Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.68
      1 /* $NetBSD: acpi_cpu_md.c,v 1.68 2011/10/18 05:08:24 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.68 2011/10/18 05:08:24 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, and 14h
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 static char	  native_idle_text[16];
    107 void		(*native_idle)(void) = NULL;
    108 
    109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110 static void	 acpicpu_md_quirk_amd(struct acpicpu_pstate *, uint32_t);
    111 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    112 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    113                                               uint32_t *);
    114 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    115 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    116 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    117 					        uint32_t, uint32_t);
    118 static int	 acpicpu_md_pstate_sysctl_init(void);
    119 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    121 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    122 
    123 extern struct acpicpu_softc **acpicpu_sc;
    124 static struct sysctllog *acpicpu_log = NULL;
    125 
    126 struct cpu_info *
    127 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    128 {
    129 	struct cpufeature_attach_args *cfaa = aux;
    130 
    131 	if (strcmp(cfaa->name, "frequency") != 0)
    132 		return NULL;
    133 
    134 	return cfaa->ci;
    135 }
    136 
    137 struct cpu_info *
    138 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    139 {
    140 	struct cpufeature_attach_args *cfaa = aux;
    141 
    142 	return cfaa->ci;
    143 }
    144 
    145 uint32_t
    146 acpicpu_md_flags(void)
    147 {
    148 	struct cpu_info *ci = curcpu();
    149 	struct pci_attach_args pa;
    150 	uint32_t family, val = 0;
    151 	uint32_t regs[4];
    152 	uint64_t msr;
    153 
    154 	if (acpi_md_ncpus() == 1)
    155 		val |= ACPICPU_FLAG_C_BM;
    156 
    157 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    158 		val |= ACPICPU_FLAG_C_FFH;
    159 
    160 	/*
    161 	 * By default, assume that the local APIC timer
    162 	 * as well as TSC are stalled during C3 sleep.
    163 	 */
    164 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    165 
    166 	switch (cpu_vendor) {
    167 
    168 	case CPUVENDOR_IDT:
    169 
    170 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    171 			val |= ACPICPU_FLAG_P_FFH;
    172 
    173 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    174 			val |= ACPICPU_FLAG_T_FFH;
    175 
    176 		break;
    177 
    178 	case CPUVENDOR_INTEL:
    179 
    180 		/*
    181 		 * Bus master control and arbitration should be
    182 		 * available on all supported Intel CPUs (to be
    183 		 * sure, this is double-checked later from the
    184 		 * firmware data). These flags imply that it is
    185 		 * not necessary to flush caches before C3 state.
    186 		 */
    187 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    188 
    189 		/*
    190 		 * Check if we can use "native", MSR-based,
    191 		 * access. If not, we have to resort to I/O.
    192 		 */
    193 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    194 			val |= ACPICPU_FLAG_P_FFH;
    195 
    196 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    197 			val |= ACPICPU_FLAG_T_FFH;
    198 
    199 		/*
    200 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    201 		 * Boost are available. Also see if we might have
    202 		 * an invariant local APIC timer ("ARAT").
    203 		 */
    204 		if (cpuid_level >= 0x06) {
    205 
    206 			x86_cpuid(0x00000006, regs);
    207 
    208 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    209 				val |= ACPICPU_FLAG_P_HWF;
    210 
    211 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    212 				val |= ACPICPU_FLAG_P_TURBO;
    213 
    214 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    215 				val &= ~ACPICPU_FLAG_C_APIC;
    216 		}
    217 
    218 		/*
    219 		 * Detect whether TSC is invariant. If it is not,
    220 		 * we keep the flag to note that TSC will not run
    221 		 * at constant rate. Depending on the CPU, this may
    222 		 * affect P- and T-state changes, but especially
    223 		 * relevant are C-states; with variant TSC, states
    224 		 * larger than C1 may completely stop the counter.
    225 		 */
    226 		x86_cpuid(0x80000000, regs);
    227 
    228 		if (regs[0] >= 0x80000007) {
    229 
    230 			x86_cpuid(0x80000007, regs);
    231 
    232 			if ((regs[3] & __BIT(8)) != 0)
    233 				val &= ~ACPICPU_FLAG_C_TSC;
    234 		}
    235 
    236 		break;
    237 
    238 	case CPUVENDOR_AMD:
    239 
    240 		x86_cpuid(0x80000000, regs);
    241 
    242 		if (regs[0] < 0x80000007)
    243 			break;
    244 
    245 		x86_cpuid(0x80000007, regs);
    246 
    247 		family = CPUID2FAMILY(ci->ci_signature);
    248 
    249 		if (family == 0xf)
    250 			family += CPUID2EXTFAMILY(ci->ci_signature);
    251 
    252     		switch (family) {
    253 
    254 		case 0x0f:
    255 
    256 			/*
    257 			 * Evaluate support for the "FID/VID
    258 			 * algorithm" also used by powernow(4).
    259 			 */
    260 			if ((regs[3] & CPUID_APM_FID) == 0)
    261 				break;
    262 
    263 			if ((regs[3] & CPUID_APM_VID) == 0)
    264 				break;
    265 
    266 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    267 			break;
    268 
    269 		case 0x10:
    270 		case 0x11:
    271 
    272 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    273 				val |= ACPICPU_FLAG_C_C1E;
    274 
    275 			/* FALLTHROUGH */
    276 
    277 		case 0x14: /* AMD Fusion */
    278 
    279 			/*
    280 			 * Like with Intel, detect invariant TSC,
    281 			 * MSR-based P-states, and AMD's "turbo"
    282 			 * (Core Performance Boost), respectively.
    283 			 */
    284 			if ((regs[3] & CPUID_APM_TSC) != 0)
    285 				val &= ~ACPICPU_FLAG_C_TSC;
    286 
    287 			if ((regs[3] & CPUID_APM_HWP) != 0)
    288 				val |= ACPICPU_FLAG_P_FFH;
    289 
    290 			if ((regs[3] & CPUID_APM_CPB) != 0)
    291 				val |= ACPICPU_FLAG_P_TURBO;
    292 
    293 			/*
    294 			 * Also check for APERF and MPERF,
    295 			 * first available in the family 10h.
    296 			 */
    297 			if (cpuid_level >= 0x06) {
    298 
    299 				x86_cpuid(0x00000006, regs);
    300 
    301 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    302 					val |= ACPICPU_FLAG_P_HWF;
    303 			}
    304 
    305 			break;
    306 		}
    307 
    308 		break;
    309 	}
    310 
    311 	/*
    312 	 * There are several erratums for PIIX4.
    313 	 */
    314 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    315 		val |= ACPICPU_FLAG_PIIX4;
    316 
    317 	return val;
    318 }
    319 
    320 static int
    321 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    322 {
    323 
    324 	/*
    325 	 * XXX: The pci_find_device(9) function only
    326 	 *	deals with attached devices. Change this
    327 	 *	to use something like pci_device_foreach().
    328 	 */
    329 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    330 		return 0;
    331 
    332 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    333 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    334 		return 1;
    335 
    336 	return 0;
    337 }
    338 
    339 static void
    340 acpicpu_md_quirk_amd(struct acpicpu_pstate *ps, uint32_t i)
    341 {
    342 	struct cpu_info *ci = &cpu_info_primary;
    343 	uint32_t family, fid, freq, did, zeta;
    344 	uint64_t val;
    345 
    346 	if (i > 7 || cpu_vendor != CPUVENDOR_AMD)
    347 		return;
    348 
    349 	family = CPUID2FAMILY(ci->ci_signature);
    350 
    351 	if (family == 0xf)
    352 		family += CPUID2EXTFAMILY(ci->ci_signature);
    353 
    354 	switch (family) {
    355 
    356 	case 0x10:
    357 		zeta = 0x10;
    358 		break;
    359 
    360 	case 0x11:
    361 		zeta = 0x08;
    362 		break;
    363 
    364 	default:
    365 		return;
    366 	}
    367 
    368 	/*
    369 	 * The following eight P-state control MSRs define
    370 	 * the static per-core values; the MSB indicates
    371 	 * whether the state is enabled, and the first eight
    372 	 * bits define the frequency divisor and multiplier.
    373 	 */
    374 	val = rdmsr(MSR_10H_CONFIG + i);
    375 
    376 	if ((val & __BIT(63)) == 0)
    377 		return;
    378 
    379 	fid = __SHIFTOUT(val, __BITS(0, 5));
    380 	did = __SHIFTOUT(val, __BITS(6, 8));
    381 
    382 	freq = 100 * (fid + zeta) >> did;
    383 
    384 	if (freq != 0 && ps->ps_freq != freq)
    385 		ps->ps_freq = freq;
    386 }
    387 
    388 void
    389 acpicpu_md_quirk_c1e(void)
    390 {
    391 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    392 	uint64_t val;
    393 
    394 	val = rdmsr(MSR_CMPHALT);
    395 
    396 	if ((val & c1e) != 0)
    397 		wrmsr(MSR_CMPHALT, val & ~c1e);
    398 }
    399 
    400 int
    401 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    402 {
    403 	const size_t size = sizeof(native_idle_text);
    404 	struct acpicpu_cstate *cs;
    405 	bool ipi = false;
    406 	int i;
    407 
    408 	/*
    409 	 * Save the cpu_idle(9) loop used by default.
    410 	 */
    411 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    412 
    413 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    414 
    415 		cs = &sc->sc_cstate[i];
    416 
    417 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    418 			ipi = true;
    419 			break;
    420 		}
    421 	}
    422 
    423 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    424 
    425 	return 0;
    426 }
    427 
    428 int
    429 acpicpu_md_cstate_stop(void)
    430 {
    431 	static char text[16];
    432 	void (*func)(void);
    433 	uint64_t xc;
    434 	bool ipi;
    435 
    436 	x86_cpu_idle_get(&func, text, sizeof(text));
    437 
    438 	if (func == native_idle)
    439 		return EALREADY;
    440 
    441 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    442 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    443 
    444 	/*
    445 	 * Run a cross-call to ensure that all CPUs are
    446 	 * out from the ACPI idle-loop before detachment.
    447 	 */
    448 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    449 	xc_wait(xc);
    450 
    451 	return 0;
    452 }
    453 
    454 /*
    455  * Called with interrupts enabled.
    456  */
    457 void
    458 acpicpu_md_cstate_enter(int method, int state)
    459 {
    460 	struct cpu_info *ci = curcpu();
    461 
    462 	KASSERT(ci->ci_ilevel == IPL_NONE);
    463 
    464 	switch (method) {
    465 
    466 	case ACPICPU_C_STATE_FFH:
    467 
    468 		x86_monitor(&ci->ci_want_resched, 0, 0);
    469 
    470 		if (__predict_false(ci->ci_want_resched != 0))
    471 			return;
    472 
    473 		x86_mwait((state - 1) << 4, 0);
    474 		break;
    475 
    476 	case ACPICPU_C_STATE_HALT:
    477 
    478 		x86_disable_intr();
    479 
    480 		if (__predict_false(ci->ci_want_resched != 0)) {
    481 			x86_enable_intr();
    482 			return;
    483 		}
    484 
    485 		x86_stihlt();
    486 		break;
    487 	}
    488 }
    489 
    490 int
    491 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    492 {
    493 	uint64_t xc, val;
    494 
    495 	switch (cpu_vendor) {
    496 
    497 	case CPUVENDOR_IDT:
    498 	case CPUVENDOR_INTEL:
    499 
    500 		/*
    501 		 * Make sure EST is enabled.
    502 		 */
    503 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    504 
    505 			val = rdmsr(MSR_MISC_ENABLE);
    506 
    507 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    508 
    509 				val |= MSR_MISC_ENABLE_EST;
    510 				wrmsr(MSR_MISC_ENABLE, val);
    511 				val = rdmsr(MSR_MISC_ENABLE);
    512 
    513 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    514 					return ENOTTY;
    515 			}
    516 		}
    517 	}
    518 
    519 	/*
    520 	 * Reset the APERF and MPERF counters.
    521 	 */
    522 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    523 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    524 		xc_wait(xc);
    525 	}
    526 
    527 	return acpicpu_md_pstate_sysctl_init();
    528 }
    529 
    530 int
    531 acpicpu_md_pstate_stop(void)
    532 {
    533 
    534 	if (acpicpu_log == NULL)
    535 		return EALREADY;
    536 
    537 	sysctl_teardown(&acpicpu_log);
    538 	acpicpu_log = NULL;
    539 
    540 	return 0;
    541 }
    542 
    543 int
    544 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    545 {
    546 	struct cpu_info *ci = sc->sc_ci;
    547 	struct acpicpu_pstate *ps, msr;
    548 	uint32_t family, i = 0;
    549 
    550 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    551 
    552 	switch (cpu_vendor) {
    553 
    554 	case CPUVENDOR_IDT:
    555 	case CPUVENDOR_INTEL:
    556 
    557 		/*
    558 		 * If the so-called Turbo Boost is present,
    559 		 * the P0-state is always the "turbo state".
    560 		 * It is shown as the P1 frequency + 1 MHz.
    561 		 *
    562 		 * For discussion, see:
    563 		 *
    564 		 *	Intel Corporation: Intel Turbo Boost Technology
    565 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    566 		 *	Based Processors. White Paper, November 2008.
    567 		 */
    568 		if (sc->sc_pstate_count >= 2 &&
    569 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    570 
    571 			ps = &sc->sc_pstate[0];
    572 
    573 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    574 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    575 		}
    576 
    577 		msr.ps_control_addr = MSR_PERF_CTL;
    578 		msr.ps_control_mask = __BITS(0, 15);
    579 
    580 		msr.ps_status_addr  = MSR_PERF_STATUS;
    581 		msr.ps_status_mask  = __BITS(0, 15);
    582 		break;
    583 
    584 	case CPUVENDOR_AMD:
    585 
    586 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    587 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    588 
    589 		family = CPUID2FAMILY(ci->ci_signature);
    590 
    591 		if (family == 0xf)
    592 			family += CPUID2EXTFAMILY(ci->ci_signature);
    593 
    594 		switch (family) {
    595 
    596 		case 0x0f:
    597 			msr.ps_control_addr = MSR_0FH_CONTROL;
    598 			msr.ps_status_addr  = MSR_0FH_STATUS;
    599 			break;
    600 
    601 		case 0x10:
    602 		case 0x11:
    603 		case 0x14: /* AMD Fusion */
    604 			msr.ps_control_addr = MSR_10H_CONTROL;
    605 			msr.ps_control_mask = __BITS(0, 2);
    606 
    607 			msr.ps_status_addr  = MSR_10H_STATUS;
    608 			msr.ps_status_mask  = __BITS(0, 2);
    609 			break;
    610 
    611 		default:
    612 			/*
    613 			 * If we have an unknown AMD CPU, rely on XPSS.
    614 			 */
    615 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    616 				return EOPNOTSUPP;
    617 		}
    618 
    619 		break;
    620 
    621 	default:
    622 		return ENODEV;
    623 	}
    624 
    625 	/*
    626 	 * Fill the P-state structures with MSR addresses that are
    627 	 * known to be correct. If we do not know the addresses,
    628 	 * leave the values intact. If a vendor uses XPSS, we do
    629 	 * not necessarily need to do anything to support new CPUs.
    630 	 */
    631 	while (i < sc->sc_pstate_count) {
    632 
    633 		ps = &sc->sc_pstate[i];
    634 
    635 		if (msr.ps_flags != 0)
    636 			ps->ps_flags |= msr.ps_flags;
    637 
    638 		if (msr.ps_status_addr != 0)
    639 			ps->ps_status_addr = msr.ps_status_addr;
    640 
    641 		if (msr.ps_status_mask != 0)
    642 			ps->ps_status_mask = msr.ps_status_mask;
    643 
    644 		if (msr.ps_control_addr != 0)
    645 			ps->ps_control_addr = msr.ps_control_addr;
    646 
    647 		if (msr.ps_control_mask != 0)
    648 			ps->ps_control_mask = msr.ps_control_mask;
    649 
    650 		/*
    651 		 * Some AMD systems may round the frequencies
    652 		 * reported in the tables. Try to fix these.
    653 		 */
    654 		if (cpu_vendor == CPUVENDOR_AMD)
    655 			acpicpu_md_quirk_amd(ps, i);
    656 
    657 		i++;
    658 	}
    659 
    660 	return 0;
    661 }
    662 
    663 /*
    664  * Read the IA32_APERF and IA32_MPERF counters. The first
    665  * increments at the rate of the fixed maximum frequency
    666  * configured during the boot, whereas APERF counts at the
    667  * rate of the actual frequency. Note that the MSRs must be
    668  * read without delay, and that only the ratio between
    669  * IA32_APERF and IA32_MPERF is architecturally defined.
    670  *
    671  * The function thus returns the percentage of the actual
    672  * frequency in terms of the maximum frequency of the calling
    673  * CPU since the last call. A value zero implies an error.
    674  *
    675  * For further details, refer to:
    676  *
    677  *	Intel Corporation: Intel 64 and IA-32 Architectures
    678  *	Software Developer's Manual. Section 13.2, Volume 3A:
    679  *	System Programming Guide, Part 1. July, 2008.
    680  *
    681  *	Advanced Micro Devices: BIOS and Kernel Developer's
    682  *	Guide (BKDG) for AMD Family 10h Processors. Section
    683  *	2.4.5, Revision 3.48, April 2010.
    684  */
    685 uint8_t
    686 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    687 {
    688 	struct acpicpu_softc *sc;
    689 	uint64_t aperf, mperf;
    690 	uint8_t rv = 0;
    691 
    692 	sc = acpicpu_sc[ci->ci_acpiid];
    693 
    694 	if (__predict_false(sc == NULL))
    695 		return 0;
    696 
    697 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    698 		return 0;
    699 
    700 	aperf = sc->sc_pstate_aperf;
    701 	mperf = sc->sc_pstate_mperf;
    702 
    703 	x86_disable_intr();
    704 
    705 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    706 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    707 
    708 	x86_enable_intr();
    709 
    710 	aperf = sc->sc_pstate_aperf - aperf;
    711 	mperf = sc->sc_pstate_mperf - mperf;
    712 
    713 	if (__predict_true(mperf != 0))
    714 		rv = (aperf * 100) / mperf;
    715 
    716 	return rv;
    717 }
    718 
    719 static void
    720 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    721 {
    722 	struct cpu_info *ci = curcpu();
    723 	struct acpicpu_softc *sc;
    724 
    725 	sc = acpicpu_sc[ci->ci_acpiid];
    726 
    727 	if (__predict_false(sc == NULL))
    728 		return;
    729 
    730 	x86_disable_intr();
    731 
    732 	wrmsr(MSR_APERF, 0);
    733 	wrmsr(MSR_MPERF, 0);
    734 
    735 	x86_enable_intr();
    736 
    737 	sc->sc_pstate_aperf = 0;
    738 	sc->sc_pstate_mperf = 0;
    739 }
    740 
    741 int
    742 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    743 {
    744 	struct acpicpu_pstate *ps = NULL;
    745 	uint64_t val;
    746 	uint32_t i;
    747 
    748 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    749 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    750 
    751 	/*
    752 	 * Pick any P-state for the status address.
    753 	 */
    754 	for (i = 0; i < sc->sc_pstate_count; i++) {
    755 
    756 		ps = &sc->sc_pstate[i];
    757 
    758 		if (__predict_true(ps->ps_freq != 0))
    759 			break;
    760 	}
    761 
    762 	if (__predict_false(ps == NULL))
    763 		return ENODEV;
    764 
    765 	if (__predict_false(ps->ps_status_addr == 0))
    766 		return EINVAL;
    767 
    768 	val = rdmsr(ps->ps_status_addr);
    769 
    770 	if (__predict_true(ps->ps_status_mask != 0))
    771 		val = val & ps->ps_status_mask;
    772 
    773 	/*
    774 	 * Search for the value from known P-states.
    775 	 */
    776 	for (i = 0; i < sc->sc_pstate_count; i++) {
    777 
    778 		ps = &sc->sc_pstate[i];
    779 
    780 		if (__predict_false(ps->ps_freq == 0))
    781 			continue;
    782 
    783 		if (val == ps->ps_status) {
    784 			*freq = ps->ps_freq;
    785 			return 0;
    786 		}
    787 	}
    788 
    789 	/*
    790 	 * If the value was not found, try APERF/MPERF.
    791 	 * The state is P0 if the return value is 100 %.
    792 	 */
    793 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    794 
    795 		KASSERT(sc->sc_pstate_count > 0);
    796 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    797 
    798 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    799 			*freq = sc->sc_pstate[0].ps_freq;
    800 			return 0;
    801 		}
    802 	}
    803 
    804 	return EIO;
    805 }
    806 
    807 int
    808 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    809 {
    810 	uint64_t val = 0;
    811 
    812 	if (__predict_false(ps->ps_control_addr == 0))
    813 		return EINVAL;
    814 
    815 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    816 		return acpicpu_md_pstate_fidvid_set(ps);
    817 
    818 	/*
    819 	 * If the mask is set, do a read-modify-write.
    820 	 */
    821 	if (__predict_true(ps->ps_control_mask != 0)) {
    822 		val = rdmsr(ps->ps_control_addr);
    823 		val &= ~ps->ps_control_mask;
    824 	}
    825 
    826 	val |= ps->ps_control;
    827 
    828 	wrmsr(ps->ps_control_addr, val);
    829 	DELAY(ps->ps_latency);
    830 
    831 	return 0;
    832 }
    833 
    834 static int
    835 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    836 {
    837 	struct acpicpu_pstate *ps;
    838 	uint32_t fid, i, vid;
    839 	uint32_t cfid, cvid;
    840 	int rv;
    841 
    842 	/*
    843 	 * AMD family 0Fh needs special treatment.
    844 	 * While it wants to use ACPI, it does not
    845 	 * comply with the ACPI specifications.
    846 	 */
    847 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    848 
    849 	if (rv != 0)
    850 		return rv;
    851 
    852 	for (i = 0; i < sc->sc_pstate_count; i++) {
    853 
    854 		ps = &sc->sc_pstate[i];
    855 
    856 		if (__predict_false(ps->ps_freq == 0))
    857 			continue;
    858 
    859 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    860 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    861 
    862 		if (cfid == fid && cvid == vid) {
    863 			*freq = ps->ps_freq;
    864 			return 0;
    865 		}
    866 	}
    867 
    868 	return EIO;
    869 }
    870 
    871 static int
    872 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    873 {
    874 	const uint64_t ctrl = ps->ps_control;
    875 	uint32_t cfid, cvid, fid, i, irt;
    876 	uint32_t pll, vco_cfid, vco_fid;
    877 	uint32_t val, vid, vst;
    878 	int rv;
    879 
    880 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    881 
    882 	if (rv != 0)
    883 		return rv;
    884 
    885 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    886 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    887 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    888 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    889 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    890 
    891 	vst = vst * 20;
    892 	pll = pll * 1000 / 5;
    893 	irt = 10 * __BIT(irt);
    894 
    895 	/*
    896 	 * Phase 1.
    897 	 */
    898 	while (cvid > vid) {
    899 
    900 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    901 		val = (val > cvid) ? 0 : cvid - val;
    902 
    903 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    904 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    905 
    906 		if (rv != 0)
    907 			return rv;
    908 	}
    909 
    910 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    911 
    912 	for (; i > 0 && cvid > 0; --i) {
    913 
    914 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    915 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    916 
    917 		if (rv != 0)
    918 			return rv;
    919 	}
    920 
    921 	/*
    922 	 * Phase 2.
    923 	 */
    924 	if (cfid != fid) {
    925 
    926 		vco_fid  = FID_TO_VCO_FID(fid);
    927 		vco_cfid = FID_TO_VCO_FID(cfid);
    928 
    929 		while (abs(vco_fid - vco_cfid) > 2) {
    930 
    931 			if (fid <= cfid)
    932 				val = cfid - 2;
    933 			else {
    934 				val = (cfid > 6) ? cfid + 2 :
    935 				    FID_TO_VCO_FID(cfid) + 2;
    936 			}
    937 
    938 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    939 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    940 
    941 			if (rv != 0)
    942 				return rv;
    943 
    944 			vco_cfid = FID_TO_VCO_FID(cfid);
    945 		}
    946 
    947 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    948 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    949 
    950 		if (rv != 0)
    951 			return rv;
    952 	}
    953 
    954 	/*
    955 	 * Phase 3.
    956 	 */
    957 	if (cvid != vid) {
    958 
    959 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    960 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    961 
    962 		if (rv != 0)
    963 			return rv;
    964 	}
    965 
    966 	return 0;
    967 }
    968 
    969 static int
    970 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    971 {
    972 	int i = ACPICPU_P_STATE_RETRY * 100;
    973 	uint64_t val;
    974 
    975 	do {
    976 		val = rdmsr(MSR_0FH_STATUS);
    977 
    978 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    979 
    980 	if (i == 0)
    981 		return EAGAIN;
    982 
    983 	if (cfid != NULL)
    984 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    985 
    986 	if (cvid != NULL)
    987 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    988 
    989 	return 0;
    990 }
    991 
    992 static void
    993 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    994     uint32_t vid, uint32_t cnt, uint32_t tmo)
    995 {
    996 	uint64_t val = 0;
    997 
    998 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    999 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
   1000 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
   1001 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
   1002 
   1003 	wrmsr(MSR_0FH_CONTROL, val);
   1004 	DELAY(tmo);
   1005 }
   1006 
   1007 int
   1008 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
   1009 {
   1010 	struct acpicpu_tstate *ts;
   1011 	uint64_t val;
   1012 	uint32_t i;
   1013 
   1014 	val = rdmsr(MSR_THERM_CONTROL);
   1015 
   1016 	for (i = 0; i < sc->sc_tstate_count; i++) {
   1017 
   1018 		ts = &sc->sc_tstate[i];
   1019 
   1020 		if (ts->ts_percent == 0)
   1021 			continue;
   1022 
   1023 		if (val == ts->ts_status) {
   1024 			*percent = ts->ts_percent;
   1025 			return 0;
   1026 		}
   1027 	}
   1028 
   1029 	return EIO;
   1030 }
   1031 
   1032 int
   1033 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
   1034 {
   1035 	uint64_t val;
   1036 	uint8_t i;
   1037 
   1038 	val = ts->ts_control;
   1039 	val = val & __BITS(1, 4);
   1040 
   1041 	wrmsr(MSR_THERM_CONTROL, val);
   1042 
   1043 	if (ts->ts_status == 0) {
   1044 		DELAY(ts->ts_latency);
   1045 		return 0;
   1046 	}
   1047 
   1048 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1049 
   1050 		val = rdmsr(MSR_THERM_CONTROL);
   1051 
   1052 		if (val == ts->ts_status)
   1053 			return 0;
   1054 
   1055 		DELAY(ts->ts_latency);
   1056 	}
   1057 
   1058 	return EAGAIN;
   1059 }
   1060 
   1061 /*
   1062  * A kludge for backwards compatibility.
   1063  */
   1064 static int
   1065 acpicpu_md_pstate_sysctl_init(void)
   1066 {
   1067 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1068 	const char *str;
   1069 	int rv;
   1070 
   1071 	switch (cpu_vendor) {
   1072 
   1073 	case CPUVENDOR_IDT:
   1074 	case CPUVENDOR_INTEL:
   1075 		str = "est";
   1076 		break;
   1077 
   1078 	case CPUVENDOR_AMD:
   1079 		str = "powernow";
   1080 		break;
   1081 
   1082 	default:
   1083 		return ENODEV;
   1084 	}
   1085 
   1086 
   1087 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1088 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1089 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1090 
   1091 	if (rv != 0)
   1092 		goto fail;
   1093 
   1094 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1095 	    0, CTLTYPE_NODE, str, NULL,
   1096 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1097 
   1098 	if (rv != 0)
   1099 		goto fail;
   1100 
   1101 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1102 	    0, CTLTYPE_NODE, "frequency", NULL,
   1103 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1104 
   1105 	if (rv != 0)
   1106 		goto fail;
   1107 
   1108 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1109 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1110 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1111 
   1112 	if (rv != 0)
   1113 		goto fail;
   1114 
   1115 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1116 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1117 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1118 
   1119 	if (rv != 0)
   1120 		goto fail;
   1121 
   1122 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1123 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1124 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1125 
   1126 	if (rv != 0)
   1127 		goto fail;
   1128 
   1129 	return 0;
   1130 
   1131 fail:
   1132 	if (acpicpu_log != NULL) {
   1133 		sysctl_teardown(&acpicpu_log);
   1134 		acpicpu_log = NULL;
   1135 	}
   1136 
   1137 	return rv;
   1138 }
   1139 
   1140 static int
   1141 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1142 {
   1143 	struct sysctlnode node;
   1144 	uint32_t freq;
   1145 	int err;
   1146 
   1147 	freq = cpufreq_get(curcpu());
   1148 
   1149 	if (freq == 0)
   1150 		return ENXIO;
   1151 
   1152 	node = *rnode;
   1153 	node.sysctl_data = &freq;
   1154 
   1155 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1156 
   1157 	if (err != 0 || newp == NULL)
   1158 		return err;
   1159 
   1160 	return 0;
   1161 }
   1162 
   1163 static int
   1164 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1165 {
   1166 	struct sysctlnode node;
   1167 	uint32_t freq;
   1168 	int err;
   1169 
   1170 	freq = cpufreq_get(curcpu());
   1171 
   1172 	if (freq == 0)
   1173 		return ENXIO;
   1174 
   1175 	node = *rnode;
   1176 	node.sysctl_data = &freq;
   1177 
   1178 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1179 
   1180 	if (err != 0 || newp == NULL)
   1181 		return err;
   1182 
   1183 	cpufreq_set_all(freq);
   1184 
   1185 	return 0;
   1186 }
   1187 
   1188 static int
   1189 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1190 {
   1191 	struct cpu_info *ci = curcpu();
   1192 	struct acpicpu_softc *sc;
   1193 	struct sysctlnode node;
   1194 	char buf[1024];
   1195 	size_t len;
   1196 	uint32_t i;
   1197 	int err;
   1198 
   1199 	sc = acpicpu_sc[ci->ci_acpiid];
   1200 
   1201 	if (sc == NULL)
   1202 		return ENXIO;
   1203 
   1204 	(void)memset(&buf, 0, sizeof(buf));
   1205 
   1206 	mutex_enter(&sc->sc_mtx);
   1207 
   1208 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1209 
   1210 		if (sc->sc_pstate[i].ps_freq == 0)
   1211 			continue;
   1212 
   1213 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1214 		    sc->sc_pstate[i].ps_freq,
   1215 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1216 	}
   1217 
   1218 	mutex_exit(&sc->sc_mtx);
   1219 
   1220 	node = *rnode;
   1221 	node.sysctl_data = buf;
   1222 
   1223 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1224 
   1225 	if (err != 0 || newp == NULL)
   1226 		return err;
   1227 
   1228 	return 0;
   1229 }
   1230 
   1231