR_10H_STATUS;
607 msr.ps_status_mask = __BITS(0, 2);
608 break;
609
610 default:
611 /*
612 * If we have an unknown AMD CPU, rely on XPSS.
613 */
614 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
615 return EOPNOTSUPP;
616 }
617
618 break;
619
620 default:
621 return ENODEV;
622 }
623
624 /*
625 * Fill the P-state structures with MSR addresses that are
626 * known to be correct. If we do not know the addresses,
627 * leave the values intact. If a vendor uses XPSS, we do
628 * not necessarily need to do anything to support new CPUs.
629 */
630 while (i < sc->sc_pstate_count) {
631
632 ps = &sc->sc_pstate[i];
633
634 if (msr.ps_flags != 0)
635 ps->ps_flags |= msr.ps_flags;
636
637 if (msr.ps_status_addr != 0)
638 ps->ps_status_addr = msr.ps_status_addr;
639
640 if (msr.ps_status_mask != 0)
641 ps->ps_status_mask = msr.ps_status_mask;
642
643 if (msr.ps_control_addr != 0)
644 ps->ps_control_addr = msr.ps_control_addr;
645
646 if (msr.ps_control_mask != 0)
647 ps->ps_control_mask = msr.ps_control_mask;
648
649 /*
650 * Some AMD systems may round the frequencies
651 * reported in the tables. Try to fix these.
652 */
653 if (cpu_vendor == CPUVENDOR_AMD)
654 acpicpu_md_quirk_amd(ps, i);
655
656 i++;
657 }
658
659 return 0;
660 }
661
662 /*
663 * Read the IA32_APERF and IA32_MPERF counters. The first
664 * increments at the rate of the fixed maximum frequency
665 * configured during the boot, whereas APERF counts at the
666 * rate of the actual frequency. Note that the MSRs must be
667 * read without delay, and that only the ratio between
668 * IA32_APERF and IA32_MPERF is architecturally defined.
669 *
670 * The function thus returns the percentage of the actual
671 * frequency in terms of the maximum frequency of the calling
672 * CPU since the last call. A value zero implies an error.
673 *
674 * For further details, refer to:
675 *
676 * Intel Corporation: Intel 64 and IA-32 Architectures
677 * Software Developer's Manual. Section 13.2, Volume 3A:
678 * System Programming Guide, Part 1. July, 2008.
679 *
680 * Advanced Micro Devices: BIOS and Kernel Developer's
681 * Guide (BKDG) for AMD Family 10h Processors. Section
682 * 2.4.5, Revision 3.48, April 2010.
683 */
684 uint8_t
685 acpicpu_md_pstate_hwf(struct cpu_info *ci)
686 {
687 struct acpicpu_softc *sc;
688 uint64_t aperf, mperf;
689 uint8_t rv = 0;
690
691 sc = acpicpu_sc[ci->ci_acpiid];
692
693 if (__predict_false(sc == NULL))
694 return 0;
695
696 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
697 return 0;
698
699 aperf = sc->sc_pstate_aperf;
700 mperf = sc->sc_pstate_mperf;
701
702 x86_disable_intr();
703
704 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
705 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
706
707 x86_enable_intr();
708
709 aperf = sc->sc_pstate_aperf - aperf;
710 mperf = sc->sc_pstate_mperf - mperf;
711
712 if (__predict_true(mperf != 0))
713 rv = (aperf * 100) / mperf;
714
715 return rv;
716 }
717
718 static void
719 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
720 {
721 struct cpu_info *ci = curcpu();
722 struct acpicpu_softc *sc;
723
724 sc = acpicpu_sc[ci->ci_acpiid];
725
726 if (__predict_false(sc == NULL))
727 return;
728
729 x86_disable_intr();
730
731 wrmsr(MSR_APERF, 0);
732 wrmsr(MSR_MPERF, 0);
733
734 x86_enable_intr();
735
736 sc->sc_pstate_aperf = 0;
737 sc->sc_pstate_mperf = 0;
738 }
739
740 int
741 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
742 {
743 struct acpicpu_pstate *ps = NULL;
744 uint64_t val;
745 uint32_t i;
746
747 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
748 return acpicpu_md_pstate_fidvid_get(sc, freq);
749
750 /*
751 * Pick any P-state for the status address.
752 */
753 for (i = 0; i < sc->sc_pstate_count; i++) {
754
755 ps = &sc->sc_pstate[i];
756
757 if (__predict_true(ps->ps_freq != 0))
758 break;
759 }
760
761 if (__predict_false(ps == NULL))
762 return ENODEV;
763
764 if (__predict_false(ps->ps_status_addr == 0))
765 return EINVAL;
766
767 val = rdmsr(ps->ps_status_addr);
768
769 if (__predict_true(ps->ps_status_mask != 0))
770 val = val & ps->ps_status_mask;
771
772 /*
773 * Search for the value from known P-states.
774 */
775 for (i = 0; i < sc->sc_pstate_count; i++) {
776
777 ps = &sc->sc_pstate[i];
778
779 if (__predict_false(ps->ps_freq == 0))
780 continue;
781
782 if (val == ps->ps_status) {
783 *freq = ps->ps_freq;
784 return 0;
785 }
786 }
787
788 /*
789 * If the value was not found, try APERF/MPERF.
790 * The state is P0 if the return value is 100 %.
791 */
792 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
793
794 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
795 *freq = sc->sc_pstate[0].ps_freq;
796 return 0;
797 }
798 }
799
800 return EIO;
801 }
802
803 int
804 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
805 {
806 uint64_t val = 0;
807
808 if (__predict_false(ps->ps_control_addr == 0))
809 return EINVAL;
810
811 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
812 return acpicpu_md_pstate_fidvid_set(ps);
813
814 /*
815 * If the mask is set, do a read-modify-write.
816 */
817 if (__predict_true(ps->ps_control_mask != 0)) {
818 val = rdmsr(ps->ps_control_addr);
819 val &= ~ps->ps_control_mask;
820 }
821
822 val |= ps->ps_control;
823
824 wrmsr(ps->ps_control_addr, val);
825 DELAY(ps->ps_latency);
826
827 return 0;
828 }
829
830 static int
831 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
832 {
833 struct acpicpu_pstate *ps;
834 uint32_t fid, i, vid;
835 uint32_t cfid, cvid;
836 int rv;
837
838 /*
839 * AMD family 0Fh needs special treatment.
840 * While it wants to use ACPI, it does not
841 * comply with the ACPI specifications.
842 */
843 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
844
845 if (rv != 0)
846 return rv;
847
848 for (i = 0; i < sc->sc_pstate_count; i++) {
849
850 ps = &sc->sc_pstate[i];
851
852 if (__predict_false(ps->ps_freq == 0))
853 continue;
854
855 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
856 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
857
858 if (cfid == fid && cvid == vid) {
859 *freq = ps->ps_freq;
860 return 0;
861 }
862 }
863
864 return EIO;
865 }
866
867 static int
868 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
869 {
870 const uint64_t ctrl = ps->ps_control;
871 uint32_t cfid, cvid, fid, i, irt;
872 uint32_t pll, vco_cfid, vco_fid;
873 uint32_t val, vid, vst;
874 int rv;
875
876 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
877
878 if (rv != 0)
879 return rv;
880
881 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
882 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
883 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
884 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
885 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
886
887 vst = vst * 20;
888 pll = pll * 1000 / 5;
889 irt = 10 * __BIT(irt);
890
891 /*
892 * Phase 1.
893 */
894 while (cvid > vid) {
895
896 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
897 val = (val > cvid) ? 0 : cvid - val;
898
899 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
900 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
901
902 if (rv != 0)
903 return rv;
904 }
905
906 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
907
908 for (; i > 0 && cvid > 0; --i) {
909
910 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
911 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
912
913 if (rv != 0)
914 return rv;
915 }
916
917 /*
918 * Phase 2.
919 */
920 if (cfid != fid) {
921
922 vco_fid = FID_TO_VCO_FID(fid);
923 vco_cfid = FID_TO_VCO_FID(cfid);
924
925 while (abs(vco_fid - vco_cfid) > 2) {
926
927 if (fid <= cfid)
928 val = cfid - 2;
929 else {
930 val = (cfid > 6) ? cfid + 2 :
931 FID_TO_VCO_FID(cfid) + 2;
932 }
933
934 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
935 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
936
937 if (rv != 0)
938 return rv;
939
940 vco_cfid = FID_TO_VCO_FID(cfid);
941 }
942
943 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
944 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
945
946 if (rv != 0)
947 return rv;
948 }
949
950 /*
951 * Phase 3.
952 */
953 if (cvid != vid) {
954
955 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
956 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
957
958 if (rv != 0)
959 return rv;
960 }
961
962 return 0;
963 }
964
965 static int
966 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
967 {
968 int i = ACPICPU_P_STATE_RETRY * 100;
969 uint64_t val;
970
971 do {
972 val = rdmsr(MSR_0FH_STATUS);
973
974 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
975
976 if (i == 0)
977 return EAGAIN;
978
979 if (cfid != NULL)
980 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
981
982 if (cvid != NULL)
983 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
984
985 return 0;
986 }
987
988 static void
989 acpicpu_md_pstate_fidvid_write(uint32_t fid,
990 uint32_t vid, uint32_t cnt, uint32_t tmo)
991 {
992 uint64_t val = 0;
993
994 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
995 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
996 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
997 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
998
999 wrmsr(MSR_0FH_CONTROL, val);
1000 DELAY(tmo);
1001 }
1002
1003 int
1004 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
1005 {
1006 struct acpicpu_tstate *ts;
1007 uint64_t val;
1008 uint32_t i;
1009
1010 val = rdmsr(MSR_THERM_CONTROL);
1011
1012 for (i = 0; i < sc->sc_tstate_count; i++) {
1013
1014 ts = &sc->sc_tstate[i];
1015
1016 if (ts->ts_percent == 0)
1017 continue;
1018
1019 if (val == ts->ts_status) {
1020 *percent = ts->ts_percent;
1021 return 0;
1022 }
1023 }
1024
1025 return EIO;
1026 }
1027
1028 int
1029 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1030 {
1031 uint64_t val;
1032 uint8_t i;
1033
1034 val = ts->ts_control;
1035 val = val & __BITS(1, 4);
1036
1037 wrmsr(MSR_THERM_CONTROL, val);
1038
1039 if (ts->ts_status == 0) {
1040 DELAY(ts->ts_latency);
1041 return 0;
1042 }
1043
1044 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1045
1046 val = rdmsr(MSR_THERM_CONTROL);
1047
1048 if (val == ts->ts_status)
1049 return 0;
1050
1051 DELAY(ts->ts_latency);
1052 }
1053
1054 return EAGAIN;
1055 }
1056
1057 /*
1058 * A kludge for backwards compatibility.
1059 */
1060 static int
1061 acpicpu_md_pstate_sysctl_init(void)
1062 {
1063 const struct sysctlnode *fnode, *mnode, *rnode;
1064 const char *str;
1065 int rv;
1066
1067 switch (cpu_vendor) {
1068
1069 case CPUVENDOR_IDT:
1070 case CPUVENDOR_INTEL:
1071 str = "est";
1072 break;
1073
1074 case CPUVENDOR_AMD:
1075 str = "powernow";
1076 break;
1077
1078 default:
1079 return ENODEV;
1080 }
1081
1082
1083 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1084 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1085 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1086
1087 if (rv != 0)
1088 goto fail;
1089
1090 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1091 0, CTLTYPE_NODE, str, NULL,
1092 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1093
1094 if (rv != 0)
1095 goto fail;
1096
1097 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1098 0, CTLTYPE_NODE, "frequency", NULL,
1099 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1100
1101 if (rv != 0)
1102 goto fail;
1103
1104 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1105 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1106 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1107
1108 if (rv != 0)
1109 goto fail;
1110
1111 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1112 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1113 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1114
1115 if (rv != 0)
1116 goto fail;
1117
1118 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1119 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1120 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1121
1122 if (rv != 0)
1123 goto fail;
1124
1125 return 0;
1126
1127 fail:
1128 if (acpicpu_log != NULL) {
1129 sysctl_teardown(&acpicpu_log);
1130 acpicpu_log = NULL;
1131 }
1132
1133 return rv;
1134 }
1135
1136 static int
1137 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1138 {
1139 struct cpu_info *ci = curcpu();
1140 struct sysctlnode node;
1141 uint32_t freq;
1142 int err;
1143
1144 err = acpicpu_pstate_get(ci, &freq);
1145
1146 if (err != 0)
1147 return err;
1148
1149 node = *rnode;
1150 node.sysctl_data = &freq;
1151
1152 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1153
1154 if (err != 0 || newp == NULL)
1155 return err;
1156
1157 return 0;
1158 }
1159
1160 static int
1161 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1162 {
1163 struct cpu_info *ci = curcpu();
1164 struct sysctlnode node;
1165 uint32_t freq;
1166 int err;
1167
1168 err = acpicpu_pstate_get(ci, &freq);
1169
1170 if (err != 0)
1171 return err;
1172
1173 node = *rnode;
1174 node.sysctl_data = &freq;
1175
1176 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1177
1178 if (err != 0 || newp == NULL)
1179 return err;
1180
1181 acpicpu_pstate_set(ci, freq);
1182
1183 return 0;
1184 }
1185
1186 static int
1187 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1188 {
1189 struct cpu_info *ci = curcpu();
1190 struct acpicpu_softc *sc;
1191 struct sysctlnode node;
1192 char buf[1024];
1193 size_t len;
1194 uint32_t i;
1195 int err;
1196
1197 sc = acpicpu_sc[ci->ci_acpiid];
1198
1199 if (sc == NULL)
1200 return ENXIO;
1201
1202 (void)memset(&buf, 0, sizeof(buf));
1203
1204 mutex_enter(&sc->sc_mtx);
1205
1206 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1207
1208 if (sc->sc_pstate[i].ps_freq == 0)
1209 continue;
1210
1211 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1212 sc->sc_pstate[i].ps_freq,
1213 i < (sc->sc_pstate_count - 1) ? " " : "");
1214 }
1215
1216 mutex_exit(&sc->sc_mtx);
1217
1218 node = *rnode;
1219 node.sysctl_data = buf;
1220
1221 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1222
1223 if (err != 0 || newp == NULL)
1224 return err;
1225
1226 return 0;
1227 }
1228
1229