Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.69
      1 /* $NetBSD: acpi_cpu_md.c,v 1.69 2011/11/15 07:20:30 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.69 2011/11/15 07:20:30 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, 12h, and 14h.
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 static char	  native_idle_text[16];
    107 void		(*native_idle)(void) = NULL;
    108 
    109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112                                               uint32_t *);
    113 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116 					        uint32_t, uint32_t);
    117 static int	 acpicpu_md_pstate_sysctl_init(void);
    118 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121 
    122 extern struct acpicpu_softc **acpicpu_sc;
    123 static struct sysctllog *acpicpu_log = NULL;
    124 
    125 struct cpu_info *
    126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127 {
    128 	struct cpufeature_attach_args *cfaa = aux;
    129 
    130 	if (strcmp(cfaa->name, "frequency") != 0)
    131 		return NULL;
    132 
    133 	return cfaa->ci;
    134 }
    135 
    136 struct cpu_info *
    137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138 {
    139 	struct cpufeature_attach_args *cfaa = aux;
    140 
    141 	return cfaa->ci;
    142 }
    143 
    144 uint32_t
    145 acpicpu_md_flags(void)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 	struct pci_attach_args pa;
    149 	uint32_t family, val = 0;
    150 	uint32_t regs[4];
    151 	uint64_t msr;
    152 
    153 	if (acpi_md_ncpus() == 1)
    154 		val |= ACPICPU_FLAG_C_BM;
    155 
    156 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157 		val |= ACPICPU_FLAG_C_FFH;
    158 
    159 	/*
    160 	 * By default, assume that the local APIC timer
    161 	 * as well as TSC are stalled during C3 sleep.
    162 	 */
    163 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164 
    165 	switch (cpu_vendor) {
    166 
    167 	case CPUVENDOR_IDT:
    168 
    169 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    170 			val |= ACPICPU_FLAG_P_FFH;
    171 
    172 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    173 			val |= ACPICPU_FLAG_T_FFH;
    174 
    175 		break;
    176 
    177 	case CPUVENDOR_INTEL:
    178 
    179 		/*
    180 		 * Bus master control and arbitration should be
    181 		 * available on all supported Intel CPUs (to be
    182 		 * sure, this is double-checked later from the
    183 		 * firmware data). These flags imply that it is
    184 		 * not necessary to flush caches before C3 state.
    185 		 */
    186 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    187 
    188 		/*
    189 		 * Check if we can use "native", MSR-based,
    190 		 * access. If not, we have to resort to I/O.
    191 		 */
    192 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    193 			val |= ACPICPU_FLAG_P_FFH;
    194 
    195 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    196 			val |= ACPICPU_FLAG_T_FFH;
    197 
    198 		/*
    199 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    200 		 * Boost are available. Also see if we might have
    201 		 * an invariant local APIC timer ("ARAT").
    202 		 */
    203 		if (cpuid_level >= 0x06) {
    204 
    205 			x86_cpuid(0x00000006, regs);
    206 
    207 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208 				val |= ACPICPU_FLAG_P_HWF;
    209 
    210 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    211 				val |= ACPICPU_FLAG_P_TURBO;
    212 
    213 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    214 				val &= ~ACPICPU_FLAG_C_APIC;
    215 		}
    216 
    217 		/*
    218 		 * Detect whether TSC is invariant. If it is not,
    219 		 * we keep the flag to note that TSC will not run
    220 		 * at constant rate. Depending on the CPU, this may
    221 		 * affect P- and T-state changes, but especially
    222 		 * relevant are C-states; with variant TSC, states
    223 		 * larger than C1 may completely stop the counter.
    224 		 */
    225 		x86_cpuid(0x80000000, regs);
    226 
    227 		if (regs[0] >= 0x80000007) {
    228 
    229 			x86_cpuid(0x80000007, regs);
    230 
    231 			if ((regs[3] & __BIT(8)) != 0)
    232 				val &= ~ACPICPU_FLAG_C_TSC;
    233 		}
    234 
    235 		break;
    236 
    237 	case CPUVENDOR_AMD:
    238 
    239 		x86_cpuid(0x80000000, regs);
    240 
    241 		if (regs[0] < 0x80000007)
    242 			break;
    243 
    244 		x86_cpuid(0x80000007, regs);
    245 
    246 		family = CPUID2FAMILY(ci->ci_signature);
    247 
    248 		if (family == 0xf)
    249 			family += CPUID2EXTFAMILY(ci->ci_signature);
    250 
    251     		switch (family) {
    252 
    253 		case 0x0f:
    254 
    255 			/*
    256 			 * Evaluate support for the "FID/VID
    257 			 * algorithm" also used by powernow(4).
    258 			 */
    259 			if ((regs[3] & CPUID_APM_FID) == 0)
    260 				break;
    261 
    262 			if ((regs[3] & CPUID_APM_VID) == 0)
    263 				break;
    264 
    265 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    266 			break;
    267 
    268 		case 0x10:
    269 		case 0x11:
    270 
    271 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    272 				val |= ACPICPU_FLAG_C_C1E;
    273 
    274 			/* FALLTHROUGH */
    275 
    276 		case 0x12:
    277 		case 0x14: /* AMD Fusion */
    278 
    279 			/*
    280 			 * Like with Intel, detect invariant TSC,
    281 			 * MSR-based P-states, and AMD's "turbo"
    282 			 * (Core Performance Boost), respectively.
    283 			 */
    284 			if ((regs[3] & CPUID_APM_TSC) != 0)
    285 				val &= ~ACPICPU_FLAG_C_TSC;
    286 
    287 			if ((regs[3] & CPUID_APM_HWP) != 0)
    288 				val |= ACPICPU_FLAG_P_FFH;
    289 
    290 			if ((regs[3] & CPUID_APM_CPB) != 0)
    291 				val |= ACPICPU_FLAG_P_TURBO;
    292 
    293 			/*
    294 			 * Also check for APERF and MPERF,
    295 			 * first available in the family 10h.
    296 			 */
    297 			if (cpuid_level >= 0x06) {
    298 
    299 				x86_cpuid(0x00000006, regs);
    300 
    301 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    302 					val |= ACPICPU_FLAG_P_HWF;
    303 			}
    304 
    305 			break;
    306 		}
    307 
    308 		break;
    309 	}
    310 
    311 	/*
    312 	 * There are several erratums for PIIX4.
    313 	 */
    314 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    315 		val |= ACPICPU_FLAG_PIIX4;
    316 
    317 	return val;
    318 }
    319 
    320 static int
    321 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    322 {
    323 
    324 	/*
    325 	 * XXX: The pci_find_device(9) function only
    326 	 *	deals with attached devices. Change this
    327 	 *	to use something like pci_device_foreach().
    328 	 */
    329 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    330 		return 0;
    331 
    332 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    333 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    334 		return 1;
    335 
    336 	return 0;
    337 }
    338 
    339 void
    340 acpicpu_md_quirk_c1e(void)
    341 {
    342 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    343 	uint64_t val;
    344 
    345 	val = rdmsr(MSR_CMPHALT);
    346 
    347 	if ((val & c1e) != 0)
    348 		wrmsr(MSR_CMPHALT, val & ~c1e);
    349 }
    350 
    351 int
    352 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    353 {
    354 	const size_t size = sizeof(native_idle_text);
    355 	struct acpicpu_cstate *cs;
    356 	bool ipi = false;
    357 	int i;
    358 
    359 	/*
    360 	 * Save the cpu_idle(9) loop used by default.
    361 	 */
    362 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    363 
    364 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    365 
    366 		cs = &sc->sc_cstate[i];
    367 
    368 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    369 			ipi = true;
    370 			break;
    371 		}
    372 	}
    373 
    374 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    375 
    376 	return 0;
    377 }
    378 
    379 int
    380 acpicpu_md_cstate_stop(void)
    381 {
    382 	static char text[16];
    383 	void (*func)(void);
    384 	uint64_t xc;
    385 	bool ipi;
    386 
    387 	x86_cpu_idle_get(&func, text, sizeof(text));
    388 
    389 	if (func == native_idle)
    390 		return EALREADY;
    391 
    392 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    393 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    394 
    395 	/*
    396 	 * Run a cross-call to ensure that all CPUs are
    397 	 * out from the ACPI idle-loop before detachment.
    398 	 */
    399 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    400 	xc_wait(xc);
    401 
    402 	return 0;
    403 }
    404 
    405 /*
    406  * Called with interrupts enabled.
    407  */
    408 void
    409 acpicpu_md_cstate_enter(int method, int state)
    410 {
    411 	struct cpu_info *ci = curcpu();
    412 
    413 	KASSERT(ci->ci_ilevel == IPL_NONE);
    414 
    415 	switch (method) {
    416 
    417 	case ACPICPU_C_STATE_FFH:
    418 
    419 		x86_monitor(&ci->ci_want_resched, 0, 0);
    420 
    421 		if (__predict_false(ci->ci_want_resched != 0))
    422 			return;
    423 
    424 		x86_mwait((state - 1) << 4, 0);
    425 		break;
    426 
    427 	case ACPICPU_C_STATE_HALT:
    428 
    429 		x86_disable_intr();
    430 
    431 		if (__predict_false(ci->ci_want_resched != 0)) {
    432 			x86_enable_intr();
    433 			return;
    434 		}
    435 
    436 		x86_stihlt();
    437 		break;
    438 	}
    439 }
    440 
    441 int
    442 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    443 {
    444 	uint64_t xc, val;
    445 
    446 	switch (cpu_vendor) {
    447 
    448 	case CPUVENDOR_IDT:
    449 	case CPUVENDOR_INTEL:
    450 
    451 		/*
    452 		 * Make sure EST is enabled.
    453 		 */
    454 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    455 
    456 			val = rdmsr(MSR_MISC_ENABLE);
    457 
    458 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    459 
    460 				val |= MSR_MISC_ENABLE_EST;
    461 				wrmsr(MSR_MISC_ENABLE, val);
    462 				val = rdmsr(MSR_MISC_ENABLE);
    463 
    464 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    465 					return ENOTTY;
    466 			}
    467 		}
    468 	}
    469 
    470 	/*
    471 	 * Reset the APERF and MPERF counters.
    472 	 */
    473 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    474 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    475 		xc_wait(xc);
    476 	}
    477 
    478 	return acpicpu_md_pstate_sysctl_init();
    479 }
    480 
    481 int
    482 acpicpu_md_pstate_stop(void)
    483 {
    484 
    485 	if (acpicpu_log == NULL)
    486 		return EALREADY;
    487 
    488 	sysctl_teardown(&acpicpu_log);
    489 	acpicpu_log = NULL;
    490 
    491 	return 0;
    492 }
    493 
    494 int
    495 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    496 {
    497 	struct cpu_info *ci = sc->sc_ci;
    498 	struct acpicpu_pstate *ps, msr;
    499 	uint32_t family, i = 0;
    500 
    501 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    502 
    503 	switch (cpu_vendor) {
    504 
    505 	case CPUVENDOR_IDT:
    506 	case CPUVENDOR_INTEL:
    507 
    508 		/*
    509 		 * If the so-called Turbo Boost is present,
    510 		 * the P0-state is always the "turbo state".
    511 		 * It is shown as the P1 frequency + 1 MHz.
    512 		 *
    513 		 * For discussion, see:
    514 		 *
    515 		 *	Intel Corporation: Intel Turbo Boost Technology
    516 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    517 		 *	Based Processors. White Paper, November 2008.
    518 		 */
    519 		if (sc->sc_pstate_count >= 2 &&
    520 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    521 
    522 			ps = &sc->sc_pstate[0];
    523 
    524 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    525 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    526 		}
    527 
    528 		msr.ps_control_addr = MSR_PERF_CTL;
    529 		msr.ps_control_mask = __BITS(0, 15);
    530 
    531 		msr.ps_status_addr  = MSR_PERF_STATUS;
    532 		msr.ps_status_mask  = __BITS(0, 15);
    533 		break;
    534 
    535 	case CPUVENDOR_AMD:
    536 
    537 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    538 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    539 
    540 		family = CPUID2FAMILY(ci->ci_signature);
    541 
    542 		if (family == 0xf)
    543 			family += CPUID2EXTFAMILY(ci->ci_signature);
    544 
    545 		switch (family) {
    546 
    547 		case 0x0f:
    548 			msr.ps_control_addr = MSR_0FH_CONTROL;
    549 			msr.ps_status_addr  = MSR_0FH_STATUS;
    550 			break;
    551 
    552 		case 0x10:
    553 		case 0x11:
    554 		case 0x12:
    555 		case 0x14: /* AMD Fusion */
    556 			msr.ps_control_addr = MSR_10H_CONTROL;
    557 			msr.ps_control_mask = __BITS(0, 2);
    558 
    559 			msr.ps_status_addr  = MSR_10H_STATUS;
    560 			msr.ps_status_mask  = __BITS(0, 2);
    561 			break;
    562 
    563 		default:
    564 			/*
    565 			 * If we have an unknown AMD CPU, rely on XPSS.
    566 			 */
    567 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    568 				return EOPNOTSUPP;
    569 		}
    570 
    571 		break;
    572 
    573 	default:
    574 		return ENODEV;
    575 	}
    576 
    577 	/*
    578 	 * Fill the P-state structures with MSR addresses that are
    579 	 * known to be correct. If we do not know the addresses,
    580 	 * leave the values intact. If a vendor uses XPSS, we do
    581 	 * not necessarily need to do anything to support new CPUs.
    582 	 */
    583 	while (i < sc->sc_pstate_count) {
    584 
    585 		ps = &sc->sc_pstate[i];
    586 
    587 		if (msr.ps_flags != 0)
    588 			ps->ps_flags |= msr.ps_flags;
    589 
    590 		if (msr.ps_status_addr != 0)
    591 			ps->ps_status_addr = msr.ps_status_addr;
    592 
    593 		if (msr.ps_status_mask != 0)
    594 			ps->ps_status_mask = msr.ps_status_mask;
    595 
    596 		if (msr.ps_control_addr != 0)
    597 			ps->ps_control_addr = msr.ps_control_addr;
    598 
    599 		if (msr.ps_control_mask != 0)
    600 			ps->ps_control_mask = msr.ps_control_mask;
    601 
    602 		i++;
    603 	}
    604 
    605 	return 0;
    606 }
    607 
    608 /*
    609  * Read the IA32_APERF and IA32_MPERF counters. The first
    610  * increments at the rate of the fixed maximum frequency
    611  * configured during the boot, whereas APERF counts at the
    612  * rate of the actual frequency. Note that the MSRs must be
    613  * read without delay, and that only the ratio between
    614  * IA32_APERF and IA32_MPERF is architecturally defined.
    615  *
    616  * The function thus returns the percentage of the actual
    617  * frequency in terms of the maximum frequency of the calling
    618  * CPU since the last call. A value zero implies an error.
    619  *
    620  * For further details, refer to:
    621  *
    622  *	Intel Corporation: Intel 64 and IA-32 Architectures
    623  *	Software Developer's Manual. Section 13.2, Volume 3A:
    624  *	System Programming Guide, Part 1. July, 2008.
    625  *
    626  *	Advanced Micro Devices: BIOS and Kernel Developer's
    627  *	Guide (BKDG) for AMD Family 10h Processors. Section
    628  *	2.4.5, Revision 3.48, April 2010.
    629  */
    630 uint8_t
    631 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    632 {
    633 	struct acpicpu_softc *sc;
    634 	uint64_t aperf, mperf;
    635 	uint8_t rv = 0;
    636 
    637 	sc = acpicpu_sc[ci->ci_acpiid];
    638 
    639 	if (__predict_false(sc == NULL))
    640 		return 0;
    641 
    642 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    643 		return 0;
    644 
    645 	aperf = sc->sc_pstate_aperf;
    646 	mperf = sc->sc_pstate_mperf;
    647 
    648 	x86_disable_intr();
    649 
    650 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    651 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    652 
    653 	x86_enable_intr();
    654 
    655 	aperf = sc->sc_pstate_aperf - aperf;
    656 	mperf = sc->sc_pstate_mperf - mperf;
    657 
    658 	if (__predict_true(mperf != 0))
    659 		rv = (aperf * 100) / mperf;
    660 
    661 	return rv;
    662 }
    663 
    664 static void
    665 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    666 {
    667 	struct cpu_info *ci = curcpu();
    668 	struct acpicpu_softc *sc;
    669 
    670 	sc = acpicpu_sc[ci->ci_acpiid];
    671 
    672 	if (__predict_false(sc == NULL))
    673 		return;
    674 
    675 	x86_disable_intr();
    676 
    677 	wrmsr(MSR_APERF, 0);
    678 	wrmsr(MSR_MPERF, 0);
    679 
    680 	x86_enable_intr();
    681 
    682 	sc->sc_pstate_aperf = 0;
    683 	sc->sc_pstate_mperf = 0;
    684 }
    685 
    686 int
    687 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    688 {
    689 	struct acpicpu_pstate *ps = NULL;
    690 	uint64_t val;
    691 	uint32_t i;
    692 
    693 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    694 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    695 
    696 	/*
    697 	 * Pick any P-state for the status address.
    698 	 */
    699 	for (i = 0; i < sc->sc_pstate_count; i++) {
    700 
    701 		ps = &sc->sc_pstate[i];
    702 
    703 		if (__predict_true(ps->ps_freq != 0))
    704 			break;
    705 	}
    706 
    707 	if (__predict_false(ps == NULL))
    708 		return ENODEV;
    709 
    710 	if (__predict_false(ps->ps_status_addr == 0))
    711 		return EINVAL;
    712 
    713 	val = rdmsr(ps->ps_status_addr);
    714 
    715 	if (__predict_true(ps->ps_status_mask != 0))
    716 		val = val & ps->ps_status_mask;
    717 
    718 	/*
    719 	 * Search for the value from known P-states.
    720 	 */
    721 	for (i = 0; i < sc->sc_pstate_count; i++) {
    722 
    723 		ps = &sc->sc_pstate[i];
    724 
    725 		if (__predict_false(ps->ps_freq == 0))
    726 			continue;
    727 
    728 		if (val == ps->ps_status) {
    729 			*freq = ps->ps_freq;
    730 			return 0;
    731 		}
    732 	}
    733 
    734 	/*
    735 	 * If the value was not found, try APERF/MPERF.
    736 	 * The state is P0 if the return value is 100 %.
    737 	 */
    738 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    739 
    740 		KASSERT(sc->sc_pstate_count > 0);
    741 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    742 
    743 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    744 			*freq = sc->sc_pstate[0].ps_freq;
    745 			return 0;
    746 		}
    747 	}
    748 
    749 	return EIO;
    750 }
    751 
    752 int
    753 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    754 {
    755 	uint64_t val = 0;
    756 
    757 	if (__predict_false(ps->ps_control_addr == 0))
    758 		return EINVAL;
    759 
    760 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    761 		return acpicpu_md_pstate_fidvid_set(ps);
    762 
    763 	/*
    764 	 * If the mask is set, do a read-modify-write.
    765 	 */
    766 	if (__predict_true(ps->ps_control_mask != 0)) {
    767 		val = rdmsr(ps->ps_control_addr);
    768 		val &= ~ps->ps_control_mask;
    769 	}
    770 
    771 	val |= ps->ps_control;
    772 
    773 	wrmsr(ps->ps_control_addr, val);
    774 	DELAY(ps->ps_latency);
    775 
    776 	return 0;
    777 }
    778 
    779 static int
    780 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    781 {
    782 	struct acpicpu_pstate *ps;
    783 	uint32_t fid, i, vid;
    784 	uint32_t cfid, cvid;
    785 	int rv;
    786 
    787 	/*
    788 	 * AMD family 0Fh needs special treatment.
    789 	 * While it wants to use ACPI, it does not
    790 	 * comply with the ACPI specifications.
    791 	 */
    792 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    793 
    794 	if (rv != 0)
    795 		return rv;
    796 
    797 	for (i = 0; i < sc->sc_pstate_count; i++) {
    798 
    799 		ps = &sc->sc_pstate[i];
    800 
    801 		if (__predict_false(ps->ps_freq == 0))
    802 			continue;
    803 
    804 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    805 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    806 
    807 		if (cfid == fid && cvid == vid) {
    808 			*freq = ps->ps_freq;
    809 			return 0;
    810 		}
    811 	}
    812 
    813 	return EIO;
    814 }
    815 
    816 static int
    817 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    818 {
    819 	const uint64_t ctrl = ps->ps_control;
    820 	uint32_t cfid, cvid, fid, i, irt;
    821 	uint32_t pll, vco_cfid, vco_fid;
    822 	uint32_t val, vid, vst;
    823 	int rv;
    824 
    825 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    826 
    827 	if (rv != 0)
    828 		return rv;
    829 
    830 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    831 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    832 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    833 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    834 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    835 
    836 	vst = vst * 20;
    837 	pll = pll * 1000 / 5;
    838 	irt = 10 * __BIT(irt);
    839 
    840 	/*
    841 	 * Phase 1.
    842 	 */
    843 	while (cvid > vid) {
    844 
    845 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    846 		val = (val > cvid) ? 0 : cvid - val;
    847 
    848 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    849 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    850 
    851 		if (rv != 0)
    852 			return rv;
    853 	}
    854 
    855 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    856 
    857 	for (; i > 0 && cvid > 0; --i) {
    858 
    859 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    860 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    861 
    862 		if (rv != 0)
    863 			return rv;
    864 	}
    865 
    866 	/*
    867 	 * Phase 2.
    868 	 */
    869 	if (cfid != fid) {
    870 
    871 		vco_fid  = FID_TO_VCO_FID(fid);
    872 		vco_cfid = FID_TO_VCO_FID(cfid);
    873 
    874 		while (abs(vco_fid - vco_cfid) > 2) {
    875 
    876 			if (fid <= cfid)
    877 				val = cfid - 2;
    878 			else {
    879 				val = (cfid > 6) ? cfid + 2 :
    880 				    FID_TO_VCO_FID(cfid) + 2;
    881 			}
    882 
    883 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    884 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    885 
    886 			if (rv != 0)
    887 				return rv;
    888 
    889 			vco_cfid = FID_TO_VCO_FID(cfid);
    890 		}
    891 
    892 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    893 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    894 
    895 		if (rv != 0)
    896 			return rv;
    897 	}
    898 
    899 	/*
    900 	 * Phase 3.
    901 	 */
    902 	if (cvid != vid) {
    903 
    904 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    905 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    906 
    907 		if (rv != 0)
    908 			return rv;
    909 	}
    910 
    911 	return 0;
    912 }
    913 
    914 static int
    915 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    916 {
    917 	int i = ACPICPU_P_STATE_RETRY * 100;
    918 	uint64_t val;
    919 
    920 	do {
    921 		val = rdmsr(MSR_0FH_STATUS);
    922 
    923 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    924 
    925 	if (i == 0)
    926 		return EAGAIN;
    927 
    928 	if (cfid != NULL)
    929 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    930 
    931 	if (cvid != NULL)
    932 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    933 
    934 	return 0;
    935 }
    936 
    937 static void
    938 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    939     uint32_t vid, uint32_t cnt, uint32_t tmo)
    940 {
    941 	uint64_t val = 0;
    942 
    943 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    944 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    945 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    946 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    947 
    948 	wrmsr(MSR_0FH_CONTROL, val);
    949 	DELAY(tmo);
    950 }
    951 
    952 int
    953 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    954 {
    955 	struct acpicpu_tstate *ts;
    956 	uint64_t val;
    957 	uint32_t i;
    958 
    959 	val = rdmsr(MSR_THERM_CONTROL);
    960 
    961 	for (i = 0; i < sc->sc_tstate_count; i++) {
    962 
    963 		ts = &sc->sc_tstate[i];
    964 
    965 		if (ts->ts_percent == 0)
    966 			continue;
    967 
    968 		if (val == ts->ts_status) {
    969 			*percent = ts->ts_percent;
    970 			return 0;
    971 		}
    972 	}
    973 
    974 	return EIO;
    975 }
    976 
    977 int
    978 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    979 {
    980 	uint64_t val;
    981 	uint8_t i;
    982 
    983 	val = ts->ts_control;
    984 	val = val & __BITS(1, 4);
    985 
    986 	wrmsr(MSR_THERM_CONTROL, val);
    987 
    988 	if (ts->ts_status == 0) {
    989 		DELAY(ts->ts_latency);
    990 		return 0;
    991 	}
    992 
    993 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    994 
    995 		val = rdmsr(MSR_THERM_CONTROL);
    996 
    997 		if (val == ts->ts_status)
    998 			return 0;
    999 
   1000 		DELAY(ts->ts_latency);
   1001 	}
   1002 
   1003 	return EAGAIN;
   1004 }
   1005 
   1006 /*
   1007  * A kludge for backwards compatibility.
   1008  */
   1009 static int
   1010 acpicpu_md_pstate_sysctl_init(void)
   1011 {
   1012 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1013 	const char *str;
   1014 	int rv;
   1015 
   1016 	switch (cpu_vendor) {
   1017 
   1018 	case CPUVENDOR_IDT:
   1019 	case CPUVENDOR_INTEL:
   1020 		str = "est";
   1021 		break;
   1022 
   1023 	case CPUVENDOR_AMD:
   1024 		str = "powernow";
   1025 		break;
   1026 
   1027 	default:
   1028 		return ENODEV;
   1029 	}
   1030 
   1031 
   1032 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1033 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1034 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1035 
   1036 	if (rv != 0)
   1037 		goto fail;
   1038 
   1039 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1040 	    0, CTLTYPE_NODE, str, NULL,
   1041 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1042 
   1043 	if (rv != 0)
   1044 		goto fail;
   1045 
   1046 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1047 	    0, CTLTYPE_NODE, "frequency", NULL,
   1048 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1049 
   1050 	if (rv != 0)
   1051 		goto fail;
   1052 
   1053 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1054 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1055 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1056 
   1057 	if (rv != 0)
   1058 		goto fail;
   1059 
   1060 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1061 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1062 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1063 
   1064 	if (rv != 0)
   1065 		goto fail;
   1066 
   1067 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1068 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1069 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1070 
   1071 	if (rv != 0)
   1072 		goto fail;
   1073 
   1074 	return 0;
   1075 
   1076 fail:
   1077 	if (acpicpu_log != NULL) {
   1078 		sysctl_teardown(&acpicpu_log);
   1079 		acpicpu_log = NULL;
   1080 	}
   1081 
   1082 	return rv;
   1083 }
   1084 
   1085 static int
   1086 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1087 {
   1088 	struct sysctlnode node;
   1089 	uint32_t freq;
   1090 	int err;
   1091 
   1092 	freq = cpufreq_get(curcpu());
   1093 
   1094 	if (freq == 0)
   1095 		return ENXIO;
   1096 
   1097 	node = *rnode;
   1098 	node.sysctl_data = &freq;
   1099 
   1100 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1101 
   1102 	if (err != 0 || newp == NULL)
   1103 		return err;
   1104 
   1105 	return 0;
   1106 }
   1107 
   1108 static int
   1109 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1110 {
   1111 	struct sysctlnode node;
   1112 	uint32_t freq;
   1113 	int err;
   1114 
   1115 	freq = cpufreq_get(curcpu());
   1116 
   1117 	if (freq == 0)
   1118 		return ENXIO;
   1119 
   1120 	node = *rnode;
   1121 	node.sysctl_data = &freq;
   1122 
   1123 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1124 
   1125 	if (err != 0 || newp == NULL)
   1126 		return err;
   1127 
   1128 	cpufreq_set_all(freq);
   1129 
   1130 	return 0;
   1131 }
   1132 
   1133 static int
   1134 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1135 {
   1136 	struct cpu_info *ci = curcpu();
   1137 	struct acpicpu_softc *sc;
   1138 	struct sysctlnode node;
   1139 	char buf[1024];
   1140 	size_t len;
   1141 	uint32_t i;
   1142 	int err;
   1143 
   1144 	sc = acpicpu_sc[ci->ci_acpiid];
   1145 
   1146 	if (sc == NULL)
   1147 		return ENXIO;
   1148 
   1149 	(void)memset(&buf, 0, sizeof(buf));
   1150 
   1151 	mutex_enter(&sc->sc_mtx);
   1152 
   1153 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1154 
   1155 		if (sc->sc_pstate[i].ps_freq == 0)
   1156 			continue;
   1157 
   1158 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1159 		    sc->sc_pstate[i].ps_freq,
   1160 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1161 	}
   1162 
   1163 	mutex_exit(&sc->sc_mtx);
   1164 
   1165 	node = *rnode;
   1166 	node.sysctl_data = buf;
   1167 
   1168 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1169 
   1170 	if (err != 0 || newp == NULL)
   1171 		return err;
   1172 
   1173 	return 0;
   1174 }
   1175 
   1176