Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.71.6.2
      1 /* $NetBSD: acpi_cpu_md.c,v 1.71.6.2 2014/08/20 00:03:29 tls Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.71.6.2 2014/08/20 00:03:29 tls Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 #include <x86/x86/tsc.h>
     47 
     48 #include <dev/acpi/acpica.h>
     49 #include <dev/acpi/acpi_cpu.h>
     50 
     51 #include <dev/pci/pcivar.h>
     52 #include <dev/pci/pcidevs.h>
     53 
     54 #include <machine/acpi_machdep.h>
     55 
     56 /*
     57  * Intel IA32_MISC_ENABLE.
     58  */
     59 #define MSR_MISC_ENABLE_EST	__BIT(16)
     60 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     61 
     62 /*
     63  * AMD C1E.
     64  */
     65 #define MSR_CMPHALT		0xc0010055
     66 
     67 #define MSR_CMPHALT_SMI		__BIT(27)
     68 #define MSR_CMPHALT_C1E		__BIT(28)
     69 #define MSR_CMPHALT_BMSTS	__BIT(29)
     70 
     71 /*
     72  * AMD families 10h, 11h, 12h, 14h, and 15h.
     73  */
     74 #define MSR_10H_LIMIT		0xc0010061
     75 #define MSR_10H_CONTROL		0xc0010062
     76 #define MSR_10H_STATUS		0xc0010063
     77 #define MSR_10H_CONFIG		0xc0010064
     78 
     79 /*
     80  * AMD family 0Fh.
     81  */
     82 #define MSR_0FH_CONTROL		0xc0010041
     83 #define MSR_0FH_STATUS		0xc0010042
     84 
     85 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     86 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     87 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     88 
     89 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     90 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     91 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     92 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     93 
     94 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     95 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     96 
     97 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     98 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     99 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
    100 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    101 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    102 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    103 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    104 
    105 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    106 
    107 static char	  native_idle_text[16];
    108 void		(*native_idle)(void) = NULL;
    109 
    110 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    111 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    112 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    113                                               uint32_t *);
    114 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    115 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    116 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    117 					        uint32_t, uint32_t);
    118 static int	 acpicpu_md_pstate_sysctl_init(void);
    119 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    121 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    122 
    123 extern struct acpicpu_softc **acpicpu_sc;
    124 static struct sysctllog *acpicpu_log = NULL;
    125 
    126 struct cpu_info *
    127 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    128 {
    129 	struct cpufeature_attach_args *cfaa = aux;
    130 
    131 	if (strcmp(cfaa->name, "frequency") != 0)
    132 		return NULL;
    133 
    134 	return cfaa->ci;
    135 }
    136 
    137 struct cpu_info *
    138 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    139 {
    140 	struct cpufeature_attach_args *cfaa = aux;
    141 
    142 	return cfaa->ci;
    143 }
    144 
    145 uint32_t
    146 acpicpu_md_flags(void)
    147 {
    148 	struct cpu_info *ci = curcpu();
    149 	struct pci_attach_args pa;
    150 	uint32_t family, val = 0;
    151 	uint32_t regs[4];
    152 	uint64_t msr;
    153 
    154 	if (acpi_md_ncpus() == 1)
    155 		val |= ACPICPU_FLAG_C_BM;
    156 
    157 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    158 		val |= ACPICPU_FLAG_C_FFH;
    159 
    160 	/*
    161 	 * By default, assume that the local APIC timer
    162 	 * as well as TSC are stalled during C3 sleep.
    163 	 */
    164 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    165 
    166 	/*
    167 	 * Detect whether TSC is invariant. If it is not, we keep the flag to
    168 	 * note that TSC will not run at constant rate. Depending on the CPU,
    169 	 * this may affect P- and T-state changes, but especially relevant
    170 	 * are C-states; with variant TSC, states larger than C1 may
    171 	 * completely stop the counter.
    172 	 */
    173 	if (tsc_is_invariant())
    174 		val &= ~ACPICPU_FLAG_C_TSC;
    175 
    176 	switch (cpu_vendor) {
    177 
    178 	case CPUVENDOR_IDT:
    179 
    180 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    181 			val |= ACPICPU_FLAG_P_FFH;
    182 
    183 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    184 			val |= ACPICPU_FLAG_T_FFH;
    185 
    186 		break;
    187 
    188 	case CPUVENDOR_INTEL:
    189 
    190 		/*
    191 		 * Bus master control and arbitration should be
    192 		 * available on all supported Intel CPUs (to be
    193 		 * sure, this is double-checked later from the
    194 		 * firmware data). These flags imply that it is
    195 		 * not necessary to flush caches before C3 state.
    196 		 */
    197 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    198 
    199 		/*
    200 		 * Check if we can use "native", MSR-based,
    201 		 * access. If not, we have to resort to I/O.
    202 		 */
    203 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    204 			val |= ACPICPU_FLAG_P_FFH;
    205 
    206 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    207 			val |= ACPICPU_FLAG_T_FFH;
    208 
    209 		/*
    210 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    211 		 * Boost are available. Also see if we might have
    212 		 * an invariant local APIC timer ("ARAT").
    213 		 */
    214 		if (cpuid_level >= 0x06) {
    215 
    216 			x86_cpuid(0x00000006, regs);
    217 
    218 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    219 				val |= ACPICPU_FLAG_P_HWF;
    220 
    221 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    222 				val |= ACPICPU_FLAG_P_TURBO;
    223 
    224 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    225 				val &= ~ACPICPU_FLAG_C_APIC;
    226 		}
    227 
    228 		break;
    229 
    230 	case CPUVENDOR_AMD:
    231 
    232 		x86_cpuid(0x80000000, regs);
    233 
    234 		if (regs[0] < 0x80000007)
    235 			break;
    236 
    237 		x86_cpuid(0x80000007, regs);
    238 
    239 		family = CPUID_TO_FAMILY(ci->ci_signature);
    240 
    241     		switch (family) {
    242 
    243 		case 0x0f:
    244 
    245 			/*
    246 			 * Disable C1E if present.
    247 			 */
    248 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    249 				val |= ACPICPU_FLAG_C_C1E;
    250 
    251 			/*
    252 			 * Evaluate support for the "FID/VID
    253 			 * algorithm" also used by powernow(4).
    254 			 */
    255 			if ((regs[3] & CPUID_APM_FID) == 0)
    256 				break;
    257 
    258 			if ((regs[3] & CPUID_APM_VID) == 0)
    259 				break;
    260 
    261 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    262 			break;
    263 
    264 		case 0x10:
    265 		case 0x11:
    266 
    267 			/*
    268 			 * Disable C1E if present.
    269 			 */
    270 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    271 				val |= ACPICPU_FLAG_C_C1E;
    272 
    273 			/* FALLTHROUGH */
    274 
    275 		case 0x12:
    276 		case 0x14: /* AMD Fusion */
    277 		case 0x15: /* AMD Bulldozer */
    278 
    279 			/*
    280 			 * Like with Intel, detect MSR-based P-states,
    281 			 * and AMD's "turbo" (Core Performance Boost),
    282 			 * respectively.
    283 			 */
    284 			if ((regs[3] & CPUID_APM_HWP) != 0)
    285 				val |= ACPICPU_FLAG_P_FFH;
    286 
    287 			if ((regs[3] & CPUID_APM_CPB) != 0)
    288 				val |= ACPICPU_FLAG_P_TURBO;
    289 
    290 			/*
    291 			 * Also check for APERF and MPERF,
    292 			 * first available in the family 10h.
    293 			 */
    294 			if (cpuid_level >= 0x06) {
    295 
    296 				x86_cpuid(0x00000006, regs);
    297 
    298 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    299 					val |= ACPICPU_FLAG_P_HWF;
    300 			}
    301 
    302 			break;
    303 		}
    304 
    305 		break;
    306 	}
    307 
    308 	/*
    309 	 * There are several erratums for PIIX4.
    310 	 */
    311 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    312 		val |= ACPICPU_FLAG_PIIX4;
    313 
    314 	return val;
    315 }
    316 
    317 static int
    318 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    319 {
    320 
    321 	/*
    322 	 * XXX: The pci_find_device(9) function only
    323 	 *	deals with attached devices. Change this
    324 	 *	to use something like pci_device_foreach().
    325 	 */
    326 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    327 		return 0;
    328 
    329 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    330 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    331 		return 1;
    332 
    333 	return 0;
    334 }
    335 
    336 void
    337 acpicpu_md_quirk_c1e(void)
    338 {
    339 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    340 	uint64_t val;
    341 
    342 	val = rdmsr(MSR_CMPHALT);
    343 
    344 	if ((val & c1e) != 0)
    345 		wrmsr(MSR_CMPHALT, val & ~c1e);
    346 }
    347 
    348 int
    349 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    350 {
    351 	const size_t size = sizeof(native_idle_text);
    352 	struct acpicpu_cstate *cs;
    353 	bool ipi = false;
    354 	int i;
    355 
    356 	/*
    357 	 * Save the cpu_idle(9) loop used by default.
    358 	 */
    359 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    360 
    361 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    362 
    363 		cs = &sc->sc_cstate[i];
    364 
    365 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    366 			ipi = true;
    367 			break;
    368 		}
    369 	}
    370 
    371 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    372 
    373 	return 0;
    374 }
    375 
    376 int
    377 acpicpu_md_cstate_stop(void)
    378 {
    379 	static char text[16];
    380 	void (*func)(void);
    381 	uint64_t xc;
    382 	bool ipi;
    383 
    384 	x86_cpu_idle_get(&func, text, sizeof(text));
    385 
    386 	if (func == native_idle)
    387 		return EALREADY;
    388 
    389 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    390 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    391 
    392 	/*
    393 	 * Run a cross-call to ensure that all CPUs are
    394 	 * out from the ACPI idle-loop before detachment.
    395 	 */
    396 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    397 	xc_wait(xc);
    398 
    399 	return 0;
    400 }
    401 
    402 /*
    403  * Called with interrupts enabled.
    404  */
    405 void
    406 acpicpu_md_cstate_enter(int method, int state)
    407 {
    408 	struct cpu_info *ci = curcpu();
    409 
    410 	KASSERT(ci->ci_ilevel == IPL_NONE);
    411 
    412 	switch (method) {
    413 
    414 	case ACPICPU_C_STATE_FFH:
    415 
    416 		x86_monitor(&ci->ci_want_resched, 0, 0);
    417 
    418 		if (__predict_false(ci->ci_want_resched != 0))
    419 			return;
    420 
    421 		x86_mwait((state - 1) << 4, 0);
    422 		break;
    423 
    424 	case ACPICPU_C_STATE_HALT:
    425 
    426 		x86_disable_intr();
    427 
    428 		if (__predict_false(ci->ci_want_resched != 0)) {
    429 			x86_enable_intr();
    430 			return;
    431 		}
    432 
    433 		x86_stihlt();
    434 		break;
    435 	}
    436 }
    437 
    438 int
    439 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    440 {
    441 	uint64_t xc, val;
    442 
    443 	switch (cpu_vendor) {
    444 
    445 	case CPUVENDOR_IDT:
    446 	case CPUVENDOR_INTEL:
    447 
    448 		/*
    449 		 * Make sure EST is enabled.
    450 		 */
    451 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    452 
    453 			val = rdmsr(MSR_MISC_ENABLE);
    454 
    455 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    456 
    457 				val |= MSR_MISC_ENABLE_EST;
    458 				wrmsr(MSR_MISC_ENABLE, val);
    459 				val = rdmsr(MSR_MISC_ENABLE);
    460 
    461 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    462 					return ENOTTY;
    463 			}
    464 		}
    465 	}
    466 
    467 	/*
    468 	 * Reset the APERF and MPERF counters.
    469 	 */
    470 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    471 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    472 		xc_wait(xc);
    473 	}
    474 
    475 	return acpicpu_md_pstate_sysctl_init();
    476 }
    477 
    478 int
    479 acpicpu_md_pstate_stop(void)
    480 {
    481 
    482 	if (acpicpu_log == NULL)
    483 		return EALREADY;
    484 
    485 	sysctl_teardown(&acpicpu_log);
    486 	acpicpu_log = NULL;
    487 
    488 	return 0;
    489 }
    490 
    491 int
    492 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    493 {
    494 	struct cpu_info *ci = sc->sc_ci;
    495 	struct acpicpu_pstate *ps, msr;
    496 	uint32_t family, i = 0;
    497 
    498 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    499 
    500 	switch (cpu_vendor) {
    501 
    502 	case CPUVENDOR_IDT:
    503 	case CPUVENDOR_INTEL:
    504 
    505 		/*
    506 		 * If the so-called Turbo Boost is present,
    507 		 * the P0-state is always the "turbo state".
    508 		 * It is shown as the P1 frequency + 1 MHz.
    509 		 *
    510 		 * For discussion, see:
    511 		 *
    512 		 *	Intel Corporation: Intel Turbo Boost Technology
    513 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    514 		 *	Based Processors. White Paper, November 2008.
    515 		 */
    516 		if (sc->sc_pstate_count >= 2 &&
    517 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    518 
    519 			ps = &sc->sc_pstate[0];
    520 
    521 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    522 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    523 		}
    524 
    525 		msr.ps_control_addr = MSR_PERF_CTL;
    526 		msr.ps_control_mask = __BITS(0, 15);
    527 
    528 		msr.ps_status_addr  = MSR_PERF_STATUS;
    529 		msr.ps_status_mask  = __BITS(0, 15);
    530 		break;
    531 
    532 	case CPUVENDOR_AMD:
    533 
    534 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    535 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    536 
    537 		family = CPUID_TO_FAMILY(ci->ci_signature);
    538 
    539 		switch (family) {
    540 
    541 		case 0x0f:
    542 			msr.ps_control_addr = MSR_0FH_CONTROL;
    543 			msr.ps_status_addr  = MSR_0FH_STATUS;
    544 			break;
    545 
    546 		case 0x10:
    547 		case 0x11:
    548 		case 0x12:
    549 		case 0x14:
    550 		case 0x15:
    551 			msr.ps_control_addr = MSR_10H_CONTROL;
    552 			msr.ps_control_mask = __BITS(0, 2);
    553 
    554 			msr.ps_status_addr  = MSR_10H_STATUS;
    555 			msr.ps_status_mask  = __BITS(0, 2);
    556 			break;
    557 
    558 		default:
    559 			/*
    560 			 * If we have an unknown AMD CPU, rely on XPSS.
    561 			 */
    562 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    563 				return EOPNOTSUPP;
    564 		}
    565 
    566 		break;
    567 
    568 	default:
    569 		return ENODEV;
    570 	}
    571 
    572 	/*
    573 	 * Fill the P-state structures with MSR addresses that are
    574 	 * known to be correct. If we do not know the addresses,
    575 	 * leave the values intact. If a vendor uses XPSS, we do
    576 	 * not necessarily need to do anything to support new CPUs.
    577 	 */
    578 	while (i < sc->sc_pstate_count) {
    579 
    580 		ps = &sc->sc_pstate[i];
    581 
    582 		if (msr.ps_flags != 0)
    583 			ps->ps_flags |= msr.ps_flags;
    584 
    585 		if (msr.ps_status_addr != 0)
    586 			ps->ps_status_addr = msr.ps_status_addr;
    587 
    588 		if (msr.ps_status_mask != 0)
    589 			ps->ps_status_mask = msr.ps_status_mask;
    590 
    591 		if (msr.ps_control_addr != 0)
    592 			ps->ps_control_addr = msr.ps_control_addr;
    593 
    594 		if (msr.ps_control_mask != 0)
    595 			ps->ps_control_mask = msr.ps_control_mask;
    596 
    597 		i++;
    598 	}
    599 
    600 	return 0;
    601 }
    602 
    603 /*
    604  * Read the IA32_APERF and IA32_MPERF counters. The first
    605  * increments at the rate of the fixed maximum frequency
    606  * configured during the boot, whereas APERF counts at the
    607  * rate of the actual frequency. Note that the MSRs must be
    608  * read without delay, and that only the ratio between
    609  * IA32_APERF and IA32_MPERF is architecturally defined.
    610  *
    611  * The function thus returns the percentage of the actual
    612  * frequency in terms of the maximum frequency of the calling
    613  * CPU since the last call. A value zero implies an error.
    614  *
    615  * For further details, refer to:
    616  *
    617  *	Intel Corporation: Intel 64 and IA-32 Architectures
    618  *	Software Developer's Manual. Section 13.2, Volume 3A:
    619  *	System Programming Guide, Part 1. July, 2008.
    620  *
    621  *	Advanced Micro Devices: BIOS and Kernel Developer's
    622  *	Guide (BKDG) for AMD Family 10h Processors. Section
    623  *	2.4.5, Revision 3.48, April 2010.
    624  */
    625 uint8_t
    626 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    627 {
    628 	struct acpicpu_softc *sc;
    629 	uint64_t aperf, mperf;
    630 	uint8_t rv = 0;
    631 
    632 	sc = acpicpu_sc[ci->ci_acpiid];
    633 
    634 	if (__predict_false(sc == NULL))
    635 		return 0;
    636 
    637 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    638 		return 0;
    639 
    640 	aperf = sc->sc_pstate_aperf;
    641 	mperf = sc->sc_pstate_mperf;
    642 
    643 	x86_disable_intr();
    644 
    645 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    646 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    647 
    648 	x86_enable_intr();
    649 
    650 	aperf = sc->sc_pstate_aperf - aperf;
    651 	mperf = sc->sc_pstate_mperf - mperf;
    652 
    653 	if (__predict_true(mperf != 0))
    654 		rv = (aperf * 100) / mperf;
    655 
    656 	return rv;
    657 }
    658 
    659 static void
    660 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    661 {
    662 	struct cpu_info *ci = curcpu();
    663 	struct acpicpu_softc *sc;
    664 
    665 	sc = acpicpu_sc[ci->ci_acpiid];
    666 
    667 	if (__predict_false(sc == NULL))
    668 		return;
    669 
    670 	x86_disable_intr();
    671 
    672 	wrmsr(MSR_APERF, 0);
    673 	wrmsr(MSR_MPERF, 0);
    674 
    675 	x86_enable_intr();
    676 
    677 	sc->sc_pstate_aperf = 0;
    678 	sc->sc_pstate_mperf = 0;
    679 }
    680 
    681 int
    682 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    683 {
    684 	struct acpicpu_pstate *ps = NULL;
    685 	uint64_t val;
    686 	uint32_t i;
    687 
    688 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    689 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    690 
    691 	/*
    692 	 * Pick any P-state for the status address.
    693 	 */
    694 	for (i = 0; i < sc->sc_pstate_count; i++) {
    695 
    696 		ps = &sc->sc_pstate[i];
    697 
    698 		if (__predict_true(ps->ps_freq != 0))
    699 			break;
    700 	}
    701 
    702 	if (__predict_false(ps == NULL))
    703 		return ENODEV;
    704 
    705 	if (__predict_false(ps->ps_status_addr == 0))
    706 		return EINVAL;
    707 
    708 	val = rdmsr(ps->ps_status_addr);
    709 
    710 	if (__predict_true(ps->ps_status_mask != 0))
    711 		val = val & ps->ps_status_mask;
    712 
    713 	/*
    714 	 * Search for the value from known P-states.
    715 	 */
    716 	for (i = 0; i < sc->sc_pstate_count; i++) {
    717 
    718 		ps = &sc->sc_pstate[i];
    719 
    720 		if (__predict_false(ps->ps_freq == 0))
    721 			continue;
    722 
    723 		if (val == ps->ps_status) {
    724 			*freq = ps->ps_freq;
    725 			return 0;
    726 		}
    727 	}
    728 
    729 	/*
    730 	 * If the value was not found, try APERF/MPERF.
    731 	 * The state is P0 if the return value is 100 %.
    732 	 */
    733 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    734 
    735 		KASSERT(sc->sc_pstate_count > 0);
    736 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    737 
    738 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    739 			*freq = sc->sc_pstate[0].ps_freq;
    740 			return 0;
    741 		}
    742 	}
    743 
    744 	return EIO;
    745 }
    746 
    747 int
    748 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    749 {
    750 	uint64_t val = 0;
    751 
    752 	if (__predict_false(ps->ps_control_addr == 0))
    753 		return EINVAL;
    754 
    755 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    756 		return acpicpu_md_pstate_fidvid_set(ps);
    757 
    758 	/*
    759 	 * If the mask is set, do a read-modify-write.
    760 	 */
    761 	if (__predict_true(ps->ps_control_mask != 0)) {
    762 		val = rdmsr(ps->ps_control_addr);
    763 		val &= ~ps->ps_control_mask;
    764 	}
    765 
    766 	val |= ps->ps_control;
    767 
    768 	wrmsr(ps->ps_control_addr, val);
    769 	DELAY(ps->ps_latency);
    770 
    771 	return 0;
    772 }
    773 
    774 static int
    775 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    776 {
    777 	struct acpicpu_pstate *ps;
    778 	uint32_t fid, i, vid;
    779 	uint32_t cfid, cvid;
    780 	int rv;
    781 
    782 	/*
    783 	 * AMD family 0Fh needs special treatment.
    784 	 * While it wants to use ACPI, it does not
    785 	 * comply with the ACPI specifications.
    786 	 */
    787 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    788 
    789 	if (rv != 0)
    790 		return rv;
    791 
    792 	for (i = 0; i < sc->sc_pstate_count; i++) {
    793 
    794 		ps = &sc->sc_pstate[i];
    795 
    796 		if (__predict_false(ps->ps_freq == 0))
    797 			continue;
    798 
    799 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    800 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    801 
    802 		if (cfid == fid && cvid == vid) {
    803 			*freq = ps->ps_freq;
    804 			return 0;
    805 		}
    806 	}
    807 
    808 	return EIO;
    809 }
    810 
    811 static int
    812 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    813 {
    814 	const uint64_t ctrl = ps->ps_control;
    815 	uint32_t cfid, cvid, fid, i, irt;
    816 	uint32_t pll, vco_cfid, vco_fid;
    817 	uint32_t val, vid, vst;
    818 	int rv;
    819 
    820 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    821 
    822 	if (rv != 0)
    823 		return rv;
    824 
    825 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    826 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    827 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    828 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    829 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    830 
    831 	vst = vst * 20;
    832 	pll = pll * 1000 / 5;
    833 	irt = 10 * __BIT(irt);
    834 
    835 	/*
    836 	 * Phase 1.
    837 	 */
    838 	while (cvid > vid) {
    839 
    840 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    841 		val = (val > cvid) ? 0 : cvid - val;
    842 
    843 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    844 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    845 
    846 		if (rv != 0)
    847 			return rv;
    848 	}
    849 
    850 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    851 
    852 	for (; i > 0 && cvid > 0; --i) {
    853 
    854 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    855 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    856 
    857 		if (rv != 0)
    858 			return rv;
    859 	}
    860 
    861 	/*
    862 	 * Phase 2.
    863 	 */
    864 	if (cfid != fid) {
    865 
    866 		vco_fid  = FID_TO_VCO_FID(fid);
    867 		vco_cfid = FID_TO_VCO_FID(cfid);
    868 
    869 		while (abs(vco_fid - vco_cfid) > 2) {
    870 
    871 			if (fid <= cfid)
    872 				val = cfid - 2;
    873 			else {
    874 				val = (cfid > 6) ? cfid + 2 :
    875 				    FID_TO_VCO_FID(cfid) + 2;
    876 			}
    877 
    878 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    879 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    880 
    881 			if (rv != 0)
    882 				return rv;
    883 
    884 			vco_cfid = FID_TO_VCO_FID(cfid);
    885 		}
    886 
    887 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    888 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    889 
    890 		if (rv != 0)
    891 			return rv;
    892 	}
    893 
    894 	/*
    895 	 * Phase 3.
    896 	 */
    897 	if (cvid != vid) {
    898 
    899 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    900 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    901 
    902 		if (rv != 0)
    903 			return rv;
    904 	}
    905 
    906 	return 0;
    907 }
    908 
    909 static int
    910 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    911 {
    912 	int i = ACPICPU_P_STATE_RETRY * 100;
    913 	uint64_t val;
    914 
    915 	do {
    916 		val = rdmsr(MSR_0FH_STATUS);
    917 
    918 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    919 
    920 	if (i == 0)
    921 		return EAGAIN;
    922 
    923 	if (cfid != NULL)
    924 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    925 
    926 	if (cvid != NULL)
    927 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    928 
    929 	return 0;
    930 }
    931 
    932 static void
    933 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    934     uint32_t vid, uint32_t cnt, uint32_t tmo)
    935 {
    936 	uint64_t val = 0;
    937 
    938 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    939 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    940 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    941 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    942 
    943 	wrmsr(MSR_0FH_CONTROL, val);
    944 	DELAY(tmo);
    945 }
    946 
    947 int
    948 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    949 {
    950 	struct acpicpu_tstate *ts;
    951 	uint64_t val;
    952 	uint32_t i;
    953 
    954 	val = rdmsr(MSR_THERM_CONTROL);
    955 
    956 	for (i = 0; i < sc->sc_tstate_count; i++) {
    957 
    958 		ts = &sc->sc_tstate[i];
    959 
    960 		if (ts->ts_percent == 0)
    961 			continue;
    962 
    963 		if (val == ts->ts_status) {
    964 			*percent = ts->ts_percent;
    965 			return 0;
    966 		}
    967 	}
    968 
    969 	return EIO;
    970 }
    971 
    972 int
    973 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    974 {
    975 	uint64_t val;
    976 	uint8_t i;
    977 
    978 	val = ts->ts_control;
    979 	val = val & __BITS(0, 4);
    980 
    981 	wrmsr(MSR_THERM_CONTROL, val);
    982 
    983 	if (ts->ts_status == 0) {
    984 		DELAY(ts->ts_latency);
    985 		return 0;
    986 	}
    987 
    988 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    989 
    990 		val = rdmsr(MSR_THERM_CONTROL);
    991 
    992 		if (val == ts->ts_status)
    993 			return 0;
    994 
    995 		DELAY(ts->ts_latency);
    996 	}
    997 
    998 	return EAGAIN;
    999 }
   1000 
   1001 /*
   1002  * A kludge for backwards compatibility.
   1003  */
   1004 static int
   1005 acpicpu_md_pstate_sysctl_init(void)
   1006 {
   1007 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1008 	const char *str;
   1009 	int rv;
   1010 
   1011 	switch (cpu_vendor) {
   1012 
   1013 	case CPUVENDOR_IDT:
   1014 	case CPUVENDOR_INTEL:
   1015 		str = "est";
   1016 		break;
   1017 
   1018 	case CPUVENDOR_AMD:
   1019 		str = "powernow";
   1020 		break;
   1021 
   1022 	default:
   1023 		return ENODEV;
   1024 	}
   1025 
   1026 
   1027 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1028 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1029 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1030 
   1031 	if (rv != 0)
   1032 		goto fail;
   1033 
   1034 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1035 	    0, CTLTYPE_NODE, str, NULL,
   1036 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1037 
   1038 	if (rv != 0)
   1039 		goto fail;
   1040 
   1041 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1042 	    0, CTLTYPE_NODE, "frequency", NULL,
   1043 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1044 
   1045 	if (rv != 0)
   1046 		goto fail;
   1047 
   1048 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1049 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1050 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1051 
   1052 	if (rv != 0)
   1053 		goto fail;
   1054 
   1055 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1056 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1057 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1058 
   1059 	if (rv != 0)
   1060 		goto fail;
   1061 
   1062 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1063 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1064 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1065 
   1066 	if (rv != 0)
   1067 		goto fail;
   1068 
   1069 	return 0;
   1070 
   1071 fail:
   1072 	if (acpicpu_log != NULL) {
   1073 		sysctl_teardown(&acpicpu_log);
   1074 		acpicpu_log = NULL;
   1075 	}
   1076 
   1077 	return rv;
   1078 }
   1079 
   1080 static int
   1081 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1082 {
   1083 	struct sysctlnode node;
   1084 	uint32_t freq;
   1085 	int err;
   1086 
   1087 	freq = cpufreq_get(curcpu());
   1088 
   1089 	if (freq == 0)
   1090 		return ENXIO;
   1091 
   1092 	node = *rnode;
   1093 	node.sysctl_data = &freq;
   1094 
   1095 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1096 
   1097 	if (err != 0 || newp == NULL)
   1098 		return err;
   1099 
   1100 	return 0;
   1101 }
   1102 
   1103 static int
   1104 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1105 {
   1106 	struct sysctlnode node;
   1107 	uint32_t freq;
   1108 	int err;
   1109 
   1110 	freq = cpufreq_get(curcpu());
   1111 
   1112 	if (freq == 0)
   1113 		return ENXIO;
   1114 
   1115 	node = *rnode;
   1116 	node.sysctl_data = &freq;
   1117 
   1118 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1119 
   1120 	if (err != 0 || newp == NULL)
   1121 		return err;
   1122 
   1123 	cpufreq_set_all(freq);
   1124 
   1125 	return 0;
   1126 }
   1127 
   1128 static int
   1129 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1130 {
   1131 	struct cpu_info *ci = curcpu();
   1132 	struct acpicpu_softc *sc;
   1133 	struct sysctlnode node;
   1134 	char buf[1024];
   1135 	size_t len;
   1136 	uint32_t i;
   1137 	int err;
   1138 
   1139 	sc = acpicpu_sc[ci->ci_acpiid];
   1140 
   1141 	if (sc == NULL)
   1142 		return ENXIO;
   1143 
   1144 	(void)memset(&buf, 0, sizeof(buf));
   1145 
   1146 	mutex_enter(&sc->sc_mtx);
   1147 
   1148 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1149 
   1150 		if (sc->sc_pstate[i].ps_freq == 0)
   1151 			continue;
   1152 
   1153 		if (len >= sizeof(buf))
   1154 			break;
   1155 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1156 		    sc->sc_pstate[i].ps_freq,
   1157 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1158 	}
   1159 
   1160 	mutex_exit(&sc->sc_mtx);
   1161 
   1162 	node = *rnode;
   1163 	node.sysctl_data = buf;
   1164 
   1165 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1166 
   1167 	if (err != 0 || newp == NULL)
   1168 		return err;
   1169 
   1170 	return 0;
   1171 }
   1172 
   1173