Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.70
      1 /* $NetBSD: acpi_cpu_md.c,v 1.70 2012/02/11 22:07:53 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.70 2012/02/11 22:07:53 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 static char	  native_idle_text[16];
    107 void		(*native_idle)(void) = NULL;
    108 
    109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112                                               uint32_t *);
    113 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116 					        uint32_t, uint32_t);
    117 static int	 acpicpu_md_pstate_sysctl_init(void);
    118 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121 
    122 extern struct acpicpu_softc **acpicpu_sc;
    123 static struct sysctllog *acpicpu_log = NULL;
    124 
    125 struct cpu_info *
    126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127 {
    128 	struct cpufeature_attach_args *cfaa = aux;
    129 
    130 	if (strcmp(cfaa->name, "frequency") != 0)
    131 		return NULL;
    132 
    133 	return cfaa->ci;
    134 }
    135 
    136 struct cpu_info *
    137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138 {
    139 	struct cpufeature_attach_args *cfaa = aux;
    140 
    141 	return cfaa->ci;
    142 }
    143 
    144 uint32_t
    145 acpicpu_md_flags(void)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 	struct pci_attach_args pa;
    149 	uint32_t family, val = 0;
    150 	uint32_t regs[4];
    151 	uint64_t msr;
    152 
    153 	if (acpi_md_ncpus() == 1)
    154 		val |= ACPICPU_FLAG_C_BM;
    155 
    156 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157 		val |= ACPICPU_FLAG_C_FFH;
    158 
    159 	/*
    160 	 * By default, assume that the local APIC timer
    161 	 * as well as TSC are stalled during C3 sleep.
    162 	 */
    163 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164 
    165 	switch (cpu_vendor) {
    166 
    167 	case CPUVENDOR_IDT:
    168 
    169 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    170 			val |= ACPICPU_FLAG_P_FFH;
    171 
    172 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    173 			val |= ACPICPU_FLAG_T_FFH;
    174 
    175 		break;
    176 
    177 	case CPUVENDOR_INTEL:
    178 
    179 		/*
    180 		 * Bus master control and arbitration should be
    181 		 * available on all supported Intel CPUs (to be
    182 		 * sure, this is double-checked later from the
    183 		 * firmware data). These flags imply that it is
    184 		 * not necessary to flush caches before C3 state.
    185 		 */
    186 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    187 
    188 		/*
    189 		 * Check if we can use "native", MSR-based,
    190 		 * access. If not, we have to resort to I/O.
    191 		 */
    192 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    193 			val |= ACPICPU_FLAG_P_FFH;
    194 
    195 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    196 			val |= ACPICPU_FLAG_T_FFH;
    197 
    198 		/*
    199 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    200 		 * Boost are available. Also see if we might have
    201 		 * an invariant local APIC timer ("ARAT").
    202 		 */
    203 		if (cpuid_level >= 0x06) {
    204 
    205 			x86_cpuid(0x00000006, regs);
    206 
    207 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208 				val |= ACPICPU_FLAG_P_HWF;
    209 
    210 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    211 				val |= ACPICPU_FLAG_P_TURBO;
    212 
    213 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    214 				val &= ~ACPICPU_FLAG_C_APIC;
    215 		}
    216 
    217 		/*
    218 		 * Detect whether TSC is invariant. If it is not,
    219 		 * we keep the flag to note that TSC will not run
    220 		 * at constant rate. Depending on the CPU, this may
    221 		 * affect P- and T-state changes, but especially
    222 		 * relevant are C-states; with variant TSC, states
    223 		 * larger than C1 may completely stop the counter.
    224 		 */
    225 		x86_cpuid(0x80000000, regs);
    226 
    227 		if (regs[0] >= 0x80000007) {
    228 
    229 			x86_cpuid(0x80000007, regs);
    230 
    231 			if ((regs[3] & __BIT(8)) != 0)
    232 				val &= ~ACPICPU_FLAG_C_TSC;
    233 		}
    234 
    235 		break;
    236 
    237 	case CPUVENDOR_AMD:
    238 
    239 		x86_cpuid(0x80000000, regs);
    240 
    241 		if (regs[0] < 0x80000007)
    242 			break;
    243 
    244 		x86_cpuid(0x80000007, regs);
    245 
    246 		family = CPUID2FAMILY(ci->ci_signature);
    247 
    248 		if (family == 0xf)
    249 			family += CPUID2EXTFAMILY(ci->ci_signature);
    250 
    251     		switch (family) {
    252 
    253 		case 0x0f:
    254 
    255 			/*
    256 			 * Evaluate support for the "FID/VID
    257 			 * algorithm" also used by powernow(4).
    258 			 */
    259 			if ((regs[3] & CPUID_APM_FID) == 0)
    260 				break;
    261 
    262 			if ((regs[3] & CPUID_APM_VID) == 0)
    263 				break;
    264 
    265 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    266 			break;
    267 
    268 		case 0x10:
    269 		case 0x11:
    270 
    271 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    272 				val |= ACPICPU_FLAG_C_C1E;
    273 
    274 			/* FALLTHROUGH */
    275 
    276 		case 0x12:
    277 		case 0x14: /* AMD Fusion */
    278 		case 0x15: /* AMD Bulldozer */
    279 
    280 			/*
    281 			 * Like with Intel, detect invariant TSC,
    282 			 * MSR-based P-states, and AMD's "turbo"
    283 			 * (Core Performance Boost), respectively.
    284 			 */
    285 			if ((regs[3] & CPUID_APM_TSC) != 0)
    286 				val &= ~ACPICPU_FLAG_C_TSC;
    287 
    288 			if ((regs[3] & CPUID_APM_HWP) != 0)
    289 				val |= ACPICPU_FLAG_P_FFH;
    290 
    291 			if ((regs[3] & CPUID_APM_CPB) != 0)
    292 				val |= ACPICPU_FLAG_P_TURBO;
    293 
    294 			/*
    295 			 * Also check for APERF and MPERF,
    296 			 * first available in the family 10h.
    297 			 */
    298 			if (cpuid_level >= 0x06) {
    299 
    300 				x86_cpuid(0x00000006, regs);
    301 
    302 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    303 					val |= ACPICPU_FLAG_P_HWF;
    304 			}
    305 
    306 			break;
    307 		}
    308 
    309 		break;
    310 	}
    311 
    312 	/*
    313 	 * There are several erratums for PIIX4.
    314 	 */
    315 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    316 		val |= ACPICPU_FLAG_PIIX4;
    317 
    318 	return val;
    319 }
    320 
    321 static int
    322 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    323 {
    324 
    325 	/*
    326 	 * XXX: The pci_find_device(9) function only
    327 	 *	deals with attached devices. Change this
    328 	 *	to use something like pci_device_foreach().
    329 	 */
    330 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    331 		return 0;
    332 
    333 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    334 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    335 		return 1;
    336 
    337 	return 0;
    338 }
    339 
    340 void
    341 acpicpu_md_quirk_c1e(void)
    342 {
    343 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    344 	uint64_t val;
    345 
    346 	val = rdmsr(MSR_CMPHALT);
    347 
    348 	if ((val & c1e) != 0)
    349 		wrmsr(MSR_CMPHALT, val & ~c1e);
    350 }
    351 
    352 int
    353 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    354 {
    355 	const size_t size = sizeof(native_idle_text);
    356 	struct acpicpu_cstate *cs;
    357 	bool ipi = false;
    358 	int i;
    359 
    360 	/*
    361 	 * Save the cpu_idle(9) loop used by default.
    362 	 */
    363 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    364 
    365 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    366 
    367 		cs = &sc->sc_cstate[i];
    368 
    369 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    370 			ipi = true;
    371 			break;
    372 		}
    373 	}
    374 
    375 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    376 
    377 	return 0;
    378 }
    379 
    380 int
    381 acpicpu_md_cstate_stop(void)
    382 {
    383 	static char text[16];
    384 	void (*func)(void);
    385 	uint64_t xc;
    386 	bool ipi;
    387 
    388 	x86_cpu_idle_get(&func, text, sizeof(text));
    389 
    390 	if (func == native_idle)
    391 		return EALREADY;
    392 
    393 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    394 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    395 
    396 	/*
    397 	 * Run a cross-call to ensure that all CPUs are
    398 	 * out from the ACPI idle-loop before detachment.
    399 	 */
    400 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    401 	xc_wait(xc);
    402 
    403 	return 0;
    404 }
    405 
    406 /*
    407  * Called with interrupts enabled.
    408  */
    409 void
    410 acpicpu_md_cstate_enter(int method, int state)
    411 {
    412 	struct cpu_info *ci = curcpu();
    413 
    414 	KASSERT(ci->ci_ilevel == IPL_NONE);
    415 
    416 	switch (method) {
    417 
    418 	case ACPICPU_C_STATE_FFH:
    419 
    420 		x86_monitor(&ci->ci_want_resched, 0, 0);
    421 
    422 		if (__predict_false(ci->ci_want_resched != 0))
    423 			return;
    424 
    425 		x86_mwait((state - 1) << 4, 0);
    426 		break;
    427 
    428 	case ACPICPU_C_STATE_HALT:
    429 
    430 		x86_disable_intr();
    431 
    432 		if (__predict_false(ci->ci_want_resched != 0)) {
    433 			x86_enable_intr();
    434 			return;
    435 		}
    436 
    437 		x86_stihlt();
    438 		break;
    439 	}
    440 }
    441 
    442 int
    443 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    444 {
    445 	uint64_t xc, val;
    446 
    447 	switch (cpu_vendor) {
    448 
    449 	case CPUVENDOR_IDT:
    450 	case CPUVENDOR_INTEL:
    451 
    452 		/*
    453 		 * Make sure EST is enabled.
    454 		 */
    455 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    456 
    457 			val = rdmsr(MSR_MISC_ENABLE);
    458 
    459 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    460 
    461 				val |= MSR_MISC_ENABLE_EST;
    462 				wrmsr(MSR_MISC_ENABLE, val);
    463 				val = rdmsr(MSR_MISC_ENABLE);
    464 
    465 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    466 					return ENOTTY;
    467 			}
    468 		}
    469 	}
    470 
    471 	/*
    472 	 * Reset the APERF and MPERF counters.
    473 	 */
    474 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    475 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    476 		xc_wait(xc);
    477 	}
    478 
    479 	return acpicpu_md_pstate_sysctl_init();
    480 }
    481 
    482 int
    483 acpicpu_md_pstate_stop(void)
    484 {
    485 
    486 	if (acpicpu_log == NULL)
    487 		return EALREADY;
    488 
    489 	sysctl_teardown(&acpicpu_log);
    490 	acpicpu_log = NULL;
    491 
    492 	return 0;
    493 }
    494 
    495 int
    496 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    497 {
    498 	struct cpu_info *ci = sc->sc_ci;
    499 	struct acpicpu_pstate *ps, msr;
    500 	uint32_t family, i = 0;
    501 
    502 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    503 
    504 	switch (cpu_vendor) {
    505 
    506 	case CPUVENDOR_IDT:
    507 	case CPUVENDOR_INTEL:
    508 
    509 		/*
    510 		 * If the so-called Turbo Boost is present,
    511 		 * the P0-state is always the "turbo state".
    512 		 * It is shown as the P1 frequency + 1 MHz.
    513 		 *
    514 		 * For discussion, see:
    515 		 *
    516 		 *	Intel Corporation: Intel Turbo Boost Technology
    517 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    518 		 *	Based Processors. White Paper, November 2008.
    519 		 */
    520 		if (sc->sc_pstate_count >= 2 &&
    521 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    522 
    523 			ps = &sc->sc_pstate[0];
    524 
    525 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    526 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    527 		}
    528 
    529 		msr.ps_control_addr = MSR_PERF_CTL;
    530 		msr.ps_control_mask = __BITS(0, 15);
    531 
    532 		msr.ps_status_addr  = MSR_PERF_STATUS;
    533 		msr.ps_status_mask  = __BITS(0, 15);
    534 		break;
    535 
    536 	case CPUVENDOR_AMD:
    537 
    538 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    539 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    540 
    541 		family = CPUID2FAMILY(ci->ci_signature);
    542 
    543 		if (family == 0xf)
    544 			family += CPUID2EXTFAMILY(ci->ci_signature);
    545 
    546 		switch (family) {
    547 
    548 		case 0x0f:
    549 			msr.ps_control_addr = MSR_0FH_CONTROL;
    550 			msr.ps_status_addr  = MSR_0FH_STATUS;
    551 			break;
    552 
    553 		case 0x10:
    554 		case 0x11:
    555 		case 0x12:
    556 		case 0x14: /* AMD Fusion */
    557 			msr.ps_control_addr = MSR_10H_CONTROL;
    558 			msr.ps_control_mask = __BITS(0, 2);
    559 
    560 			msr.ps_status_addr  = MSR_10H_STATUS;
    561 			msr.ps_status_mask  = __BITS(0, 2);
    562 			break;
    563 
    564 		default:
    565 			/*
    566 			 * If we have an unknown AMD CPU, rely on XPSS.
    567 			 */
    568 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    569 				return EOPNOTSUPP;
    570 		}
    571 
    572 		break;
    573 
    574 	default:
    575 		return ENODEV;
    576 	}
    577 
    578 	/*
    579 	 * Fill the P-state structures with MSR addresses that are
    580 	 * known to be correct. If we do not know the addresses,
    581 	 * leave the values intact. If a vendor uses XPSS, we do
    582 	 * not necessarily need to do anything to support new CPUs.
    583 	 */
    584 	while (i < sc->sc_pstate_count) {
    585 
    586 		ps = &sc->sc_pstate[i];
    587 
    588 		if (msr.ps_flags != 0)
    589 			ps->ps_flags |= msr.ps_flags;
    590 
    591 		if (msr.ps_status_addr != 0)
    592 			ps->ps_status_addr = msr.ps_status_addr;
    593 
    594 		if (msr.ps_status_mask != 0)
    595 			ps->ps_status_mask = msr.ps_status_mask;
    596 
    597 		if (msr.ps_control_addr != 0)
    598 			ps->ps_control_addr = msr.ps_control_addr;
    599 
    600 		if (msr.ps_control_mask != 0)
    601 			ps->ps_control_mask = msr.ps_control_mask;
    602 
    603 		i++;
    604 	}
    605 
    606 	return 0;
    607 }
    608 
    609 /*
    610  * Read the IA32_APERF and IA32_MPERF counters. The first
    611  * increments at the rate of the fixed maximum frequency
    612  * configured during the boot, whereas APERF counts at the
    613  * rate of the actual frequency. Note that the MSRs must be
    614  * read without delay, and that only the ratio between
    615  * IA32_APERF and IA32_MPERF is architecturally defined.
    616  *
    617  * The function thus returns the percentage of the actual
    618  * frequency in terms of the maximum frequency of the calling
    619  * CPU since the last call. A value zero implies an error.
    620  *
    621  * For further details, refer to:
    622  *
    623  *	Intel Corporation: Intel 64 and IA-32 Architectures
    624  *	Software Developer's Manual. Section 13.2, Volume 3A:
    625  *	System Programming Guide, Part 1. July, 2008.
    626  *
    627  *	Advanced Micro Devices: BIOS and Kernel Developer's
    628  *	Guide (BKDG) for AMD Family 10h Processors. Section
    629  *	2.4.5, Revision 3.48, April 2010.
    630  */
    631 uint8_t
    632 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    633 {
    634 	struct acpicpu_softc *sc;
    635 	uint64_t aperf, mperf;
    636 	uint8_t rv = 0;
    637 
    638 	sc = acpicpu_sc[ci->ci_acpiid];
    639 
    640 	if (__predict_false(sc == NULL))
    641 		return 0;
    642 
    643 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    644 		return 0;
    645 
    646 	aperf = sc->sc_pstate_aperf;
    647 	mperf = sc->sc_pstate_mperf;
    648 
    649 	x86_disable_intr();
    650 
    651 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    652 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    653 
    654 	x86_enable_intr();
    655 
    656 	aperf = sc->sc_pstate_aperf - aperf;
    657 	mperf = sc->sc_pstate_mperf - mperf;
    658 
    659 	if (__predict_true(mperf != 0))
    660 		rv = (aperf * 100) / mperf;
    661 
    662 	return rv;
    663 }
    664 
    665 static void
    666 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    667 {
    668 	struct cpu_info *ci = curcpu();
    669 	struct acpicpu_softc *sc;
    670 
    671 	sc = acpicpu_sc[ci->ci_acpiid];
    672 
    673 	if (__predict_false(sc == NULL))
    674 		return;
    675 
    676 	x86_disable_intr();
    677 
    678 	wrmsr(MSR_APERF, 0);
    679 	wrmsr(MSR_MPERF, 0);
    680 
    681 	x86_enable_intr();
    682 
    683 	sc->sc_pstate_aperf = 0;
    684 	sc->sc_pstate_mperf = 0;
    685 }
    686 
    687 int
    688 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    689 {
    690 	struct acpicpu_pstate *ps = NULL;
    691 	uint64_t val;
    692 	uint32_t i;
    693 
    694 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    695 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    696 
    697 	/*
    698 	 * Pick any P-state for the status address.
    699 	 */
    700 	for (i = 0; i < sc->sc_pstate_count; i++) {
    701 
    702 		ps = &sc->sc_pstate[i];
    703 
    704 		if (__predict_true(ps->ps_freq != 0))
    705 			break;
    706 	}
    707 
    708 	if (__predict_false(ps == NULL))
    709 		return ENODEV;
    710 
    711 	if (__predict_false(ps->ps_status_addr == 0))
    712 		return EINVAL;
    713 
    714 	val = rdmsr(ps->ps_status_addr);
    715 
    716 	if (__predict_true(ps->ps_status_mask != 0))
    717 		val = val & ps->ps_status_mask;
    718 
    719 	/*
    720 	 * Search for the value from known P-states.
    721 	 */
    722 	for (i = 0; i < sc->sc_pstate_count; i++) {
    723 
    724 		ps = &sc->sc_pstate[i];
    725 
    726 		if (__predict_false(ps->ps_freq == 0))
    727 			continue;
    728 
    729 		if (val == ps->ps_status) {
    730 			*freq = ps->ps_freq;
    731 			return 0;
    732 		}
    733 	}
    734 
    735 	/*
    736 	 * If the value was not found, try APERF/MPERF.
    737 	 * The state is P0 if the return value is 100 %.
    738 	 */
    739 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    740 
    741 		KASSERT(sc->sc_pstate_count > 0);
    742 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    743 
    744 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    745 			*freq = sc->sc_pstate[0].ps_freq;
    746 			return 0;
    747 		}
    748 	}
    749 
    750 	return EIO;
    751 }
    752 
    753 int
    754 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    755 {
    756 	uint64_t val = 0;
    757 
    758 	if (__predict_false(ps->ps_control_addr == 0))
    759 		return EINVAL;
    760 
    761 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    762 		return acpicpu_md_pstate_fidvid_set(ps);
    763 
    764 	/*
    765 	 * If the mask is set, do a read-modify-write.
    766 	 */
    767 	if (__predict_true(ps->ps_control_mask != 0)) {
    768 		val = rdmsr(ps->ps_control_addr);
    769 		val &= ~ps->ps_control_mask;
    770 	}
    771 
    772 	val |= ps->ps_control;
    773 
    774 	wrmsr(ps->ps_control_addr, val);
    775 	DELAY(ps->ps_latency);
    776 
    777 	return 0;
    778 }
    779 
    780 static int
    781 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    782 {
    783 	struct acpicpu_pstate *ps;
    784 	uint32_t fid, i, vid;
    785 	uint32_t cfid, cvid;
    786 	int rv;
    787 
    788 	/*
    789 	 * AMD family 0Fh needs special treatment.
    790 	 * While it wants to use ACPI, it does not
    791 	 * comply with the ACPI specifications.
    792 	 */
    793 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    794 
    795 	if (rv != 0)
    796 		return rv;
    797 
    798 	for (i = 0; i < sc->sc_pstate_count; i++) {
    799 
    800 		ps = &sc->sc_pstate[i];
    801 
    802 		if (__predict_false(ps->ps_freq == 0))
    803 			continue;
    804 
    805 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    806 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    807 
    808 		if (cfid == fid && cvid == vid) {
    809 			*freq = ps->ps_freq;
    810 			return 0;
    811 		}
    812 	}
    813 
    814 	return EIO;
    815 }
    816 
    817 static int
    818 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    819 {
    820 	const uint64_t ctrl = ps->ps_control;
    821 	uint32_t cfid, cvid, fid, i, irt;
    822 	uint32_t pll, vco_cfid, vco_fid;
    823 	uint32_t val, vid, vst;
    824 	int rv;
    825 
    826 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    827 
    828 	if (rv != 0)
    829 		return rv;
    830 
    831 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    832 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    833 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    834 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    835 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    836 
    837 	vst = vst * 20;
    838 	pll = pll * 1000 / 5;
    839 	irt = 10 * __BIT(irt);
    840 
    841 	/*
    842 	 * Phase 1.
    843 	 */
    844 	while (cvid > vid) {
    845 
    846 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    847 		val = (val > cvid) ? 0 : cvid - val;
    848 
    849 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    850 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    851 
    852 		if (rv != 0)
    853 			return rv;
    854 	}
    855 
    856 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    857 
    858 	for (; i > 0 && cvid > 0; --i) {
    859 
    860 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    861 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    862 
    863 		if (rv != 0)
    864 			return rv;
    865 	}
    866 
    867 	/*
    868 	 * Phase 2.
    869 	 */
    870 	if (cfid != fid) {
    871 
    872 		vco_fid  = FID_TO_VCO_FID(fid);
    873 		vco_cfid = FID_TO_VCO_FID(cfid);
    874 
    875 		while (abs(vco_fid - vco_cfid) > 2) {
    876 
    877 			if (fid <= cfid)
    878 				val = cfid - 2;
    879 			else {
    880 				val = (cfid > 6) ? cfid + 2 :
    881 				    FID_TO_VCO_FID(cfid) + 2;
    882 			}
    883 
    884 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    885 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    886 
    887 			if (rv != 0)
    888 				return rv;
    889 
    890 			vco_cfid = FID_TO_VCO_FID(cfid);
    891 		}
    892 
    893 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    894 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    895 
    896 		if (rv != 0)
    897 			return rv;
    898 	}
    899 
    900 	/*
    901 	 * Phase 3.
    902 	 */
    903 	if (cvid != vid) {
    904 
    905 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    906 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    907 
    908 		if (rv != 0)
    909 			return rv;
    910 	}
    911 
    912 	return 0;
    913 }
    914 
    915 static int
    916 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    917 {
    918 	int i = ACPICPU_P_STATE_RETRY * 100;
    919 	uint64_t val;
    920 
    921 	do {
    922 		val = rdmsr(MSR_0FH_STATUS);
    923 
    924 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    925 
    926 	if (i == 0)
    927 		return EAGAIN;
    928 
    929 	if (cfid != NULL)
    930 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    931 
    932 	if (cvid != NULL)
    933 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    934 
    935 	return 0;
    936 }
    937 
    938 static void
    939 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    940     uint32_t vid, uint32_t cnt, uint32_t tmo)
    941 {
    942 	uint64_t val = 0;
    943 
    944 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    945 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    946 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    947 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    948 
    949 	wrmsr(MSR_0FH_CONTROL, val);
    950 	DELAY(tmo);
    951 }
    952 
    953 int
    954 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    955 {
    956 	struct acpicpu_tstate *ts;
    957 	uint64_t val;
    958 	uint32_t i;
    959 
    960 	val = rdmsr(MSR_THERM_CONTROL);
    961 
    962 	for (i = 0; i < sc->sc_tstate_count; i++) {
    963 
    964 		ts = &sc->sc_tstate[i];
    965 
    966 		if (ts->ts_percent == 0)
    967 			continue;
    968 
    969 		if (val == ts->ts_status) {
    970 			*percent = ts->ts_percent;
    971 			return 0;
    972 		}
    973 	}
    974 
    975 	return EIO;
    976 }
    977 
    978 int
    979 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    980 {
    981 	uint64_t val;
    982 	uint8_t i;
    983 
    984 	val = ts->ts_control;
    985 	val = val & __BITS(1, 4);
    986 
    987 	wrmsr(MSR_THERM_CONTROL, val);
    988 
    989 	if (ts->ts_status == 0) {
    990 		DELAY(ts->ts_latency);
    991 		return 0;
    992 	}
    993 
    994 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    995 
    996 		val = rdmsr(MSR_THERM_CONTROL);
    997 
    998 		if (val == ts->ts_status)
    999 			return 0;
   1000 
   1001 		DELAY(ts->ts_latency);
   1002 	}
   1003 
   1004 	return EAGAIN;
   1005 }
   1006 
   1007 /*
   1008  * A kludge for backwards compatibility.
   1009  */
   1010 static int
   1011 acpicpu_md_pstate_sysctl_init(void)
   1012 {
   1013 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1014 	const char *str;
   1015 	int rv;
   1016 
   1017 	switch (cpu_vendor) {
   1018 
   1019 	case CPUVENDOR_IDT:
   1020 	case CPUVENDOR_INTEL:
   1021 		str = "est";
   1022 		break;
   1023 
   1024 	case CPUVENDOR_AMD:
   1025 		str = "powernow";
   1026 		break;
   1027 
   1028 	default:
   1029 		return ENODEV;
   1030 	}
   1031 
   1032 
   1033 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1034 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1035 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1036 
   1037 	if (rv != 0)
   1038 		goto fail;
   1039 
   1040 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1041 	    0, CTLTYPE_NODE, str, NULL,
   1042 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1043 
   1044 	if (rv != 0)
   1045 		goto fail;
   1046 
   1047 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1048 	    0, CTLTYPE_NODE, "frequency", NULL,
   1049 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1050 
   1051 	if (rv != 0)
   1052 		goto fail;
   1053 
   1054 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1055 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1056 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1057 
   1058 	if (rv != 0)
   1059 		goto fail;
   1060 
   1061 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1062 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1063 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1064 
   1065 	if (rv != 0)
   1066 		goto fail;
   1067 
   1068 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1069 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1070 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1071 
   1072 	if (rv != 0)
   1073 		goto fail;
   1074 
   1075 	return 0;
   1076 
   1077 fail:
   1078 	if (acpicpu_log != NULL) {
   1079 		sysctl_teardown(&acpicpu_log);
   1080 		acpicpu_log = NULL;
   1081 	}
   1082 
   1083 	return rv;
   1084 }
   1085 
   1086 static int
   1087 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1088 {
   1089 	struct sysctlnode node;
   1090 	uint32_t freq;
   1091 	int err;
   1092 
   1093 	freq = cpufreq_get(curcpu());
   1094 
   1095 	if (freq == 0)
   1096 		return ENXIO;
   1097 
   1098 	node = *rnode;
   1099 	node.sysctl_data = &freq;
   1100 
   1101 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1102 
   1103 	if (err != 0 || newp == NULL)
   1104 		return err;
   1105 
   1106 	return 0;
   1107 }
   1108 
   1109 static int
   1110 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1111 {
   1112 	struct sysctlnode node;
   1113 	uint32_t freq;
   1114 	int err;
   1115 
   1116 	freq = cpufreq_get(curcpu());
   1117 
   1118 	if (freq == 0)
   1119 		return ENXIO;
   1120 
   1121 	node = *rnode;
   1122 	node.sysctl_data = &freq;
   1123 
   1124 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1125 
   1126 	if (err != 0 || newp == NULL)
   1127 		return err;
   1128 
   1129 	cpufreq_set_all(freq);
   1130 
   1131 	return 0;
   1132 }
   1133 
   1134 static int
   1135 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1136 {
   1137 	struct cpu_info *ci = curcpu();
   1138 	struct acpicpu_softc *sc;
   1139 	struct sysctlnode node;
   1140 	char buf[1024];
   1141 	size_t len;
   1142 	uint32_t i;
   1143 	int err;
   1144 
   1145 	sc = acpicpu_sc[ci->ci_acpiid];
   1146 
   1147 	if (sc == NULL)
   1148 		return ENXIO;
   1149 
   1150 	(void)memset(&buf, 0, sizeof(buf));
   1151 
   1152 	mutex_enter(&sc->sc_mtx);
   1153 
   1154 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1155 
   1156 		if (sc->sc_pstate[i].ps_freq == 0)
   1157 			continue;
   1158 
   1159 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1160 		    sc->sc_pstate[i].ps_freq,
   1161 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1162 	}
   1163 
   1164 	mutex_exit(&sc->sc_mtx);
   1165 
   1166 	node = *rnode;
   1167 	node.sysctl_data = buf;
   1168 
   1169 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1170 
   1171 	if (err != 0 || newp == NULL)
   1172 		return err;
   1173 
   1174 	return 0;
   1175 }
   1176 
   1177