Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.71.2.2
      1 /* $NetBSD: acpi_cpu_md.c,v 1.71.2.2 2013/11/25 08:23:31 bouyer Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.71.2.2 2013/11/25 08:23:31 bouyer Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 static char	  native_idle_text[16];
    107 void		(*native_idle)(void) = NULL;
    108 
    109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112                                               uint32_t *);
    113 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116 					        uint32_t, uint32_t);
    117 static int	 acpicpu_md_pstate_sysctl_init(void);
    118 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121 
    122 extern struct acpicpu_softc **acpicpu_sc;
    123 static struct sysctllog *acpicpu_log = NULL;
    124 
    125 struct cpu_info *
    126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127 {
    128 	struct cpufeature_attach_args *cfaa = aux;
    129 
    130 	if (strcmp(cfaa->name, "frequency") != 0)
    131 		return NULL;
    132 
    133 	return cfaa->ci;
    134 }
    135 
    136 struct cpu_info *
    137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138 {
    139 	struct cpufeature_attach_args *cfaa = aux;
    140 
    141 	return cfaa->ci;
    142 }
    143 
    144 uint32_t
    145 acpicpu_md_flags(void)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 	struct pci_attach_args pa;
    149 	uint32_t family, val = 0;
    150 	uint32_t regs[4];
    151 	uint64_t msr;
    152 
    153 	if (acpi_md_ncpus() == 1)
    154 		val |= ACPICPU_FLAG_C_BM;
    155 
    156 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157 		val |= ACPICPU_FLAG_C_FFH;
    158 
    159 	/*
    160 	 * By default, assume that the local APIC timer
    161 	 * as well as TSC are stalled during C3 sleep.
    162 	 */
    163 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164 
    165 	switch (cpu_vendor) {
    166 
    167 	case CPUVENDOR_IDT:
    168 
    169 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    170 			val |= ACPICPU_FLAG_P_FFH;
    171 
    172 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    173 			val |= ACPICPU_FLAG_T_FFH;
    174 
    175 		break;
    176 
    177 	case CPUVENDOR_INTEL:
    178 
    179 		/*
    180 		 * Bus master control and arbitration should be
    181 		 * available on all supported Intel CPUs (to be
    182 		 * sure, this is double-checked later from the
    183 		 * firmware data). These flags imply that it is
    184 		 * not necessary to flush caches before C3 state.
    185 		 */
    186 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    187 
    188 		/*
    189 		 * Check if we can use "native", MSR-based,
    190 		 * access. If not, we have to resort to I/O.
    191 		 */
    192 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    193 			val |= ACPICPU_FLAG_P_FFH;
    194 
    195 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    196 			val |= ACPICPU_FLAG_T_FFH;
    197 
    198 		/*
    199 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    200 		 * Boost are available. Also see if we might have
    201 		 * an invariant local APIC timer ("ARAT").
    202 		 */
    203 		if (cpuid_level >= 0x06) {
    204 
    205 			x86_cpuid(0x00000006, regs);
    206 
    207 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208 				val |= ACPICPU_FLAG_P_HWF;
    209 
    210 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    211 				val |= ACPICPU_FLAG_P_TURBO;
    212 
    213 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    214 				val &= ~ACPICPU_FLAG_C_APIC;
    215 		}
    216 
    217 		/*
    218 		 * Detect whether TSC is invariant. If it is not,
    219 		 * we keep the flag to note that TSC will not run
    220 		 * at constant rate. Depending on the CPU, this may
    221 		 * affect P- and T-state changes, but especially
    222 		 * relevant are C-states; with variant TSC, states
    223 		 * larger than C1 may completely stop the counter.
    224 		 */
    225 		x86_cpuid(0x80000000, regs);
    226 
    227 		if (regs[0] >= 0x80000007) {
    228 
    229 			x86_cpuid(0x80000007, regs);
    230 
    231 			if ((regs[3] & __BIT(8)) != 0)
    232 				val &= ~ACPICPU_FLAG_C_TSC;
    233 		}
    234 
    235 		break;
    236 
    237 	case CPUVENDOR_AMD:
    238 
    239 		x86_cpuid(0x80000000, regs);
    240 
    241 		if (regs[0] < 0x80000007)
    242 			break;
    243 
    244 		x86_cpuid(0x80000007, regs);
    245 
    246 		family = CPUID2FAMILY(ci->ci_signature);
    247 
    248 		if (family == 0xf)
    249 			family += CPUID2EXTFAMILY(ci->ci_signature);
    250 
    251     		switch (family) {
    252 
    253 		case 0x0f:
    254 
    255 			/*
    256 			 * Disable C1E if present.
    257 			 */
    258 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    259 				val |= ACPICPU_FLAG_C_C1E;
    260 
    261 			/*
    262 			 * Evaluate support for the "FID/VID
    263 			 * algorithm" also used by powernow(4).
    264 			 */
    265 			if ((regs[3] & CPUID_APM_FID) == 0)
    266 				break;
    267 
    268 			if ((regs[3] & CPUID_APM_VID) == 0)
    269 				break;
    270 
    271 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    272 			break;
    273 
    274 		case 0x10:
    275 		case 0x11:
    276 
    277 			/*
    278 			 * Disable C1E if present.
    279 			 */
    280 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    281 				val |= ACPICPU_FLAG_C_C1E;
    282 
    283 			/* FALLTHROUGH */
    284 
    285 		case 0x12:
    286 		case 0x14: /* AMD Fusion */
    287 		case 0x15: /* AMD Bulldozer */
    288 
    289 			/*
    290 			 * Like with Intel, detect invariant TSC,
    291 			 * MSR-based P-states, and AMD's "turbo"
    292 			 * (Core Performance Boost), respectively.
    293 			 */
    294 			if ((regs[3] & CPUID_APM_TSC) != 0)
    295 				val &= ~ACPICPU_FLAG_C_TSC;
    296 
    297 			if ((regs[3] & CPUID_APM_HWP) != 0)
    298 				val |= ACPICPU_FLAG_P_FFH;
    299 
    300 			if ((regs[3] & CPUID_APM_CPB) != 0)
    301 				val |= ACPICPU_FLAG_P_TURBO;
    302 
    303 			/*
    304 			 * Also check for APERF and MPERF,
    305 			 * first available in the family 10h.
    306 			 */
    307 			if (cpuid_level >= 0x06) {
    308 
    309 				x86_cpuid(0x00000006, regs);
    310 
    311 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    312 					val |= ACPICPU_FLAG_P_HWF;
    313 			}
    314 
    315 			break;
    316 		}
    317 
    318 		break;
    319 	}
    320 
    321 	/*
    322 	 * There are several erratums for PIIX4.
    323 	 */
    324 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    325 		val |= ACPICPU_FLAG_PIIX4;
    326 
    327 	return val;
    328 }
    329 
    330 static int
    331 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    332 {
    333 
    334 	/*
    335 	 * XXX: The pci_find_device(9) function only
    336 	 *	deals with attached devices. Change this
    337 	 *	to use something like pci_device_foreach().
    338 	 */
    339 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    340 		return 0;
    341 
    342 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    343 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    344 		return 1;
    345 
    346 	return 0;
    347 }
    348 
    349 void
    350 acpicpu_md_quirk_c1e(void)
    351 {
    352 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    353 	uint64_t val;
    354 
    355 	val = rdmsr(MSR_CMPHALT);
    356 
    357 	if ((val & c1e) != 0)
    358 		wrmsr(MSR_CMPHALT, val & ~c1e);
    359 }
    360 
    361 int
    362 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    363 {
    364 	const size_t size = sizeof(native_idle_text);
    365 	struct acpicpu_cstate *cs;
    366 	bool ipi = false;
    367 	int i;
    368 
    369 	/*
    370 	 * Save the cpu_idle(9) loop used by default.
    371 	 */
    372 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    373 
    374 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    375 
    376 		cs = &sc->sc_cstate[i];
    377 
    378 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    379 			ipi = true;
    380 			break;
    381 		}
    382 	}
    383 
    384 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    385 
    386 	return 0;
    387 }
    388 
    389 int
    390 acpicpu_md_cstate_stop(void)
    391 {
    392 	static char text[16];
    393 	void (*func)(void);
    394 	uint64_t xc;
    395 	bool ipi;
    396 
    397 	x86_cpu_idle_get(&func, text, sizeof(text));
    398 
    399 	if (func == native_idle)
    400 		return EALREADY;
    401 
    402 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    403 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    404 
    405 	/*
    406 	 * Run a cross-call to ensure that all CPUs are
    407 	 * out from the ACPI idle-loop before detachment.
    408 	 */
    409 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    410 	xc_wait(xc);
    411 
    412 	return 0;
    413 }
    414 
    415 /*
    416  * Called with interrupts enabled.
    417  */
    418 void
    419 acpicpu_md_cstate_enter(int method, int state)
    420 {
    421 	struct cpu_info *ci = curcpu();
    422 
    423 	KASSERT(ci->ci_ilevel == IPL_NONE);
    424 
    425 	switch (method) {
    426 
    427 	case ACPICPU_C_STATE_FFH:
    428 
    429 		x86_monitor(&ci->ci_want_resched, 0, 0);
    430 
    431 		if (__predict_false(ci->ci_want_resched != 0))
    432 			return;
    433 
    434 		x86_mwait((state - 1) << 4, 0);
    435 		break;
    436 
    437 	case ACPICPU_C_STATE_HALT:
    438 
    439 		x86_disable_intr();
    440 
    441 		if (__predict_false(ci->ci_want_resched != 0)) {
    442 			x86_enable_intr();
    443 			return;
    444 		}
    445 
    446 		x86_stihlt();
    447 		break;
    448 	}
    449 }
    450 
    451 int
    452 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    453 {
    454 	uint64_t xc, val;
    455 
    456 	switch (cpu_vendor) {
    457 
    458 	case CPUVENDOR_IDT:
    459 	case CPUVENDOR_INTEL:
    460 
    461 		/*
    462 		 * Make sure EST is enabled.
    463 		 */
    464 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    465 
    466 			val = rdmsr(MSR_MISC_ENABLE);
    467 
    468 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    469 
    470 				val |= MSR_MISC_ENABLE_EST;
    471 				wrmsr(MSR_MISC_ENABLE, val);
    472 				val = rdmsr(MSR_MISC_ENABLE);
    473 
    474 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    475 					return ENOTTY;
    476 			}
    477 		}
    478 	}
    479 
    480 	/*
    481 	 * Reset the APERF and MPERF counters.
    482 	 */
    483 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    484 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    485 		xc_wait(xc);
    486 	}
    487 
    488 	return acpicpu_md_pstate_sysctl_init();
    489 }
    490 
    491 int
    492 acpicpu_md_pstate_stop(void)
    493 {
    494 
    495 	if (acpicpu_log == NULL)
    496 		return EALREADY;
    497 
    498 	sysctl_teardown(&acpicpu_log);
    499 	acpicpu_log = NULL;
    500 
    501 	return 0;
    502 }
    503 
    504 int
    505 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    506 {
    507 	struct cpu_info *ci = sc->sc_ci;
    508 	struct acpicpu_pstate *ps, msr;
    509 	uint32_t family, i = 0;
    510 
    511 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    512 
    513 	switch (cpu_vendor) {
    514 
    515 	case CPUVENDOR_IDT:
    516 	case CPUVENDOR_INTEL:
    517 
    518 		/*
    519 		 * If the so-called Turbo Boost is present,
    520 		 * the P0-state is always the "turbo state".
    521 		 * It is shown as the P1 frequency + 1 MHz.
    522 		 *
    523 		 * For discussion, see:
    524 		 *
    525 		 *	Intel Corporation: Intel Turbo Boost Technology
    526 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    527 		 *	Based Processors. White Paper, November 2008.
    528 		 */
    529 		if (sc->sc_pstate_count >= 2 &&
    530 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    531 
    532 			ps = &sc->sc_pstate[0];
    533 
    534 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    535 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    536 		}
    537 
    538 		msr.ps_control_addr = MSR_PERF_CTL;
    539 		msr.ps_control_mask = __BITS(0, 15);
    540 
    541 		msr.ps_status_addr  = MSR_PERF_STATUS;
    542 		msr.ps_status_mask  = __BITS(0, 15);
    543 		break;
    544 
    545 	case CPUVENDOR_AMD:
    546 
    547 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    548 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    549 
    550 		family = CPUID2FAMILY(ci->ci_signature);
    551 
    552 		if (family == 0xf)
    553 			family += CPUID2EXTFAMILY(ci->ci_signature);
    554 
    555 		switch (family) {
    556 
    557 		case 0x0f:
    558 			msr.ps_control_addr = MSR_0FH_CONTROL;
    559 			msr.ps_status_addr  = MSR_0FH_STATUS;
    560 			break;
    561 
    562 		case 0x10:
    563 		case 0x11:
    564 		case 0x12:
    565 		case 0x14:
    566 		case 0x15:
    567 			msr.ps_control_addr = MSR_10H_CONTROL;
    568 			msr.ps_control_mask = __BITS(0, 2);
    569 
    570 			msr.ps_status_addr  = MSR_10H_STATUS;
    571 			msr.ps_status_mask  = __BITS(0, 2);
    572 			break;
    573 
    574 		default:
    575 			/*
    576 			 * If we have an unknown AMD CPU, rely on XPSS.
    577 			 */
    578 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    579 				return EOPNOTSUPP;
    580 		}
    581 
    582 		break;
    583 
    584 	default:
    585 		return ENODEV;
    586 	}
    587 
    588 	/*
    589 	 * Fill the P-state structures with MSR addresses that are
    590 	 * known to be correct. If we do not know the addresses,
    591 	 * leave the values intact. If a vendor uses XPSS, we do
    592 	 * not necessarily need to do anything to support new CPUs.
    593 	 */
    594 	while (i < sc->sc_pstate_count) {
    595 
    596 		ps = &sc->sc_pstate[i];
    597 
    598 		if (msr.ps_flags != 0)
    599 			ps->ps_flags |= msr.ps_flags;
    600 
    601 		if (msr.ps_status_addr != 0)
    602 			ps->ps_status_addr = msr.ps_status_addr;
    603 
    604 		if (msr.ps_status_mask != 0)
    605 			ps->ps_status_mask = msr.ps_status_mask;
    606 
    607 		if (msr.ps_control_addr != 0)
    608 			ps->ps_control_addr = msr.ps_control_addr;
    609 
    610 		if (msr.ps_control_mask != 0)
    611 			ps->ps_control_mask = msr.ps_control_mask;
    612 
    613 		i++;
    614 	}
    615 
    616 	return 0;
    617 }
    618 
    619 /*
    620  * Read the IA32_APERF and IA32_MPERF counters. The first
    621  * increments at the rate of the fixed maximum frequency
    622  * configured during the boot, whereas APERF counts at the
    623  * rate of the actual frequency. Note that the MSRs must be
    624  * read without delay, and that only the ratio between
    625  * IA32_APERF and IA32_MPERF is architecturally defined.
    626  *
    627  * The function thus returns the percentage of the actual
    628  * frequency in terms of the maximum frequency of the calling
    629  * CPU since the last call. A value zero implies an error.
    630  *
    631  * For further details, refer to:
    632  *
    633  *	Intel Corporation: Intel 64 and IA-32 Architectures
    634  *	Software Developer's Manual. Section 13.2, Volume 3A:
    635  *	System Programming Guide, Part 1. July, 2008.
    636  *
    637  *	Advanced Micro Devices: BIOS and Kernel Developer's
    638  *	Guide (BKDG) for AMD Family 10h Processors. Section
    639  *	2.4.5, Revision 3.48, April 2010.
    640  */
    641 uint8_t
    642 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    643 {
    644 	struct acpicpu_softc *sc;
    645 	uint64_t aperf, mperf;
    646 	uint8_t rv = 0;
    647 
    648 	sc = acpicpu_sc[ci->ci_acpiid];
    649 
    650 	if (__predict_false(sc == NULL))
    651 		return 0;
    652 
    653 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    654 		return 0;
    655 
    656 	aperf = sc->sc_pstate_aperf;
    657 	mperf = sc->sc_pstate_mperf;
    658 
    659 	x86_disable_intr();
    660 
    661 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    662 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    663 
    664 	x86_enable_intr();
    665 
    666 	aperf = sc->sc_pstate_aperf - aperf;
    667 	mperf = sc->sc_pstate_mperf - mperf;
    668 
    669 	if (__predict_true(mperf != 0))
    670 		rv = (aperf * 100) / mperf;
    671 
    672 	return rv;
    673 }
    674 
    675 static void
    676 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    677 {
    678 	struct cpu_info *ci = curcpu();
    679 	struct acpicpu_softc *sc;
    680 
    681 	sc = acpicpu_sc[ci->ci_acpiid];
    682 
    683 	if (__predict_false(sc == NULL))
    684 		return;
    685 
    686 	x86_disable_intr();
    687 
    688 	wrmsr(MSR_APERF, 0);
    689 	wrmsr(MSR_MPERF, 0);
    690 
    691 	x86_enable_intr();
    692 
    693 	sc->sc_pstate_aperf = 0;
    694 	sc->sc_pstate_mperf = 0;
    695 }
    696 
    697 int
    698 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    699 {
    700 	struct acpicpu_pstate *ps = NULL;
    701 	uint64_t val;
    702 	uint32_t i;
    703 
    704 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    705 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    706 
    707 	/*
    708 	 * Pick any P-state for the status address.
    709 	 */
    710 	for (i = 0; i < sc->sc_pstate_count; i++) {
    711 
    712 		ps = &sc->sc_pstate[i];
    713 
    714 		if (__predict_true(ps->ps_freq != 0))
    715 			break;
    716 	}
    717 
    718 	if (__predict_false(ps == NULL))
    719 		return ENODEV;
    720 
    721 	if (__predict_false(ps->ps_status_addr == 0))
    722 		return EINVAL;
    723 
    724 	val = rdmsr(ps->ps_status_addr);
    725 
    726 	if (__predict_true(ps->ps_status_mask != 0))
    727 		val = val & ps->ps_status_mask;
    728 
    729 	/*
    730 	 * Search for the value from known P-states.
    731 	 */
    732 	for (i = 0; i < sc->sc_pstate_count; i++) {
    733 
    734 		ps = &sc->sc_pstate[i];
    735 
    736 		if (__predict_false(ps->ps_freq == 0))
    737 			continue;
    738 
    739 		if (val == ps->ps_status) {
    740 			*freq = ps->ps_freq;
    741 			return 0;
    742 		}
    743 	}
    744 
    745 	/*
    746 	 * If the value was not found, try APERF/MPERF.
    747 	 * The state is P0 if the return value is 100 %.
    748 	 */
    749 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    750 
    751 		KASSERT(sc->sc_pstate_count > 0);
    752 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    753 
    754 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    755 			*freq = sc->sc_pstate[0].ps_freq;
    756 			return 0;
    757 		}
    758 	}
    759 
    760 	return EIO;
    761 }
    762 
    763 int
    764 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    765 {
    766 	uint64_t val = 0;
    767 
    768 	if (__predict_false(ps->ps_control_addr == 0))
    769 		return EINVAL;
    770 
    771 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    772 		return acpicpu_md_pstate_fidvid_set(ps);
    773 
    774 	/*
    775 	 * If the mask is set, do a read-modify-write.
    776 	 */
    777 	if (__predict_true(ps->ps_control_mask != 0)) {
    778 		val = rdmsr(ps->ps_control_addr);
    779 		val &= ~ps->ps_control_mask;
    780 	}
    781 
    782 	val |= ps->ps_control;
    783 
    784 	wrmsr(ps->ps_control_addr, val);
    785 	DELAY(ps->ps_latency);
    786 
    787 	return 0;
    788 }
    789 
    790 static int
    791 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    792 {
    793 	struct acpicpu_pstate *ps;
    794 	uint32_t fid, i, vid;
    795 	uint32_t cfid, cvid;
    796 	int rv;
    797 
    798 	/*
    799 	 * AMD family 0Fh needs special treatment.
    800 	 * While it wants to use ACPI, it does not
    801 	 * comply with the ACPI specifications.
    802 	 */
    803 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    804 
    805 	if (rv != 0)
    806 		return rv;
    807 
    808 	for (i = 0; i < sc->sc_pstate_count; i++) {
    809 
    810 		ps = &sc->sc_pstate[i];
    811 
    812 		if (__predict_false(ps->ps_freq == 0))
    813 			continue;
    814 
    815 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    816 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    817 
    818 		if (cfid == fid && cvid == vid) {
    819 			*freq = ps->ps_freq;
    820 			return 0;
    821 		}
    822 	}
    823 
    824 	return EIO;
    825 }
    826 
    827 static int
    828 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    829 {
    830 	const uint64_t ctrl = ps->ps_control;
    831 	uint32_t cfid, cvid, fid, i, irt;
    832 	uint32_t pll, vco_cfid, vco_fid;
    833 	uint32_t val, vid, vst;
    834 	int rv;
    835 
    836 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    837 
    838 	if (rv != 0)
    839 		return rv;
    840 
    841 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    842 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    843 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    844 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    845 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    846 
    847 	vst = vst * 20;
    848 	pll = pll * 1000 / 5;
    849 	irt = 10 * __BIT(irt);
    850 
    851 	/*
    852 	 * Phase 1.
    853 	 */
    854 	while (cvid > vid) {
    855 
    856 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    857 		val = (val > cvid) ? 0 : cvid - val;
    858 
    859 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    860 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    861 
    862 		if (rv != 0)
    863 			return rv;
    864 	}
    865 
    866 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    867 
    868 	for (; i > 0 && cvid > 0; --i) {
    869 
    870 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    871 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    872 
    873 		if (rv != 0)
    874 			return rv;
    875 	}
    876 
    877 	/*
    878 	 * Phase 2.
    879 	 */
    880 	if (cfid != fid) {
    881 
    882 		vco_fid  = FID_TO_VCO_FID(fid);
    883 		vco_cfid = FID_TO_VCO_FID(cfid);
    884 
    885 		while (abs(vco_fid - vco_cfid) > 2) {
    886 
    887 			if (fid <= cfid)
    888 				val = cfid - 2;
    889 			else {
    890 				val = (cfid > 6) ? cfid + 2 :
    891 				    FID_TO_VCO_FID(cfid) + 2;
    892 			}
    893 
    894 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    895 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    896 
    897 			if (rv != 0)
    898 				return rv;
    899 
    900 			vco_cfid = FID_TO_VCO_FID(cfid);
    901 		}
    902 
    903 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    904 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    905 
    906 		if (rv != 0)
    907 			return rv;
    908 	}
    909 
    910 	/*
    911 	 * Phase 3.
    912 	 */
    913 	if (cvid != vid) {
    914 
    915 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    916 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    917 
    918 		if (rv != 0)
    919 			return rv;
    920 	}
    921 
    922 	return 0;
    923 }
    924 
    925 static int
    926 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    927 {
    928 	int i = ACPICPU_P_STATE_RETRY * 100;
    929 	uint64_t val;
    930 
    931 	do {
    932 		val = rdmsr(MSR_0FH_STATUS);
    933 
    934 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    935 
    936 	if (i == 0)
    937 		return EAGAIN;
    938 
    939 	if (cfid != NULL)
    940 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    941 
    942 	if (cvid != NULL)
    943 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    944 
    945 	return 0;
    946 }
    947 
    948 static void
    949 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    950     uint32_t vid, uint32_t cnt, uint32_t tmo)
    951 {
    952 	uint64_t val = 0;
    953 
    954 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    955 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    956 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    957 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    958 
    959 	wrmsr(MSR_0FH_CONTROL, val);
    960 	DELAY(tmo);
    961 }
    962 
    963 int
    964 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    965 {
    966 	struct acpicpu_tstate *ts;
    967 	uint64_t val;
    968 	uint32_t i;
    969 
    970 	val = rdmsr(MSR_THERM_CONTROL);
    971 
    972 	for (i = 0; i < sc->sc_tstate_count; i++) {
    973 
    974 		ts = &sc->sc_tstate[i];
    975 
    976 		if (ts->ts_percent == 0)
    977 			continue;
    978 
    979 		if (val == ts->ts_status) {
    980 			*percent = ts->ts_percent;
    981 			return 0;
    982 		}
    983 	}
    984 
    985 	return EIO;
    986 }
    987 
    988 int
    989 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    990 {
    991 	uint64_t val;
    992 	uint8_t i;
    993 
    994 	val = ts->ts_control;
    995 	val = val & __BITS(0, 4);
    996 
    997 	wrmsr(MSR_THERM_CONTROL, val);
    998 
    999 	if (ts->ts_status == 0) {
   1000 		DELAY(ts->ts_latency);
   1001 		return 0;
   1002 	}
   1003 
   1004 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1005 
   1006 		val = rdmsr(MSR_THERM_CONTROL);
   1007 
   1008 		if (val == ts->ts_status)
   1009 			return 0;
   1010 
   1011 		DELAY(ts->ts_latency);
   1012 	}
   1013 
   1014 	return EAGAIN;
   1015 }
   1016 
   1017 /*
   1018  * A kludge for backwards compatibility.
   1019  */
   1020 static int
   1021 acpicpu_md_pstate_sysctl_init(void)
   1022 {
   1023 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1024 	const char *str;
   1025 	int rv;
   1026 
   1027 	switch (cpu_vendor) {
   1028 
   1029 	case CPUVENDOR_IDT:
   1030 	case CPUVENDOR_INTEL:
   1031 		str = "est";
   1032 		break;
   1033 
   1034 	case CPUVENDOR_AMD:
   1035 		str = "powernow";
   1036 		break;
   1037 
   1038 	default:
   1039 		return ENODEV;
   1040 	}
   1041 
   1042 
   1043 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1044 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1045 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1046 
   1047 	if (rv != 0)
   1048 		goto fail;
   1049 
   1050 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1051 	    0, CTLTYPE_NODE, str, NULL,
   1052 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1053 
   1054 	if (rv != 0)
   1055 		goto fail;
   1056 
   1057 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1058 	    0, CTLTYPE_NODE, "frequency", NULL,
   1059 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1060 
   1061 	if (rv != 0)
   1062 		goto fail;
   1063 
   1064 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1065 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1066 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1067 
   1068 	if (rv != 0)
   1069 		goto fail;
   1070 
   1071 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1072 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1073 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1074 
   1075 	if (rv != 0)
   1076 		goto fail;
   1077 
   1078 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1079 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1080 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1081 
   1082 	if (rv != 0)
   1083 		goto fail;
   1084 
   1085 	return 0;
   1086 
   1087 fail:
   1088 	if (acpicpu_log != NULL) {
   1089 		sysctl_teardown(&acpicpu_log);
   1090 		acpicpu_log = NULL;
   1091 	}
   1092 
   1093 	return rv;
   1094 }
   1095 
   1096 static int
   1097 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1098 {
   1099 	struct sysctlnode node;
   1100 	uint32_t freq;
   1101 	int err;
   1102 
   1103 	freq = cpufreq_get(curcpu());
   1104 
   1105 	if (freq == 0)
   1106 		return ENXIO;
   1107 
   1108 	node = *rnode;
   1109 	node.sysctl_data = &freq;
   1110 
   1111 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1112 
   1113 	if (err != 0 || newp == NULL)
   1114 		return err;
   1115 
   1116 	return 0;
   1117 }
   1118 
   1119 static int
   1120 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1121 {
   1122 	struct sysctlnode node;
   1123 	uint32_t freq;
   1124 	int err;
   1125 
   1126 	freq = cpufreq_get(curcpu());
   1127 
   1128 	if (freq == 0)
   1129 		return ENXIO;
   1130 
   1131 	node = *rnode;
   1132 	node.sysctl_data = &freq;
   1133 
   1134 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1135 
   1136 	if (err != 0 || newp == NULL)
   1137 		return err;
   1138 
   1139 	cpufreq_set_all(freq);
   1140 
   1141 	return 0;
   1142 }
   1143 
   1144 static int
   1145 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1146 {
   1147 	struct cpu_info *ci = curcpu();
   1148 	struct acpicpu_softc *sc;
   1149 	struct sysctlnode node;
   1150 	char buf[1024];
   1151 	size_t len;
   1152 	uint32_t i;
   1153 	int err;
   1154 
   1155 	sc = acpicpu_sc[ci->ci_acpiid];
   1156 
   1157 	if (sc == NULL)
   1158 		return ENXIO;
   1159 
   1160 	(void)memset(&buf, 0, sizeof(buf));
   1161 
   1162 	mutex_enter(&sc->sc_mtx);
   1163 
   1164 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1165 
   1166 		if (sc->sc_pstate[i].ps_freq == 0)
   1167 			continue;
   1168 
   1169 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1170 		    sc->sc_pstate[i].ps_freq,
   1171 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1172 	}
   1173 
   1174 	mutex_exit(&sc->sc_mtx);
   1175 
   1176 	node = *rnode;
   1177 	node.sysctl_data = buf;
   1178 
   1179 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1180 
   1181 	if (err != 0 || newp == NULL)
   1182 		return err;
   1183 
   1184 	return 0;
   1185 }
   1186 
   1187