acpi_cpu_md.c revision 1.69 1 /* $NetBSD: acpi_cpu_md.c,v 1.69 2011/11/15 07:20:30 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.69 2011/11/15 07:20:30 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpufreq.h>
35 #include <sys/device.h>
36 #include <sys/kcore.h>
37 #include <sys/sysctl.h>
38 #include <sys/xcall.h>
39
40 #include <x86/cpu.h>
41 #include <x86/cpufunc.h>
42 #include <x86/cputypes.h>
43 #include <x86/cpuvar.h>
44 #include <x86/cpu_msr.h>
45 #include <x86/machdep.h>
46
47 #include <dev/acpi/acpica.h>
48 #include <dev/acpi/acpi_cpu.h>
49
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <machine/acpi_machdep.h>
54
55 /*
56 * Intel IA32_MISC_ENABLE.
57 */
58 #define MSR_MISC_ENABLE_EST __BIT(16)
59 #define MSR_MISC_ENABLE_TURBO __BIT(38)
60
61 /*
62 * AMD C1E.
63 */
64 #define MSR_CMPHALT 0xc0010055
65
66 #define MSR_CMPHALT_SMI __BIT(27)
67 #define MSR_CMPHALT_C1E __BIT(28)
68 #define MSR_CMPHALT_BMSTS __BIT(29)
69
70 /*
71 * AMD families 10h, 11h, 12h, and 14h.
72 */
73 #define MSR_10H_LIMIT 0xc0010061
74 #define MSR_10H_CONTROL 0xc0010062
75 #define MSR_10H_STATUS 0xc0010063
76 #define MSR_10H_CONFIG 0xc0010064
77
78 /*
79 * AMD family 0Fh.
80 */
81 #define MSR_0FH_CONTROL 0xc0010041
82 #define MSR_0FH_STATUS 0xc0010042
83
84 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87
88 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92
93 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95
96 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103
104 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105
106 static char native_idle_text[16];
107 void (*native_idle)(void) = NULL;
108
109 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
110 static void acpicpu_md_pstate_hwf_reset(void *, void *);
111 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
112 uint32_t *);
113 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
114 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
115 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
116 uint32_t, uint32_t);
117 static int acpicpu_md_pstate_sysctl_init(void);
118 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
119 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
120 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
121
122 extern struct acpicpu_softc **acpicpu_sc;
123 static struct sysctllog *acpicpu_log = NULL;
124
125 struct cpu_info *
126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
127 {
128 struct cpufeature_attach_args *cfaa = aux;
129
130 if (strcmp(cfaa->name, "frequency") != 0)
131 return NULL;
132
133 return cfaa->ci;
134 }
135
136 struct cpu_info *
137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
138 {
139 struct cpufeature_attach_args *cfaa = aux;
140
141 return cfaa->ci;
142 }
143
144 uint32_t
145 acpicpu_md_flags(void)
146 {
147 struct cpu_info *ci = curcpu();
148 struct pci_attach_args pa;
149 uint32_t family, val = 0;
150 uint32_t regs[4];
151 uint64_t msr;
152
153 if (acpi_md_ncpus() == 1)
154 val |= ACPICPU_FLAG_C_BM;
155
156 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
157 val |= ACPICPU_FLAG_C_FFH;
158
159 /*
160 * By default, assume that the local APIC timer
161 * as well as TSC are stalled during C3 sleep.
162 */
163 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
164
165 switch (cpu_vendor) {
166
167 case CPUVENDOR_IDT:
168
169 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 val |= ACPICPU_FLAG_P_FFH;
171
172 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 val |= ACPICPU_FLAG_T_FFH;
174
175 break;
176
177 case CPUVENDOR_INTEL:
178
179 /*
180 * Bus master control and arbitration should be
181 * available on all supported Intel CPUs (to be
182 * sure, this is double-checked later from the
183 * firmware data). These flags imply that it is
184 * not necessary to flush caches before C3 state.
185 */
186 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
187
188 /*
189 * Check if we can use "native", MSR-based,
190 * access. If not, we have to resort to I/O.
191 */
192 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
193 val |= ACPICPU_FLAG_P_FFH;
194
195 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
196 val |= ACPICPU_FLAG_T_FFH;
197
198 /*
199 * Check whether MSR_APERF, MSR_MPERF, and Turbo
200 * Boost are available. Also see if we might have
201 * an invariant local APIC timer ("ARAT").
202 */
203 if (cpuid_level >= 0x06) {
204
205 x86_cpuid(0x00000006, regs);
206
207 if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 val |= ACPICPU_FLAG_P_HWF;
209
210 if ((regs[0] & CPUID_DSPM_IDA) != 0)
211 val |= ACPICPU_FLAG_P_TURBO;
212
213 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
214 val &= ~ACPICPU_FLAG_C_APIC;
215 }
216
217 /*
218 * Detect whether TSC is invariant. If it is not,
219 * we keep the flag to note that TSC will not run
220 * at constant rate. Depending on the CPU, this may
221 * affect P- and T-state changes, but especially
222 * relevant are C-states; with variant TSC, states
223 * larger than C1 may completely stop the counter.
224 */
225 x86_cpuid(0x80000000, regs);
226
227 if (regs[0] >= 0x80000007) {
228
229 x86_cpuid(0x80000007, regs);
230
231 if ((regs[3] & __BIT(8)) != 0)
232 val &= ~ACPICPU_FLAG_C_TSC;
233 }
234
235 break;
236
237 case CPUVENDOR_AMD:
238
239 x86_cpuid(0x80000000, regs);
240
241 if (regs[0] < 0x80000007)
242 break;
243
244 x86_cpuid(0x80000007, regs);
245
246 family = CPUID2FAMILY(ci->ci_signature);
247
248 if (family == 0xf)
249 family += CPUID2EXTFAMILY(ci->ci_signature);
250
251 switch (family) {
252
253 case 0x0f:
254
255 /*
256 * Evaluate support for the "FID/VID
257 * algorithm" also used by powernow(4).
258 */
259 if ((regs[3] & CPUID_APM_FID) == 0)
260 break;
261
262 if ((regs[3] & CPUID_APM_VID) == 0)
263 break;
264
265 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
266 break;
267
268 case 0x10:
269 case 0x11:
270
271 if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
272 val |= ACPICPU_FLAG_C_C1E;
273
274 /* FALLTHROUGH */
275
276 case 0x12:
277 case 0x14: /* AMD Fusion */
278
279 /*
280 * Like with Intel, detect invariant TSC,
281 * MSR-based P-states, and AMD's "turbo"
282 * (Core Performance Boost), respectively.
283 */
284 if ((regs[3] & CPUID_APM_TSC) != 0)
285 val &= ~ACPICPU_FLAG_C_TSC;
286
287 if ((regs[3] & CPUID_APM_HWP) != 0)
288 val |= ACPICPU_FLAG_P_FFH;
289
290 if ((regs[3] & CPUID_APM_CPB) != 0)
291 val |= ACPICPU_FLAG_P_TURBO;
292
293 /*
294 * Also check for APERF and MPERF,
295 * first available in the family 10h.
296 */
297 if (cpuid_level >= 0x06) {
298
299 x86_cpuid(0x00000006, regs);
300
301 if ((regs[2] & CPUID_DSPM_HWF) != 0)
302 val |= ACPICPU_FLAG_P_HWF;
303 }
304
305 break;
306 }
307
308 break;
309 }
310
311 /*
312 * There are several erratums for PIIX4.
313 */
314 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
315 val |= ACPICPU_FLAG_PIIX4;
316
317 return val;
318 }
319
320 static int
321 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
322 {
323
324 /*
325 * XXX: The pci_find_device(9) function only
326 * deals with attached devices. Change this
327 * to use something like pci_device_foreach().
328 */
329 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
330 return 0;
331
332 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
333 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
334 return 1;
335
336 return 0;
337 }
338
339 void
340 acpicpu_md_quirk_c1e(void)
341 {
342 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
343 uint64_t val;
344
345 val = rdmsr(MSR_CMPHALT);
346
347 if ((val & c1e) != 0)
348 wrmsr(MSR_CMPHALT, val & ~c1e);
349 }
350
351 int
352 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
353 {
354 const size_t size = sizeof(native_idle_text);
355 struct acpicpu_cstate *cs;
356 bool ipi = false;
357 int i;
358
359 /*
360 * Save the cpu_idle(9) loop used by default.
361 */
362 x86_cpu_idle_get(&native_idle, native_idle_text, size);
363
364 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
365
366 cs = &sc->sc_cstate[i];
367
368 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
369 ipi = true;
370 break;
371 }
372 }
373
374 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
375
376 return 0;
377 }
378
379 int
380 acpicpu_md_cstate_stop(void)
381 {
382 static char text[16];
383 void (*func)(void);
384 uint64_t xc;
385 bool ipi;
386
387 x86_cpu_idle_get(&func, text, sizeof(text));
388
389 if (func == native_idle)
390 return EALREADY;
391
392 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
393 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
394
395 /*
396 * Run a cross-call to ensure that all CPUs are
397 * out from the ACPI idle-loop before detachment.
398 */
399 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
400 xc_wait(xc);
401
402 return 0;
403 }
404
405 /*
406 * Called with interrupts enabled.
407 */
408 void
409 acpicpu_md_cstate_enter(int method, int state)
410 {
411 struct cpu_info *ci = curcpu();
412
413 KASSERT(ci->ci_ilevel == IPL_NONE);
414
415 switch (method) {
416
417 case ACPICPU_C_STATE_FFH:
418
419 x86_monitor(&ci->ci_want_resched, 0, 0);
420
421 if (__predict_false(ci->ci_want_resched != 0))
422 return;
423
424 x86_mwait((state - 1) << 4, 0);
425 break;
426
427 case ACPICPU_C_STATE_HALT:
428
429 x86_disable_intr();
430
431 if (__predict_false(ci->ci_want_resched != 0)) {
432 x86_enable_intr();
433 return;
434 }
435
436 x86_stihlt();
437 break;
438 }
439 }
440
441 int
442 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
443 {
444 uint64_t xc, val;
445
446 switch (cpu_vendor) {
447
448 case CPUVENDOR_IDT:
449 case CPUVENDOR_INTEL:
450
451 /*
452 * Make sure EST is enabled.
453 */
454 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
455
456 val = rdmsr(MSR_MISC_ENABLE);
457
458 if ((val & MSR_MISC_ENABLE_EST) == 0) {
459
460 val |= MSR_MISC_ENABLE_EST;
461 wrmsr(MSR_MISC_ENABLE, val);
462 val = rdmsr(MSR_MISC_ENABLE);
463
464 if ((val & MSR_MISC_ENABLE_EST) == 0)
465 return ENOTTY;
466 }
467 }
468 }
469
470 /*
471 * Reset the APERF and MPERF counters.
472 */
473 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
474 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
475 xc_wait(xc);
476 }
477
478 return acpicpu_md_pstate_sysctl_init();
479 }
480
481 int
482 acpicpu_md_pstate_stop(void)
483 {
484
485 if (acpicpu_log == NULL)
486 return EALREADY;
487
488 sysctl_teardown(&acpicpu_log);
489 acpicpu_log = NULL;
490
491 return 0;
492 }
493
494 int
495 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
496 {
497 struct cpu_info *ci = sc->sc_ci;
498 struct acpicpu_pstate *ps, msr;
499 uint32_t family, i = 0;
500
501 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
502
503 switch (cpu_vendor) {
504
505 case CPUVENDOR_IDT:
506 case CPUVENDOR_INTEL:
507
508 /*
509 * If the so-called Turbo Boost is present,
510 * the P0-state is always the "turbo state".
511 * It is shown as the P1 frequency + 1 MHz.
512 *
513 * For discussion, see:
514 *
515 * Intel Corporation: Intel Turbo Boost Technology
516 * in Intel Core(tm) Microarchitectures (Nehalem)
517 * Based Processors. White Paper, November 2008.
518 */
519 if (sc->sc_pstate_count >= 2 &&
520 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
521
522 ps = &sc->sc_pstate[0];
523
524 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
525 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
526 }
527
528 msr.ps_control_addr = MSR_PERF_CTL;
529 msr.ps_control_mask = __BITS(0, 15);
530
531 msr.ps_status_addr = MSR_PERF_STATUS;
532 msr.ps_status_mask = __BITS(0, 15);
533 break;
534
535 case CPUVENDOR_AMD:
536
537 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
538 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
539
540 family = CPUID2FAMILY(ci->ci_signature);
541
542 if (family == 0xf)
543 family += CPUID2EXTFAMILY(ci->ci_signature);
544
545 switch (family) {
546
547 case 0x0f:
548 msr.ps_control_addr = MSR_0FH_CONTROL;
549 msr.ps_status_addr = MSR_0FH_STATUS;
550 break;
551
552 case 0x10:
553 case 0x11:
554 case 0x12:
555 case 0x14: /* AMD Fusion */
556 msr.ps_control_addr = MSR_10H_CONTROL;
557 msr.ps_control_mask = __BITS(0, 2);
558
559 msr.ps_status_addr = MSR_10H_STATUS;
560 msr.ps_status_mask = __BITS(0, 2);
561 break;
562
563 default:
564 /*
565 * If we have an unknown AMD CPU, rely on XPSS.
566 */
567 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
568 return EOPNOTSUPP;
569 }
570
571 break;
572
573 default:
574 return ENODEV;
575 }
576
577 /*
578 * Fill the P-state structures with MSR addresses that are
579 * known to be correct. If we do not know the addresses,
580 * leave the values intact. If a vendor uses XPSS, we do
581 * not necessarily need to do anything to support new CPUs.
582 */
583 while (i < sc->sc_pstate_count) {
584
585 ps = &sc->sc_pstate[i];
586
587 if (msr.ps_flags != 0)
588 ps->ps_flags |= msr.ps_flags;
589
590 if (msr.ps_status_addr != 0)
591 ps->ps_status_addr = msr.ps_status_addr;
592
593 if (msr.ps_status_mask != 0)
594 ps->ps_status_mask = msr.ps_status_mask;
595
596 if (msr.ps_control_addr != 0)
597 ps->ps_control_addr = msr.ps_control_addr;
598
599 if (msr.ps_control_mask != 0)
600 ps->ps_control_mask = msr.ps_control_mask;
601
602 i++;
603 }
604
605 return 0;
606 }
607
608 /*
609 * Read the IA32_APERF and IA32_MPERF counters. The first
610 * increments at the rate of the fixed maximum frequency
611 * configured during the boot, whereas APERF counts at the
612 * rate of the actual frequency. Note that the MSRs must be
613 * read without delay, and that only the ratio between
614 * IA32_APERF and IA32_MPERF is architecturally defined.
615 *
616 * The function thus returns the percentage of the actual
617 * frequency in terms of the maximum frequency of the calling
618 * CPU since the last call. A value zero implies an error.
619 *
620 * For further details, refer to:
621 *
622 * Intel Corporation: Intel 64 and IA-32 Architectures
623 * Software Developer's Manual. Section 13.2, Volume 3A:
624 * System Programming Guide, Part 1. July, 2008.
625 *
626 * Advanced Micro Devices: BIOS and Kernel Developer's
627 * Guide (BKDG) for AMD Family 10h Processors. Section
628 * 2.4.5, Revision 3.48, April 2010.
629 */
630 uint8_t
631 acpicpu_md_pstate_hwf(struct cpu_info *ci)
632 {
633 struct acpicpu_softc *sc;
634 uint64_t aperf, mperf;
635 uint8_t rv = 0;
636
637 sc = acpicpu_sc[ci->ci_acpiid];
638
639 if (__predict_false(sc == NULL))
640 return 0;
641
642 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
643 return 0;
644
645 aperf = sc->sc_pstate_aperf;
646 mperf = sc->sc_pstate_mperf;
647
648 x86_disable_intr();
649
650 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
651 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
652
653 x86_enable_intr();
654
655 aperf = sc->sc_pstate_aperf - aperf;
656 mperf = sc->sc_pstate_mperf - mperf;
657
658 if (__predict_true(mperf != 0))
659 rv = (aperf * 100) / mperf;
660
661 return rv;
662 }
663
664 static void
665 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
666 {
667 struct cpu_info *ci = curcpu();
668 struct acpicpu_softc *sc;
669
670 sc = acpicpu_sc[ci->ci_acpiid];
671
672 if (__predict_false(sc == NULL))
673 return;
674
675 x86_disable_intr();
676
677 wrmsr(MSR_APERF, 0);
678 wrmsr(MSR_MPERF, 0);
679
680 x86_enable_intr();
681
682 sc->sc_pstate_aperf = 0;
683 sc->sc_pstate_mperf = 0;
684 }
685
686 int
687 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
688 {
689 struct acpicpu_pstate *ps = NULL;
690 uint64_t val;
691 uint32_t i;
692
693 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
694 return acpicpu_md_pstate_fidvid_get(sc, freq);
695
696 /*
697 * Pick any P-state for the status address.
698 */
699 for (i = 0; i < sc->sc_pstate_count; i++) {
700
701 ps = &sc->sc_pstate[i];
702
703 if (__predict_true(ps->ps_freq != 0))
704 break;
705 }
706
707 if (__predict_false(ps == NULL))
708 return ENODEV;
709
710 if (__predict_false(ps->ps_status_addr == 0))
711 return EINVAL;
712
713 val = rdmsr(ps->ps_status_addr);
714
715 if (__predict_true(ps->ps_status_mask != 0))
716 val = val & ps->ps_status_mask;
717
718 /*
719 * Search for the value from known P-states.
720 */
721 for (i = 0; i < sc->sc_pstate_count; i++) {
722
723 ps = &sc->sc_pstate[i];
724
725 if (__predict_false(ps->ps_freq == 0))
726 continue;
727
728 if (val == ps->ps_status) {
729 *freq = ps->ps_freq;
730 return 0;
731 }
732 }
733
734 /*
735 * If the value was not found, try APERF/MPERF.
736 * The state is P0 if the return value is 100 %.
737 */
738 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
739
740 KASSERT(sc->sc_pstate_count > 0);
741 KASSERT(sc->sc_pstate[0].ps_freq != 0);
742
743 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
744 *freq = sc->sc_pstate[0].ps_freq;
745 return 0;
746 }
747 }
748
749 return EIO;
750 }
751
752 int
753 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
754 {
755 uint64_t val = 0;
756
757 if (__predict_false(ps->ps_control_addr == 0))
758 return EINVAL;
759
760 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
761 return acpicpu_md_pstate_fidvid_set(ps);
762
763 /*
764 * If the mask is set, do a read-modify-write.
765 */
766 if (__predict_true(ps->ps_control_mask != 0)) {
767 val = rdmsr(ps->ps_control_addr);
768 val &= ~ps->ps_control_mask;
769 }
770
771 val |= ps->ps_control;
772
773 wrmsr(ps->ps_control_addr, val);
774 DELAY(ps->ps_latency);
775
776 return 0;
777 }
778
779 static int
780 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
781 {
782 struct acpicpu_pstate *ps;
783 uint32_t fid, i, vid;
784 uint32_t cfid, cvid;
785 int rv;
786
787 /*
788 * AMD family 0Fh needs special treatment.
789 * While it wants to use ACPI, it does not
790 * comply with the ACPI specifications.
791 */
792 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
793
794 if (rv != 0)
795 return rv;
796
797 for (i = 0; i < sc->sc_pstate_count; i++) {
798
799 ps = &sc->sc_pstate[i];
800
801 if (__predict_false(ps->ps_freq == 0))
802 continue;
803
804 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
805 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
806
807 if (cfid == fid && cvid == vid) {
808 *freq = ps->ps_freq;
809 return 0;
810 }
811 }
812
813 return EIO;
814 }
815
816 static int
817 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
818 {
819 const uint64_t ctrl = ps->ps_control;
820 uint32_t cfid, cvid, fid, i, irt;
821 uint32_t pll, vco_cfid, vco_fid;
822 uint32_t val, vid, vst;
823 int rv;
824
825 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
826
827 if (rv != 0)
828 return rv;
829
830 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
831 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
832 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
833 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
834 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
835
836 vst = vst * 20;
837 pll = pll * 1000 / 5;
838 irt = 10 * __BIT(irt);
839
840 /*
841 * Phase 1.
842 */
843 while (cvid > vid) {
844
845 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
846 val = (val > cvid) ? 0 : cvid - val;
847
848 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
849 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
850
851 if (rv != 0)
852 return rv;
853 }
854
855 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
856
857 for (; i > 0 && cvid > 0; --i) {
858
859 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
860 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
861
862 if (rv != 0)
863 return rv;
864 }
865
866 /*
867 * Phase 2.
868 */
869 if (cfid != fid) {
870
871 vco_fid = FID_TO_VCO_FID(fid);
872 vco_cfid = FID_TO_VCO_FID(cfid);
873
874 while (abs(vco_fid - vco_cfid) > 2) {
875
876 if (fid <= cfid)
877 val = cfid - 2;
878 else {
879 val = (cfid > 6) ? cfid + 2 :
880 FID_TO_VCO_FID(cfid) + 2;
881 }
882
883 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
884 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
885
886 if (rv != 0)
887 return rv;
888
889 vco_cfid = FID_TO_VCO_FID(cfid);
890 }
891
892 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
893 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
894
895 if (rv != 0)
896 return rv;
897 }
898
899 /*
900 * Phase 3.
901 */
902 if (cvid != vid) {
903
904 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
905 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
906
907 if (rv != 0)
908 return rv;
909 }
910
911 return 0;
912 }
913
914 static int
915 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
916 {
917 int i = ACPICPU_P_STATE_RETRY * 100;
918 uint64_t val;
919
920 do {
921 val = rdmsr(MSR_0FH_STATUS);
922
923 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
924
925 if (i == 0)
926 return EAGAIN;
927
928 if (cfid != NULL)
929 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
930
931 if (cvid != NULL)
932 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
933
934 return 0;
935 }
936
937 static void
938 acpicpu_md_pstate_fidvid_write(uint32_t fid,
939 uint32_t vid, uint32_t cnt, uint32_t tmo)
940 {
941 uint64_t val = 0;
942
943 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
944 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
945 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
946 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
947
948 wrmsr(MSR_0FH_CONTROL, val);
949 DELAY(tmo);
950 }
951
952 int
953 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
954 {
955 struct acpicpu_tstate *ts;
956 uint64_t val;
957 uint32_t i;
958
959 val = rdmsr(MSR_THERM_CONTROL);
960
961 for (i = 0; i < sc->sc_tstate_count; i++) {
962
963 ts = &sc->sc_tstate[i];
964
965 if (ts->ts_percent == 0)
966 continue;
967
968 if (val == ts->ts_status) {
969 *percent = ts->ts_percent;
970 return 0;
971 }
972 }
973
974 return EIO;
975 }
976
977 int
978 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
979 {
980 uint64_t val;
981 uint8_t i;
982
983 val = ts->ts_control;
984 val = val & __BITS(1, 4);
985
986 wrmsr(MSR_THERM_CONTROL, val);
987
988 if (ts->ts_status == 0) {
989 DELAY(ts->ts_latency);
990 return 0;
991 }
992
993 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
994
995 val = rdmsr(MSR_THERM_CONTROL);
996
997 if (val == ts->ts_status)
998 return 0;
999
1000 DELAY(ts->ts_latency);
1001 }
1002
1003 return EAGAIN;
1004 }
1005
1006 /*
1007 * A kludge for backwards compatibility.
1008 */
1009 static int
1010 acpicpu_md_pstate_sysctl_init(void)
1011 {
1012 const struct sysctlnode *fnode, *mnode, *rnode;
1013 const char *str;
1014 int rv;
1015
1016 switch (cpu_vendor) {
1017
1018 case CPUVENDOR_IDT:
1019 case CPUVENDOR_INTEL:
1020 str = "est";
1021 break;
1022
1023 case CPUVENDOR_AMD:
1024 str = "powernow";
1025 break;
1026
1027 default:
1028 return ENODEV;
1029 }
1030
1031
1032 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1033 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1034 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1035
1036 if (rv != 0)
1037 goto fail;
1038
1039 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1040 0, CTLTYPE_NODE, str, NULL,
1041 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1042
1043 if (rv != 0)
1044 goto fail;
1045
1046 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1047 0, CTLTYPE_NODE, "frequency", NULL,
1048 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1049
1050 if (rv != 0)
1051 goto fail;
1052
1053 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1054 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1055 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1056
1057 if (rv != 0)
1058 goto fail;
1059
1060 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1061 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1062 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1063
1064 if (rv != 0)
1065 goto fail;
1066
1067 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1068 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1069 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1070
1071 if (rv != 0)
1072 goto fail;
1073
1074 return 0;
1075
1076 fail:
1077 if (acpicpu_log != NULL) {
1078 sysctl_teardown(&acpicpu_log);
1079 acpicpu_log = NULL;
1080 }
1081
1082 return rv;
1083 }
1084
1085 static int
1086 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1087 {
1088 struct sysctlnode node;
1089 uint32_t freq;
1090 int err;
1091
1092 freq = cpufreq_get(curcpu());
1093
1094 if (freq == 0)
1095 return ENXIO;
1096
1097 node = *rnode;
1098 node.sysctl_data = &freq;
1099
1100 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1101
1102 if (err != 0 || newp == NULL)
1103 return err;
1104
1105 return 0;
1106 }
1107
1108 static int
1109 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1110 {
1111 struct sysctlnode node;
1112 uint32_t freq;
1113 int err;
1114
1115 freq = cpufreq_get(curcpu());
1116
1117 if (freq == 0)
1118 return ENXIO;
1119
1120 node = *rnode;
1121 node.sysctl_data = &freq;
1122
1123 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1124
1125 if (err != 0 || newp == NULL)
1126 return err;
1127
1128 cpufreq_set_all(freq);
1129
1130 return 0;
1131 }
1132
1133 static int
1134 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1135 {
1136 struct cpu_info *ci = curcpu();
1137 struct acpicpu_softc *sc;
1138 struct sysctlnode node;
1139 char buf[1024];
1140 size_t len;
1141 uint32_t i;
1142 int err;
1143
1144 sc = acpicpu_sc[ci->ci_acpiid];
1145
1146 if (sc == NULL)
1147 return ENXIO;
1148
1149 (void)memset(&buf, 0, sizeof(buf));
1150
1151 mutex_enter(&sc->sc_mtx);
1152
1153 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1154
1155 if (sc->sc_pstate[i].ps_freq == 0)
1156 continue;
1157
1158 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1159 sc->sc_pstate[i].ps_freq,
1160 i < (sc->sc_pstate_count - 1) ? " " : "");
1161 }
1162
1163 mutex_exit(&sc->sc_mtx);
1164
1165 node = *rnode;
1166 node.sysctl_data = buf;
1167
1168 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1169
1170 if (err != 0 || newp == NULL)
1171 return err;
1172
1173 return 0;
1174 }
1175
1176