acpi_cpu_md.c revision 1.69.4.1 1 /* $NetBSD: acpi_cpu_md.c,v 1.69.4.1 2012/02/18 07:33:33 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.69.4.1 2012/02/18 07:33:33 mrg Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpufreq.h>
35 #include <sys/device.h>
36 #include <sys/kcore.h>
37 #include <sys/sysctl.h>
38 #include <sys/xcall.h>
39
40 #include <x86/cpu.h>
41 #include <x86/cpufunc.h>
42 #include <x86/cputypes.h>
43 #include <x86/cpuvar.h>
44 #include <x86/cpu_msr.h>
45 #include <x86/machdep.h>
46
47 #include <dev/acpi/acpica.h>
48 #include <dev/acpi/acpi_cpu.h>
49
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <machine/acpi_machdep.h>
54
55 /*
56 * Intel IA32_MISC_ENABLE.
57 */
58 #define MSR_MISC_ENABLE_EST __BIT(16)
59 #define MSR_MISC_ENABLE_TURBO __BIT(38)
60
61 /*
62 * AMD C1E.
63 */
64 #define MSR_CMPHALT 0xc0010055
65
66 #define MSR_CMPHALT_SMI __BIT(27)
67 #define MSR_CMPHALT_C1E __BIT(28)
68 #define MSR_CMPHALT_BMSTS __BIT(29)
69
70 /*
71 * AMD families 10h, 11h, 12h, 14h, and 15h.
72 */
73 #define MSR_10H_LIMIT 0xc0010061
74 #define MSR_10H_CONTROL 0xc0010062
75 #define MSR_10H_STATUS 0xc0010063
76 #define MSR_10H_CONFIG 0xc0010064
77
78 /*
79 * AMD family 0Fh.
80 */
81 #define MSR_0FH_CONTROL 0xc0010041
82 #define MSR_0FH_STATUS 0xc0010042
83
84 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87
88 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92
93 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95
96 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103
104 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105
106 static char native_idle_text[16];
107 void (*native_idle)(void) = NULL;
108
109 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
110 static void acpicpu_md_pstate_hwf_reset(void *, void *);
111 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
112 uint32_t *);
113 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
114 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
115 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
116 uint32_t, uint32_t);
117 static int acpicpu_md_pstate_sysctl_init(void);
118 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
119 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
120 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
121
122 extern struct acpicpu_softc **acpicpu_sc;
123 static struct sysctllog *acpicpu_log = NULL;
124
125 struct cpu_info *
126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
127 {
128 struct cpufeature_attach_args *cfaa = aux;
129
130 if (strcmp(cfaa->name, "frequency") != 0)
131 return NULL;
132
133 return cfaa->ci;
134 }
135
136 struct cpu_info *
137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
138 {
139 struct cpufeature_attach_args *cfaa = aux;
140
141 return cfaa->ci;
142 }
143
144 uint32_t
145 acpicpu_md_flags(void)
146 {
147 struct cpu_info *ci = curcpu();
148 struct pci_attach_args pa;
149 uint32_t family, val = 0;
150 uint32_t regs[4];
151 uint64_t msr;
152
153 if (acpi_md_ncpus() == 1)
154 val |= ACPICPU_FLAG_C_BM;
155
156 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
157 val |= ACPICPU_FLAG_C_FFH;
158
159 /*
160 * By default, assume that the local APIC timer
161 * as well as TSC are stalled during C3 sleep.
162 */
163 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
164
165 switch (cpu_vendor) {
166
167 case CPUVENDOR_IDT:
168
169 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 val |= ACPICPU_FLAG_P_FFH;
171
172 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 val |= ACPICPU_FLAG_T_FFH;
174
175 break;
176
177 case CPUVENDOR_INTEL:
178
179 /*
180 * Bus master control and arbitration should be
181 * available on all supported Intel CPUs (to be
182 * sure, this is double-checked later from the
183 * firmware data). These flags imply that it is
184 * not necessary to flush caches before C3 state.
185 */
186 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
187
188 /*
189 * Check if we can use "native", MSR-based,
190 * access. If not, we have to resort to I/O.
191 */
192 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
193 val |= ACPICPU_FLAG_P_FFH;
194
195 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
196 val |= ACPICPU_FLAG_T_FFH;
197
198 /*
199 * Check whether MSR_APERF, MSR_MPERF, and Turbo
200 * Boost are available. Also see if we might have
201 * an invariant local APIC timer ("ARAT").
202 */
203 if (cpuid_level >= 0x06) {
204
205 x86_cpuid(0x00000006, regs);
206
207 if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 val |= ACPICPU_FLAG_P_HWF;
209
210 if ((regs[0] & CPUID_DSPM_IDA) != 0)
211 val |= ACPICPU_FLAG_P_TURBO;
212
213 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
214 val &= ~ACPICPU_FLAG_C_APIC;
215 }
216
217 /*
218 * Detect whether TSC is invariant. If it is not,
219 * we keep the flag to note that TSC will not run
220 * at constant rate. Depending on the CPU, this may
221 * affect P- and T-state changes, but especially
222 * relevant are C-states; with variant TSC, states
223 * larger than C1 may completely stop the counter.
224 */
225 x86_cpuid(0x80000000, regs);
226
227 if (regs[0] >= 0x80000007) {
228
229 x86_cpuid(0x80000007, regs);
230
231 if ((regs[3] & __BIT(8)) != 0)
232 val &= ~ACPICPU_FLAG_C_TSC;
233 }
234
235 break;
236
237 case CPUVENDOR_AMD:
238
239 x86_cpuid(0x80000000, regs);
240
241 if (regs[0] < 0x80000007)
242 break;
243
244 x86_cpuid(0x80000007, regs);
245
246 family = CPUID2FAMILY(ci->ci_signature);
247
248 if (family == 0xf)
249 family += CPUID2EXTFAMILY(ci->ci_signature);
250
251 switch (family) {
252
253 case 0x0f:
254
255 /*
256 * Evaluate support for the "FID/VID
257 * algorithm" also used by powernow(4).
258 */
259 if ((regs[3] & CPUID_APM_FID) == 0)
260 break;
261
262 if ((regs[3] & CPUID_APM_VID) == 0)
263 break;
264
265 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
266 break;
267
268 case 0x10:
269 case 0x11:
270
271 if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
272 val |= ACPICPU_FLAG_C_C1E;
273
274 /* FALLTHROUGH */
275
276 case 0x12:
277 case 0x14: /* AMD Fusion */
278 case 0x15: /* AMD Bulldozer */
279
280 /*
281 * Like with Intel, detect invariant TSC,
282 * MSR-based P-states, and AMD's "turbo"
283 * (Core Performance Boost), respectively.
284 */
285 if ((regs[3] & CPUID_APM_TSC) != 0)
286 val &= ~ACPICPU_FLAG_C_TSC;
287
288 if ((regs[3] & CPUID_APM_HWP) != 0)
289 val |= ACPICPU_FLAG_P_FFH;
290
291 if ((regs[3] & CPUID_APM_CPB) != 0)
292 val |= ACPICPU_FLAG_P_TURBO;
293
294 /*
295 * Also check for APERF and MPERF,
296 * first available in the family 10h.
297 */
298 if (cpuid_level >= 0x06) {
299
300 x86_cpuid(0x00000006, regs);
301
302 if ((regs[2] & CPUID_DSPM_HWF) != 0)
303 val |= ACPICPU_FLAG_P_HWF;
304 }
305
306 break;
307 }
308
309 break;
310 }
311
312 /*
313 * There are several erratums for PIIX4.
314 */
315 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
316 val |= ACPICPU_FLAG_PIIX4;
317
318 return val;
319 }
320
321 static int
322 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
323 {
324
325 /*
326 * XXX: The pci_find_device(9) function only
327 * deals with attached devices. Change this
328 * to use something like pci_device_foreach().
329 */
330 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
331 return 0;
332
333 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
334 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
335 return 1;
336
337 return 0;
338 }
339
340 void
341 acpicpu_md_quirk_c1e(void)
342 {
343 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
344 uint64_t val;
345
346 val = rdmsr(MSR_CMPHALT);
347
348 if ((val & c1e) != 0)
349 wrmsr(MSR_CMPHALT, val & ~c1e);
350 }
351
352 int
353 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
354 {
355 const size_t size = sizeof(native_idle_text);
356 struct acpicpu_cstate *cs;
357 bool ipi = false;
358 int i;
359
360 /*
361 * Save the cpu_idle(9) loop used by default.
362 */
363 x86_cpu_idle_get(&native_idle, native_idle_text, size);
364
365 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
366
367 cs = &sc->sc_cstate[i];
368
369 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
370 ipi = true;
371 break;
372 }
373 }
374
375 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
376
377 return 0;
378 }
379
380 int
381 acpicpu_md_cstate_stop(void)
382 {
383 static char text[16];
384 void (*func)(void);
385 uint64_t xc;
386 bool ipi;
387
388 x86_cpu_idle_get(&func, text, sizeof(text));
389
390 if (func == native_idle)
391 return EALREADY;
392
393 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
394 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
395
396 /*
397 * Run a cross-call to ensure that all CPUs are
398 * out from the ACPI idle-loop before detachment.
399 */
400 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
401 xc_wait(xc);
402
403 return 0;
404 }
405
406 /*
407 * Called with interrupts enabled.
408 */
409 void
410 acpicpu_md_cstate_enter(int method, int state)
411 {
412 struct cpu_info *ci = curcpu();
413
414 KASSERT(ci->ci_ilevel == IPL_NONE);
415
416 switch (method) {
417
418 case ACPICPU_C_STATE_FFH:
419
420 x86_monitor(&ci->ci_want_resched, 0, 0);
421
422 if (__predict_false(ci->ci_want_resched != 0))
423 return;
424
425 x86_mwait((state - 1) << 4, 0);
426 break;
427
428 case ACPICPU_C_STATE_HALT:
429
430 x86_disable_intr();
431
432 if (__predict_false(ci->ci_want_resched != 0)) {
433 x86_enable_intr();
434 return;
435 }
436
437 x86_stihlt();
438 break;
439 }
440 }
441
442 int
443 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
444 {
445 uint64_t xc, val;
446
447 switch (cpu_vendor) {
448
449 case CPUVENDOR_IDT:
450 case CPUVENDOR_INTEL:
451
452 /*
453 * Make sure EST is enabled.
454 */
455 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
456
457 val = rdmsr(MSR_MISC_ENABLE);
458
459 if ((val & MSR_MISC_ENABLE_EST) == 0) {
460
461 val |= MSR_MISC_ENABLE_EST;
462 wrmsr(MSR_MISC_ENABLE, val);
463 val = rdmsr(MSR_MISC_ENABLE);
464
465 if ((val & MSR_MISC_ENABLE_EST) == 0)
466 return ENOTTY;
467 }
468 }
469 }
470
471 /*
472 * Reset the APERF and MPERF counters.
473 */
474 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
475 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
476 xc_wait(xc);
477 }
478
479 return acpicpu_md_pstate_sysctl_init();
480 }
481
482 int
483 acpicpu_md_pstate_stop(void)
484 {
485
486 if (acpicpu_log == NULL)
487 return EALREADY;
488
489 sysctl_teardown(&acpicpu_log);
490 acpicpu_log = NULL;
491
492 return 0;
493 }
494
495 int
496 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
497 {
498 struct cpu_info *ci = sc->sc_ci;
499 struct acpicpu_pstate *ps, msr;
500 uint32_t family, i = 0;
501
502 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
503
504 switch (cpu_vendor) {
505
506 case CPUVENDOR_IDT:
507 case CPUVENDOR_INTEL:
508
509 /*
510 * If the so-called Turbo Boost is present,
511 * the P0-state is always the "turbo state".
512 * It is shown as the P1 frequency + 1 MHz.
513 *
514 * For discussion, see:
515 *
516 * Intel Corporation: Intel Turbo Boost Technology
517 * in Intel Core(tm) Microarchitectures (Nehalem)
518 * Based Processors. White Paper, November 2008.
519 */
520 if (sc->sc_pstate_count >= 2 &&
521 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
522
523 ps = &sc->sc_pstate[0];
524
525 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
526 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
527 }
528
529 msr.ps_control_addr = MSR_PERF_CTL;
530 msr.ps_control_mask = __BITS(0, 15);
531
532 msr.ps_status_addr = MSR_PERF_STATUS;
533 msr.ps_status_mask = __BITS(0, 15);
534 break;
535
536 case CPUVENDOR_AMD:
537
538 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
539 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
540
541 family = CPUID2FAMILY(ci->ci_signature);
542
543 if (family == 0xf)
544 family += CPUID2EXTFAMILY(ci->ci_signature);
545
546 switch (family) {
547
548 case 0x0f:
549 msr.ps_control_addr = MSR_0FH_CONTROL;
550 msr.ps_status_addr = MSR_0FH_STATUS;
551 break;
552
553 case 0x10:
554 case 0x11:
555 case 0x12:
556 case 0x14:
557 case 0x15:
558 msr.ps_control_addr = MSR_10H_CONTROL;
559 msr.ps_control_mask = __BITS(0, 2);
560
561 msr.ps_status_addr = MSR_10H_STATUS;
562 msr.ps_status_mask = __BITS(0, 2);
563 break;
564
565 default:
566 /*
567 * If we have an unknown AMD CPU, rely on XPSS.
568 */
569 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
570 return EOPNOTSUPP;
571 }
572
573 break;
574
575 default:
576 return ENODEV;
577 }
578
579 /*
580 * Fill the P-state structures with MSR addresses that are
581 * known to be correct. If we do not know the addresses,
582 * leave the values intact. If a vendor uses XPSS, we do
583 * not necessarily need to do anything to support new CPUs.
584 */
585 while (i < sc->sc_pstate_count) {
586
587 ps = &sc->sc_pstate[i];
588
589 if (msr.ps_flags != 0)
590 ps->ps_flags |= msr.ps_flags;
591
592 if (msr.ps_status_addr != 0)
593 ps->ps_status_addr = msr.ps_status_addr;
594
595 if (msr.ps_status_mask != 0)
596 ps->ps_status_mask = msr.ps_status_mask;
597
598 if (msr.ps_control_addr != 0)
599 ps->ps_control_addr = msr.ps_control_addr;
600
601 if (msr.ps_control_mask != 0)
602 ps->ps_control_mask = msr.ps_control_mask;
603
604 i++;
605 }
606
607 return 0;
608 }
609
610 /*
611 * Read the IA32_APERF and IA32_MPERF counters. The first
612 * increments at the rate of the fixed maximum frequency
613 * configured during the boot, whereas APERF counts at the
614 * rate of the actual frequency. Note that the MSRs must be
615 * read without delay, and that only the ratio between
616 * IA32_APERF and IA32_MPERF is architecturally defined.
617 *
618 * The function thus returns the percentage of the actual
619 * frequency in terms of the maximum frequency of the calling
620 * CPU since the last call. A value zero implies an error.
621 *
622 * For further details, refer to:
623 *
624 * Intel Corporation: Intel 64 and IA-32 Architectures
625 * Software Developer's Manual. Section 13.2, Volume 3A:
626 * System Programming Guide, Part 1. July, 2008.
627 *
628 * Advanced Micro Devices: BIOS and Kernel Developer's
629 * Guide (BKDG) for AMD Family 10h Processors. Section
630 * 2.4.5, Revision 3.48, April 2010.
631 */
632 uint8_t
633 acpicpu_md_pstate_hwf(struct cpu_info *ci)
634 {
635 struct acpicpu_softc *sc;
636 uint64_t aperf, mperf;
637 uint8_t rv = 0;
638
639 sc = acpicpu_sc[ci->ci_acpiid];
640
641 if (__predict_false(sc == NULL))
642 return 0;
643
644 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
645 return 0;
646
647 aperf = sc->sc_pstate_aperf;
648 mperf = sc->sc_pstate_mperf;
649
650 x86_disable_intr();
651
652 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
653 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
654
655 x86_enable_intr();
656
657 aperf = sc->sc_pstate_aperf - aperf;
658 mperf = sc->sc_pstate_mperf - mperf;
659
660 if (__predict_true(mperf != 0))
661 rv = (aperf * 100) / mperf;
662
663 return rv;
664 }
665
666 static void
667 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
668 {
669 struct cpu_info *ci = curcpu();
670 struct acpicpu_softc *sc;
671
672 sc = acpicpu_sc[ci->ci_acpiid];
673
674 if (__predict_false(sc == NULL))
675 return;
676
677 x86_disable_intr();
678
679 wrmsr(MSR_APERF, 0);
680 wrmsr(MSR_MPERF, 0);
681
682 x86_enable_intr();
683
684 sc->sc_pstate_aperf = 0;
685 sc->sc_pstate_mperf = 0;
686 }
687
688 int
689 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
690 {
691 struct acpicpu_pstate *ps = NULL;
692 uint64_t val;
693 uint32_t i;
694
695 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
696 return acpicpu_md_pstate_fidvid_get(sc, freq);
697
698 /*
699 * Pick any P-state for the status address.
700 */
701 for (i = 0; i < sc->sc_pstate_count; i++) {
702
703 ps = &sc->sc_pstate[i];
704
705 if (__predict_true(ps->ps_freq != 0))
706 break;
707 }
708
709 if (__predict_false(ps == NULL))
710 return ENODEV;
711
712 if (__predict_false(ps->ps_status_addr == 0))
713 return EINVAL;
714
715 val = rdmsr(ps->ps_status_addr);
716
717 if (__predict_true(ps->ps_status_mask != 0))
718 val = val & ps->ps_status_mask;
719
720 /*
721 * Search for the value from known P-states.
722 */
723 for (i = 0; i < sc->sc_pstate_count; i++) {
724
725 ps = &sc->sc_pstate[i];
726
727 if (__predict_false(ps->ps_freq == 0))
728 continue;
729
730 if (val == ps->ps_status) {
731 *freq = ps->ps_freq;
732 return 0;
733 }
734 }
735
736 /*
737 * If the value was not found, try APERF/MPERF.
738 * The state is P0 if the return value is 100 %.
739 */
740 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
741
742 KASSERT(sc->sc_pstate_count > 0);
743 KASSERT(sc->sc_pstate[0].ps_freq != 0);
744
745 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
746 *freq = sc->sc_pstate[0].ps_freq;
747 return 0;
748 }
749 }
750
751 return EIO;
752 }
753
754 int
755 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
756 {
757 uint64_t val = 0;
758
759 if (__predict_false(ps->ps_control_addr == 0))
760 return EINVAL;
761
762 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
763 return acpicpu_md_pstate_fidvid_set(ps);
764
765 /*
766 * If the mask is set, do a read-modify-write.
767 */
768 if (__predict_true(ps->ps_control_mask != 0)) {
769 val = rdmsr(ps->ps_control_addr);
770 val &= ~ps->ps_control_mask;
771 }
772
773 val |= ps->ps_control;
774
775 wrmsr(ps->ps_control_addr, val);
776 DELAY(ps->ps_latency);
777
778 return 0;
779 }
780
781 static int
782 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
783 {
784 struct acpicpu_pstate *ps;
785 uint32_t fid, i, vid;
786 uint32_t cfid, cvid;
787 int rv;
788
789 /*
790 * AMD family 0Fh needs special treatment.
791 * While it wants to use ACPI, it does not
792 * comply with the ACPI specifications.
793 */
794 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
795
796 if (rv != 0)
797 return rv;
798
799 for (i = 0; i < sc->sc_pstate_count; i++) {
800
801 ps = &sc->sc_pstate[i];
802
803 if (__predict_false(ps->ps_freq == 0))
804 continue;
805
806 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
807 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
808
809 if (cfid == fid && cvid == vid) {
810 *freq = ps->ps_freq;
811 return 0;
812 }
813 }
814
815 return EIO;
816 }
817
818 static int
819 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
820 {
821 const uint64_t ctrl = ps->ps_control;
822 uint32_t cfid, cvid, fid, i, irt;
823 uint32_t pll, vco_cfid, vco_fid;
824 uint32_t val, vid, vst;
825 int rv;
826
827 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
828
829 if (rv != 0)
830 return rv;
831
832 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
833 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
834 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
835 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
836 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
837
838 vst = vst * 20;
839 pll = pll * 1000 / 5;
840 irt = 10 * __BIT(irt);
841
842 /*
843 * Phase 1.
844 */
845 while (cvid > vid) {
846
847 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
848 val = (val > cvid) ? 0 : cvid - val;
849
850 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
851 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
852
853 if (rv != 0)
854 return rv;
855 }
856
857 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
858
859 for (; i > 0 && cvid > 0; --i) {
860
861 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
862 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
863
864 if (rv != 0)
865 return rv;
866 }
867
868 /*
869 * Phase 2.
870 */
871 if (cfid != fid) {
872
873 vco_fid = FID_TO_VCO_FID(fid);
874 vco_cfid = FID_TO_VCO_FID(cfid);
875
876 while (abs(vco_fid - vco_cfid) > 2) {
877
878 if (fid <= cfid)
879 val = cfid - 2;
880 else {
881 val = (cfid > 6) ? cfid + 2 :
882 FID_TO_VCO_FID(cfid) + 2;
883 }
884
885 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
886 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
887
888 if (rv != 0)
889 return rv;
890
891 vco_cfid = FID_TO_VCO_FID(cfid);
892 }
893
894 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
895 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
896
897 if (rv != 0)
898 return rv;
899 }
900
901 /*
902 * Phase 3.
903 */
904 if (cvid != vid) {
905
906 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
907 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
908
909 if (rv != 0)
910 return rv;
911 }
912
913 return 0;
914 }
915
916 static int
917 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
918 {
919 int i = ACPICPU_P_STATE_RETRY * 100;
920 uint64_t val;
921
922 do {
923 val = rdmsr(MSR_0FH_STATUS);
924
925 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
926
927 if (i == 0)
928 return EAGAIN;
929
930 if (cfid != NULL)
931 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
932
933 if (cvid != NULL)
934 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
935
936 return 0;
937 }
938
939 static void
940 acpicpu_md_pstate_fidvid_write(uint32_t fid,
941 uint32_t vid, uint32_t cnt, uint32_t tmo)
942 {
943 uint64_t val = 0;
944
945 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
946 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
947 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
948 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
949
950 wrmsr(MSR_0FH_CONTROL, val);
951 DELAY(tmo);
952 }
953
954 int
955 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
956 {
957 struct acpicpu_tstate *ts;
958 uint64_t val;
959 uint32_t i;
960
961 val = rdmsr(MSR_THERM_CONTROL);
962
963 for (i = 0; i < sc->sc_tstate_count; i++) {
964
965 ts = &sc->sc_tstate[i];
966
967 if (ts->ts_percent == 0)
968 continue;
969
970 if (val == ts->ts_status) {
971 *percent = ts->ts_percent;
972 return 0;
973 }
974 }
975
976 return EIO;
977 }
978
979 int
980 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
981 {
982 uint64_t val;
983 uint8_t i;
984
985 val = ts->ts_control;
986 val = val & __BITS(1, 4);
987
988 wrmsr(MSR_THERM_CONTROL, val);
989
990 if (ts->ts_status == 0) {
991 DELAY(ts->ts_latency);
992 return 0;
993 }
994
995 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
996
997 val = rdmsr(MSR_THERM_CONTROL);
998
999 if (val == ts->ts_status)
1000 return 0;
1001
1002 DELAY(ts->ts_latency);
1003 }
1004
1005 return EAGAIN;
1006 }
1007
1008 /*
1009 * A kludge for backwards compatibility.
1010 */
1011 static int
1012 acpicpu_md_pstate_sysctl_init(void)
1013 {
1014 const struct sysctlnode *fnode, *mnode, *rnode;
1015 const char *str;
1016 int rv;
1017
1018 switch (cpu_vendor) {
1019
1020 case CPUVENDOR_IDT:
1021 case CPUVENDOR_INTEL:
1022 str = "est";
1023 break;
1024
1025 case CPUVENDOR_AMD:
1026 str = "powernow";
1027 break;
1028
1029 default:
1030 return ENODEV;
1031 }
1032
1033
1034 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1035 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1036 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1037
1038 if (rv != 0)
1039 goto fail;
1040
1041 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1042 0, CTLTYPE_NODE, str, NULL,
1043 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1044
1045 if (rv != 0)
1046 goto fail;
1047
1048 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1049 0, CTLTYPE_NODE, "frequency", NULL,
1050 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1051
1052 if (rv != 0)
1053 goto fail;
1054
1055 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1056 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1057 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1058
1059 if (rv != 0)
1060 goto fail;
1061
1062 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1063 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1064 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1065
1066 if (rv != 0)
1067 goto fail;
1068
1069 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1070 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1071 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1072
1073 if (rv != 0)
1074 goto fail;
1075
1076 return 0;
1077
1078 fail:
1079 if (acpicpu_log != NULL) {
1080 sysctl_teardown(&acpicpu_log);
1081 acpicpu_log = NULL;
1082 }
1083
1084 return rv;
1085 }
1086
1087 static int
1088 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1089 {
1090 struct sysctlnode node;
1091 uint32_t freq;
1092 int err;
1093
1094 freq = cpufreq_get(curcpu());
1095
1096 if (freq == 0)
1097 return ENXIO;
1098
1099 node = *rnode;
1100 node.sysctl_data = &freq;
1101
1102 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1103
1104 if (err != 0 || newp == NULL)
1105 return err;
1106
1107 return 0;
1108 }
1109
1110 static int
1111 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1112 {
1113 struct sysctlnode node;
1114 uint32_t freq;
1115 int err;
1116
1117 freq = cpufreq_get(curcpu());
1118
1119 if (freq == 0)
1120 return ENXIO;
1121
1122 node = *rnode;
1123 node.sysctl_data = &freq;
1124
1125 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1126
1127 if (err != 0 || newp == NULL)
1128 return err;
1129
1130 cpufreq_set_all(freq);
1131
1132 return 0;
1133 }
1134
1135 static int
1136 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1137 {
1138 struct cpu_info *ci = curcpu();
1139 struct acpicpu_softc *sc;
1140 struct sysctlnode node;
1141 char buf[1024];
1142 size_t len;
1143 uint32_t i;
1144 int err;
1145
1146 sc = acpicpu_sc[ci->ci_acpiid];
1147
1148 if (sc == NULL)
1149 return ENXIO;
1150
1151 (void)memset(&buf, 0, sizeof(buf));
1152
1153 mutex_enter(&sc->sc_mtx);
1154
1155 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1156
1157 if (sc->sc_pstate[i].ps_freq == 0)
1158 continue;
1159
1160 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1161 sc->sc_pstate[i].ps_freq,
1162 i < (sc->sc_pstate_count - 1) ? " " : "");
1163 }
1164
1165 mutex_exit(&sc->sc_mtx);
1166
1167 node = *rnode;
1168 node.sysctl_data = buf;
1169
1170 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1171
1172 if (err != 0 || newp == NULL)
1173 return err;
1174
1175 return 0;
1176 }
1177
1178