Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.74
      1 /* $NetBSD: acpi_cpu_md.c,v 1.74 2013/11/20 13:52:30 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.74 2013/11/20 13:52:30 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 static char	  native_idle_text[16];
    107 void		(*native_idle)(void) = NULL;
    108 
    109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112                                               uint32_t *);
    113 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116 					        uint32_t, uint32_t);
    117 static int	 acpicpu_md_pstate_sysctl_init(void);
    118 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121 
    122 extern struct acpicpu_softc **acpicpu_sc;
    123 static struct sysctllog *acpicpu_log = NULL;
    124 
    125 struct cpu_info *
    126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127 {
    128 	struct cpufeature_attach_args *cfaa = aux;
    129 
    130 	if (strcmp(cfaa->name, "frequency") != 0)
    131 		return NULL;
    132 
    133 	return cfaa->ci;
    134 }
    135 
    136 struct cpu_info *
    137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138 {
    139 	struct cpufeature_attach_args *cfaa = aux;
    140 
    141 	return cfaa->ci;
    142 }
    143 
    144 uint32_t
    145 acpicpu_md_flags(void)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 	struct pci_attach_args pa;
    149 	uint32_t family, val = 0;
    150 	uint32_t regs[4];
    151 	uint64_t msr;
    152 
    153 	if (acpi_md_ncpus() == 1)
    154 		val |= ACPICPU_FLAG_C_BM;
    155 
    156 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157 		val |= ACPICPU_FLAG_C_FFH;
    158 
    159 	/*
    160 	 * By default, assume that the local APIC timer
    161 	 * as well as TSC are stalled during C3 sleep.
    162 	 */
    163 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164 
    165 	switch (cpu_vendor) {
    166 
    167 	case CPUVENDOR_IDT:
    168 
    169 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    170 			val |= ACPICPU_FLAG_P_FFH;
    171 
    172 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    173 			val |= ACPICPU_FLAG_T_FFH;
    174 
    175 		break;
    176 
    177 	case CPUVENDOR_INTEL:
    178 
    179 		/*
    180 		 * Bus master control and arbitration should be
    181 		 * available on all supported Intel CPUs (to be
    182 		 * sure, this is double-checked later from the
    183 		 * firmware data). These flags imply that it is
    184 		 * not necessary to flush caches before C3 state.
    185 		 */
    186 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    187 
    188 		/*
    189 		 * Check if we can use "native", MSR-based,
    190 		 * access. If not, we have to resort to I/O.
    191 		 */
    192 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    193 			val |= ACPICPU_FLAG_P_FFH;
    194 
    195 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    196 			val |= ACPICPU_FLAG_T_FFH;
    197 
    198 		/*
    199 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    200 		 * Boost are available. Also see if we might have
    201 		 * an invariant local APIC timer ("ARAT").
    202 		 */
    203 		if (cpuid_level >= 0x06) {
    204 
    205 			x86_cpuid(0x00000006, regs);
    206 
    207 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208 				val |= ACPICPU_FLAG_P_HWF;
    209 
    210 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    211 				val |= ACPICPU_FLAG_P_TURBO;
    212 
    213 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    214 				val &= ~ACPICPU_FLAG_C_APIC;
    215 		}
    216 
    217 		/*
    218 		 * Detect whether TSC is invariant. If it is not,
    219 		 * we keep the flag to note that TSC will not run
    220 		 * at constant rate. Depending on the CPU, this may
    221 		 * affect P- and T-state changes, but especially
    222 		 * relevant are C-states; with variant TSC, states
    223 		 * larger than C1 may completely stop the counter.
    224 		 */
    225 		x86_cpuid(0x80000000, regs);
    226 
    227 		if (regs[0] >= 0x80000007) {
    228 
    229 			x86_cpuid(0x80000007, regs);
    230 
    231 			if ((regs[3] & __BIT(8)) != 0)
    232 				val &= ~ACPICPU_FLAG_C_TSC;
    233 		}
    234 
    235 		break;
    236 
    237 	case CPUVENDOR_AMD:
    238 
    239 		x86_cpuid(0x80000000, regs);
    240 
    241 		if (regs[0] < 0x80000007)
    242 			break;
    243 
    244 		x86_cpuid(0x80000007, regs);
    245 
    246 		family = CPUID_TO_FAMILY(ci->ci_signature);
    247 
    248     		switch (family) {
    249 
    250 		case 0x0f:
    251 
    252 			/*
    253 			 * Disable C1E if present.
    254 			 */
    255 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    256 				val |= ACPICPU_FLAG_C_C1E;
    257 
    258 			/*
    259 			 * Evaluate support for the "FID/VID
    260 			 * algorithm" also used by powernow(4).
    261 			 */
    262 			if ((regs[3] & CPUID_APM_FID) == 0)
    263 				break;
    264 
    265 			if ((regs[3] & CPUID_APM_VID) == 0)
    266 				break;
    267 
    268 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    269 			break;
    270 
    271 		case 0x10:
    272 		case 0x11:
    273 
    274 			/*
    275 			 * Disable C1E if present.
    276 			 */
    277 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    278 				val |= ACPICPU_FLAG_C_C1E;
    279 
    280 			/* FALLTHROUGH */
    281 
    282 		case 0x12:
    283 		case 0x14: /* AMD Fusion */
    284 		case 0x15: /* AMD Bulldozer */
    285 
    286 			/*
    287 			 * Like with Intel, detect invariant TSC,
    288 			 * MSR-based P-states, and AMD's "turbo"
    289 			 * (Core Performance Boost), respectively.
    290 			 */
    291 			if ((regs[3] & CPUID_APM_TSC) != 0)
    292 				val &= ~ACPICPU_FLAG_C_TSC;
    293 
    294 			if ((regs[3] & CPUID_APM_HWP) != 0)
    295 				val |= ACPICPU_FLAG_P_FFH;
    296 
    297 			if ((regs[3] & CPUID_APM_CPB) != 0)
    298 				val |= ACPICPU_FLAG_P_TURBO;
    299 
    300 			/*
    301 			 * Also check for APERF and MPERF,
    302 			 * first available in the family 10h.
    303 			 */
    304 			if (cpuid_level >= 0x06) {
    305 
    306 				x86_cpuid(0x00000006, regs);
    307 
    308 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    309 					val |= ACPICPU_FLAG_P_HWF;
    310 			}
    311 
    312 			break;
    313 		}
    314 
    315 		break;
    316 	}
    317 
    318 	/*
    319 	 * There are several erratums for PIIX4.
    320 	 */
    321 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    322 		val |= ACPICPU_FLAG_PIIX4;
    323 
    324 	return val;
    325 }
    326 
    327 static int
    328 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    329 {
    330 
    331 	/*
    332 	 * XXX: The pci_find_device(9) function only
    333 	 *	deals with attached devices. Change this
    334 	 *	to use something like pci_device_foreach().
    335 	 */
    336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    337 		return 0;
    338 
    339 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    340 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    341 		return 1;
    342 
    343 	return 0;
    344 }
    345 
    346 void
    347 acpicpu_md_quirk_c1e(void)
    348 {
    349 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    350 	uint64_t val;
    351 
    352 	val = rdmsr(MSR_CMPHALT);
    353 
    354 	if ((val & c1e) != 0)
    355 		wrmsr(MSR_CMPHALT, val & ~c1e);
    356 }
    357 
    358 int
    359 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    360 {
    361 	const size_t size = sizeof(native_idle_text);
    362 	struct acpicpu_cstate *cs;
    363 	bool ipi = false;
    364 	int i;
    365 
    366 	/*
    367 	 * Save the cpu_idle(9) loop used by default.
    368 	 */
    369 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    370 
    371 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    372 
    373 		cs = &sc->sc_cstate[i];
    374 
    375 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    376 			ipi = true;
    377 			break;
    378 		}
    379 	}
    380 
    381 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    382 
    383 	return 0;
    384 }
    385 
    386 int
    387 acpicpu_md_cstate_stop(void)
    388 {
    389 	static char text[16];
    390 	void (*func)(void);
    391 	uint64_t xc;
    392 	bool ipi;
    393 
    394 	x86_cpu_idle_get(&func, text, sizeof(text));
    395 
    396 	if (func == native_idle)
    397 		return EALREADY;
    398 
    399 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    400 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    401 
    402 	/*
    403 	 * Run a cross-call to ensure that all CPUs are
    404 	 * out from the ACPI idle-loop before detachment.
    405 	 */
    406 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    407 	xc_wait(xc);
    408 
    409 	return 0;
    410 }
    411 
    412 /*
    413  * Called with interrupts enabled.
    414  */
    415 void
    416 acpicpu_md_cstate_enter(int method, int state)
    417 {
    418 	struct cpu_info *ci = curcpu();
    419 
    420 	KASSERT(ci->ci_ilevel == IPL_NONE);
    421 
    422 	switch (method) {
    423 
    424 	case ACPICPU_C_STATE_FFH:
    425 
    426 		x86_monitor(&ci->ci_want_resched, 0, 0);
    427 
    428 		if (__predict_false(ci->ci_want_resched != 0))
    429 			return;
    430 
    431 		x86_mwait((state - 1) << 4, 0);
    432 		break;
    433 
    434 	case ACPICPU_C_STATE_HALT:
    435 
    436 		x86_disable_intr();
    437 
    438 		if (__predict_false(ci->ci_want_resched != 0)) {
    439 			x86_enable_intr();
    440 			return;
    441 		}
    442 
    443 		x86_stihlt();
    444 		break;
    445 	}
    446 }
    447 
    448 int
    449 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    450 {
    451 	uint64_t xc, val;
    452 
    453 	switch (cpu_vendor) {
    454 
    455 	case CPUVENDOR_IDT:
    456 	case CPUVENDOR_INTEL:
    457 
    458 		/*
    459 		 * Make sure EST is enabled.
    460 		 */
    461 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    462 
    463 			val = rdmsr(MSR_MISC_ENABLE);
    464 
    465 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    466 
    467 				val |= MSR_MISC_ENABLE_EST;
    468 				wrmsr(MSR_MISC_ENABLE, val);
    469 				val = rdmsr(MSR_MISC_ENABLE);
    470 
    471 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    472 					return ENOTTY;
    473 			}
    474 		}
    475 	}
    476 
    477 	/*
    478 	 * Reset the APERF and MPERF counters.
    479 	 */
    480 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    481 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    482 		xc_wait(xc);
    483 	}
    484 
    485 	return acpicpu_md_pstate_sysctl_init();
    486 }
    487 
    488 int
    489 acpicpu_md_pstate_stop(void)
    490 {
    491 
    492 	if (acpicpu_log == NULL)
    493 		return EALREADY;
    494 
    495 	sysctl_teardown(&acpicpu_log);
    496 	acpicpu_log = NULL;
    497 
    498 	return 0;
    499 }
    500 
    501 int
    502 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    503 {
    504 	struct cpu_info *ci = sc->sc_ci;
    505 	struct acpicpu_pstate *ps, msr;
    506 	uint32_t family, i = 0;
    507 
    508 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    509 
    510 	switch (cpu_vendor) {
    511 
    512 	case CPUVENDOR_IDT:
    513 	case CPUVENDOR_INTEL:
    514 
    515 		/*
    516 		 * If the so-called Turbo Boost is present,
    517 		 * the P0-state is always the "turbo state".
    518 		 * It is shown as the P1 frequency + 1 MHz.
    519 		 *
    520 		 * For discussion, see:
    521 		 *
    522 		 *	Intel Corporation: Intel Turbo Boost Technology
    523 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    524 		 *	Based Processors. White Paper, November 2008.
    525 		 */
    526 		if (sc->sc_pstate_count >= 2 &&
    527 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    528 
    529 			ps = &sc->sc_pstate[0];
    530 
    531 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    532 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    533 		}
    534 
    535 		msr.ps_control_addr = MSR_PERF_CTL;
    536 		msr.ps_control_mask = __BITS(0, 15);
    537 
    538 		msr.ps_status_addr  = MSR_PERF_STATUS;
    539 		msr.ps_status_mask  = __BITS(0, 15);
    540 		break;
    541 
    542 	case CPUVENDOR_AMD:
    543 
    544 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    545 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    546 
    547 		family = CPUID_TO_FAMILY(ci->ci_signature);
    548 
    549 		switch (family) {
    550 
    551 		case 0x0f:
    552 			msr.ps_control_addr = MSR_0FH_CONTROL;
    553 			msr.ps_status_addr  = MSR_0FH_STATUS;
    554 			break;
    555 
    556 		case 0x10:
    557 		case 0x11:
    558 		case 0x12:
    559 		case 0x14:
    560 		case 0x15:
    561 			msr.ps_control_addr = MSR_10H_CONTROL;
    562 			msr.ps_control_mask = __BITS(0, 2);
    563 
    564 			msr.ps_status_addr  = MSR_10H_STATUS;
    565 			msr.ps_status_mask  = __BITS(0, 2);
    566 			break;
    567 
    568 		default:
    569 			/*
    570 			 * If we have an unknown AMD CPU, rely on XPSS.
    571 			 */
    572 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    573 				return EOPNOTSUPP;
    574 		}
    575 
    576 		break;
    577 
    578 	default:
    579 		return ENODEV;
    580 	}
    581 
    582 	/*
    583 	 * Fill the P-state structures with MSR addresses that are
    584 	 * known to be correct. If we do not know the addresses,
    585 	 * leave the values intact. If a vendor uses XPSS, we do
    586 	 * not necessarily need to do anything to support new CPUs.
    587 	 */
    588 	while (i < sc->sc_pstate_count) {
    589 
    590 		ps = &sc->sc_pstate[i];
    591 
    592 		if (msr.ps_flags != 0)
    593 			ps->ps_flags |= msr.ps_flags;
    594 
    595 		if (msr.ps_status_addr != 0)
    596 			ps->ps_status_addr = msr.ps_status_addr;
    597 
    598 		if (msr.ps_status_mask != 0)
    599 			ps->ps_status_mask = msr.ps_status_mask;
    600 
    601 		if (msr.ps_control_addr != 0)
    602 			ps->ps_control_addr = msr.ps_control_addr;
    603 
    604 		if (msr.ps_control_mask != 0)
    605 			ps->ps_control_mask = msr.ps_control_mask;
    606 
    607 		i++;
    608 	}
    609 
    610 	return 0;
    611 }
    612 
    613 /*
    614  * Read the IA32_APERF and IA32_MPERF counters. The first
    615  * increments at the rate of the fixed maximum frequency
    616  * configured during the boot, whereas APERF counts at the
    617  * rate of the actual frequency. Note that the MSRs must be
    618  * read without delay, and that only the ratio between
    619  * IA32_APERF and IA32_MPERF is architecturally defined.
    620  *
    621  * The function thus returns the percentage of the actual
    622  * frequency in terms of the maximum frequency of the calling
    623  * CPU since the last call. A value zero implies an error.
    624  *
    625  * For further details, refer to:
    626  *
    627  *	Intel Corporation: Intel 64 and IA-32 Architectures
    628  *	Software Developer's Manual. Section 13.2, Volume 3A:
    629  *	System Programming Guide, Part 1. July, 2008.
    630  *
    631  *	Advanced Micro Devices: BIOS and Kernel Developer's
    632  *	Guide (BKDG) for AMD Family 10h Processors. Section
    633  *	2.4.5, Revision 3.48, April 2010.
    634  */
    635 uint8_t
    636 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    637 {
    638 	struct acpicpu_softc *sc;
    639 	uint64_t aperf, mperf;
    640 	uint8_t rv = 0;
    641 
    642 	sc = acpicpu_sc[ci->ci_acpiid];
    643 
    644 	if (__predict_false(sc == NULL))
    645 		return 0;
    646 
    647 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    648 		return 0;
    649 
    650 	aperf = sc->sc_pstate_aperf;
    651 	mperf = sc->sc_pstate_mperf;
    652 
    653 	x86_disable_intr();
    654 
    655 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    656 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    657 
    658 	x86_enable_intr();
    659 
    660 	aperf = sc->sc_pstate_aperf - aperf;
    661 	mperf = sc->sc_pstate_mperf - mperf;
    662 
    663 	if (__predict_true(mperf != 0))
    664 		rv = (aperf * 100) / mperf;
    665 
    666 	return rv;
    667 }
    668 
    669 static void
    670 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    671 {
    672 	struct cpu_info *ci = curcpu();
    673 	struct acpicpu_softc *sc;
    674 
    675 	sc = acpicpu_sc[ci->ci_acpiid];
    676 
    677 	if (__predict_false(sc == NULL))
    678 		return;
    679 
    680 	x86_disable_intr();
    681 
    682 	wrmsr(MSR_APERF, 0);
    683 	wrmsr(MSR_MPERF, 0);
    684 
    685 	x86_enable_intr();
    686 
    687 	sc->sc_pstate_aperf = 0;
    688 	sc->sc_pstate_mperf = 0;
    689 }
    690 
    691 int
    692 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    693 {
    694 	struct acpicpu_pstate *ps = NULL;
    695 	uint64_t val;
    696 	uint32_t i;
    697 
    698 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    699 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    700 
    701 	/*
    702 	 * Pick any P-state for the status address.
    703 	 */
    704 	for (i = 0; i < sc->sc_pstate_count; i++) {
    705 
    706 		ps = &sc->sc_pstate[i];
    707 
    708 		if (__predict_true(ps->ps_freq != 0))
    709 			break;
    710 	}
    711 
    712 	if (__predict_false(ps == NULL))
    713 		return ENODEV;
    714 
    715 	if (__predict_false(ps->ps_status_addr == 0))
    716 		return EINVAL;
    717 
    718 	val = rdmsr(ps->ps_status_addr);
    719 
    720 	if (__predict_true(ps->ps_status_mask != 0))
    721 		val = val & ps->ps_status_mask;
    722 
    723 	/*
    724 	 * Search for the value from known P-states.
    725 	 */
    726 	for (i = 0; i < sc->sc_pstate_count; i++) {
    727 
    728 		ps = &sc->sc_pstate[i];
    729 
    730 		if (__predict_false(ps->ps_freq == 0))
    731 			continue;
    732 
    733 		if (val == ps->ps_status) {
    734 			*freq = ps->ps_freq;
    735 			return 0;
    736 		}
    737 	}
    738 
    739 	/*
    740 	 * If the value was not found, try APERF/MPERF.
    741 	 * The state is P0 if the return value is 100 %.
    742 	 */
    743 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    744 
    745 		KASSERT(sc->sc_pstate_count > 0);
    746 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    747 
    748 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    749 			*freq = sc->sc_pstate[0].ps_freq;
    750 			return 0;
    751 		}
    752 	}
    753 
    754 	return EIO;
    755 }
    756 
    757 int
    758 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    759 {
    760 	uint64_t val = 0;
    761 
    762 	if (__predict_false(ps->ps_control_addr == 0))
    763 		return EINVAL;
    764 
    765 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    766 		return acpicpu_md_pstate_fidvid_set(ps);
    767 
    768 	/*
    769 	 * If the mask is set, do a read-modify-write.
    770 	 */
    771 	if (__predict_true(ps->ps_control_mask != 0)) {
    772 		val = rdmsr(ps->ps_control_addr);
    773 		val &= ~ps->ps_control_mask;
    774 	}
    775 
    776 	val |= ps->ps_control;
    777 
    778 	wrmsr(ps->ps_control_addr, val);
    779 	DELAY(ps->ps_latency);
    780 
    781 	return 0;
    782 }
    783 
    784 static int
    785 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    786 {
    787 	struct acpicpu_pstate *ps;
    788 	uint32_t fid, i, vid;
    789 	uint32_t cfid, cvid;
    790 	int rv;
    791 
    792 	/*
    793 	 * AMD family 0Fh needs special treatment.
    794 	 * While it wants to use ACPI, it does not
    795 	 * comply with the ACPI specifications.
    796 	 */
    797 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    798 
    799 	if (rv != 0)
    800 		return rv;
    801 
    802 	for (i = 0; i < sc->sc_pstate_count; i++) {
    803 
    804 		ps = &sc->sc_pstate[i];
    805 
    806 		if (__predict_false(ps->ps_freq == 0))
    807 			continue;
    808 
    809 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    810 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    811 
    812 		if (cfid == fid && cvid == vid) {
    813 			*freq = ps->ps_freq;
    814 			return 0;
    815 		}
    816 	}
    817 
    818 	return EIO;
    819 }
    820 
    821 static int
    822 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    823 {
    824 	const uint64_t ctrl = ps->ps_control;
    825 	uint32_t cfid, cvid, fid, i, irt;
    826 	uint32_t pll, vco_cfid, vco_fid;
    827 	uint32_t val, vid, vst;
    828 	int rv;
    829 
    830 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    831 
    832 	if (rv != 0)
    833 		return rv;
    834 
    835 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    836 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    837 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    838 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    839 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    840 
    841 	vst = vst * 20;
    842 	pll = pll * 1000 / 5;
    843 	irt = 10 * __BIT(irt);
    844 
    845 	/*
    846 	 * Phase 1.
    847 	 */
    848 	while (cvid > vid) {
    849 
    850 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    851 		val = (val > cvid) ? 0 : cvid - val;
    852 
    853 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    854 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    855 
    856 		if (rv != 0)
    857 			return rv;
    858 	}
    859 
    860 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    861 
    862 	for (; i > 0 && cvid > 0; --i) {
    863 
    864 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    865 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    866 
    867 		if (rv != 0)
    868 			return rv;
    869 	}
    870 
    871 	/*
    872 	 * Phase 2.
    873 	 */
    874 	if (cfid != fid) {
    875 
    876 		vco_fid  = FID_TO_VCO_FID(fid);
    877 		vco_cfid = FID_TO_VCO_FID(cfid);
    878 
    879 		while (abs(vco_fid - vco_cfid) > 2) {
    880 
    881 			if (fid <= cfid)
    882 				val = cfid - 2;
    883 			else {
    884 				val = (cfid > 6) ? cfid + 2 :
    885 				    FID_TO_VCO_FID(cfid) + 2;
    886 			}
    887 
    888 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    889 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    890 
    891 			if (rv != 0)
    892 				return rv;
    893 
    894 			vco_cfid = FID_TO_VCO_FID(cfid);
    895 		}
    896 
    897 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    898 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    899 
    900 		if (rv != 0)
    901 			return rv;
    902 	}
    903 
    904 	/*
    905 	 * Phase 3.
    906 	 */
    907 	if (cvid != vid) {
    908 
    909 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    910 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    911 
    912 		if (rv != 0)
    913 			return rv;
    914 	}
    915 
    916 	return 0;
    917 }
    918 
    919 static int
    920 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    921 {
    922 	int i = ACPICPU_P_STATE_RETRY * 100;
    923 	uint64_t val;
    924 
    925 	do {
    926 		val = rdmsr(MSR_0FH_STATUS);
    927 
    928 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    929 
    930 	if (i == 0)
    931 		return EAGAIN;
    932 
    933 	if (cfid != NULL)
    934 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    935 
    936 	if (cvid != NULL)
    937 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    938 
    939 	return 0;
    940 }
    941 
    942 static void
    943 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    944     uint32_t vid, uint32_t cnt, uint32_t tmo)
    945 {
    946 	uint64_t val = 0;
    947 
    948 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    949 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    950 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    951 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    952 
    953 	wrmsr(MSR_0FH_CONTROL, val);
    954 	DELAY(tmo);
    955 }
    956 
    957 int
    958 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    959 {
    960 	struct acpicpu_tstate *ts;
    961 	uint64_t val;
    962 	uint32_t i;
    963 
    964 	val = rdmsr(MSR_THERM_CONTROL);
    965 
    966 	for (i = 0; i < sc->sc_tstate_count; i++) {
    967 
    968 		ts = &sc->sc_tstate[i];
    969 
    970 		if (ts->ts_percent == 0)
    971 			continue;
    972 
    973 		if (val == ts->ts_status) {
    974 			*percent = ts->ts_percent;
    975 			return 0;
    976 		}
    977 	}
    978 
    979 	return EIO;
    980 }
    981 
    982 int
    983 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    984 {
    985 	uint64_t val;
    986 	uint8_t i;
    987 
    988 	val = ts->ts_control;
    989 	val = val & __BITS(0, 4);
    990 
    991 	wrmsr(MSR_THERM_CONTROL, val);
    992 
    993 	if (ts->ts_status == 0) {
    994 		DELAY(ts->ts_latency);
    995 		return 0;
    996 	}
    997 
    998 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    999 
   1000 		val = rdmsr(MSR_THERM_CONTROL);
   1001 
   1002 		if (val == ts->ts_status)
   1003 			return 0;
   1004 
   1005 		DELAY(ts->ts_latency);
   1006 	}
   1007 
   1008 	return EAGAIN;
   1009 }
   1010 
   1011 /*
   1012  * A kludge for backwards compatibility.
   1013  */
   1014 static int
   1015 acpicpu_md_pstate_sysctl_init(void)
   1016 {
   1017 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1018 	const char *str;
   1019 	int rv;
   1020 
   1021 	switch (cpu_vendor) {
   1022 
   1023 	case CPUVENDOR_IDT:
   1024 	case CPUVENDOR_INTEL:
   1025 		str = "est";
   1026 		break;
   1027 
   1028 	case CPUVENDOR_AMD:
   1029 		str = "powernow";
   1030 		break;
   1031 
   1032 	default:
   1033 		return ENODEV;
   1034 	}
   1035 
   1036 
   1037 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1038 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1039 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1040 
   1041 	if (rv != 0)
   1042 		goto fail;
   1043 
   1044 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1045 	    0, CTLTYPE_NODE, str, NULL,
   1046 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1047 
   1048 	if (rv != 0)
   1049 		goto fail;
   1050 
   1051 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1052 	    0, CTLTYPE_NODE, "frequency", NULL,
   1053 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1054 
   1055 	if (rv != 0)
   1056 		goto fail;
   1057 
   1058 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1059 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1060 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1061 
   1062 	if (rv != 0)
   1063 		goto fail;
   1064 
   1065 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1066 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1067 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1068 
   1069 	if (rv != 0)
   1070 		goto fail;
   1071 
   1072 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1073 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1074 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1075 
   1076 	if (rv != 0)
   1077 		goto fail;
   1078 
   1079 	return 0;
   1080 
   1081 fail:
   1082 	if (acpicpu_log != NULL) {
   1083 		sysctl_teardown(&acpicpu_log);
   1084 		acpicpu_log = NULL;
   1085 	}
   1086 
   1087 	return rv;
   1088 }
   1089 
   1090 static int
   1091 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1092 {
   1093 	struct sysctlnode node;
   1094 	uint32_t freq;
   1095 	int err;
   1096 
   1097 	freq = cpufreq_get(curcpu());
   1098 
   1099 	if (freq == 0)
   1100 		return ENXIO;
   1101 
   1102 	node = *rnode;
   1103 	node.sysctl_data = &freq;
   1104 
   1105 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1106 
   1107 	if (err != 0 || newp == NULL)
   1108 		return err;
   1109 
   1110 	return 0;
   1111 }
   1112 
   1113 static int
   1114 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1115 {
   1116 	struct sysctlnode node;
   1117 	uint32_t freq;
   1118 	int err;
   1119 
   1120 	freq = cpufreq_get(curcpu());
   1121 
   1122 	if (freq == 0)
   1123 		return ENXIO;
   1124 
   1125 	node = *rnode;
   1126 	node.sysctl_data = &freq;
   1127 
   1128 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1129 
   1130 	if (err != 0 || newp == NULL)
   1131 		return err;
   1132 
   1133 	cpufreq_set_all(freq);
   1134 
   1135 	return 0;
   1136 }
   1137 
   1138 static int
   1139 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1140 {
   1141 	struct cpu_info *ci = curcpu();
   1142 	struct acpicpu_softc *sc;
   1143 	struct sysctlnode node;
   1144 	char buf[1024];
   1145 	size_t len;
   1146 	uint32_t i;
   1147 	int err;
   1148 
   1149 	sc = acpicpu_sc[ci->ci_acpiid];
   1150 
   1151 	if (sc == NULL)
   1152 		return ENXIO;
   1153 
   1154 	(void)memset(&buf, 0, sizeof(buf));
   1155 
   1156 	mutex_enter(&sc->sc_mtx);
   1157 
   1158 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1159 
   1160 		if (sc->sc_pstate[i].ps_freq == 0)
   1161 			continue;
   1162 
   1163 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1164 		    sc->sc_pstate[i].ps_freq,
   1165 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1166 	}
   1167 
   1168 	mutex_exit(&sc->sc_mtx);
   1169 
   1170 	node = *rnode;
   1171 	node.sysctl_data = buf;
   1172 
   1173 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1174 
   1175 	if (err != 0 || newp == NULL)
   1176 		return err;
   1177 
   1178 	return 0;
   1179 }
   1180 
   1181