Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.78
      1 /* $NetBSD: acpi_cpu_md.c,v 1.78 2016/12/08 11:31:12 nat Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.78 2016/12/08 11:31:12 nat Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/cpu_msr.h>
     45 #include <x86/machdep.h>
     46 #include <x86/x86/tsc.h>
     47 
     48 #include <dev/acpi/acpica.h>
     49 #include <dev/acpi/acpi_cpu.h>
     50 
     51 #include <dev/pci/pcivar.h>
     52 #include <dev/pci/pcidevs.h>
     53 
     54 #include <machine/acpi_machdep.h>
     55 
     56 /*
     57  * Intel IA32_MISC_ENABLE.
     58  */
     59 #define MSR_MISC_ENABLE_EST	__BIT(16)
     60 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     61 
     62 /*
     63  * AMD C1E.
     64  */
     65 #define MSR_CMPHALT		0xc0010055
     66 
     67 #define MSR_CMPHALT_SMI		__BIT(27)
     68 #define MSR_CMPHALT_C1E		__BIT(28)
     69 #define MSR_CMPHALT_BMSTS	__BIT(29)
     70 
     71 /*
     72  * AMD families 10h, 11h, 12h, 14h, and 15h.
     73  */
     74 #define MSR_10H_LIMIT		0xc0010061
     75 #define MSR_10H_CONTROL		0xc0010062
     76 #define MSR_10H_STATUS		0xc0010063
     77 #define MSR_10H_CONFIG		0xc0010064
     78 
     79 /*
     80  * AMD family 0Fh.
     81  */
     82 #define MSR_0FH_CONTROL		0xc0010041
     83 #define MSR_0FH_STATUS		0xc0010042
     84 
     85 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     86 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     87 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     88 
     89 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     90 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     91 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     92 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     93 
     94 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     95 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     96 
     97 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     98 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     99 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
    100 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    101 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    102 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    103 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    104 
    105 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    106 
    107 static char	  native_idle_text[16];
    108 void		(*native_idle)(void) = NULL;
    109 
    110 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    111 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    112 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    113                                               uint32_t *);
    114 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    115 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    116 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    117 					        uint32_t, uint32_t);
    118 static int	 acpicpu_md_pstate_sysctl_init(void);
    119 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    121 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    122 
    123 extern struct acpicpu_softc **acpicpu_sc;
    124 static struct sysctllog *acpicpu_log = NULL;
    125 
    126 struct cpu_info *
    127 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    128 {
    129 	struct cpufeature_attach_args *cfaa = aux;
    130 
    131 	if (strcmp(cfaa->name, "frequency") != 0)
    132 		return NULL;
    133 
    134 	return cfaa->ci;
    135 }
    136 
    137 struct cpu_info *
    138 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    139 {
    140 	struct cpufeature_attach_args *cfaa = aux;
    141 
    142 	return cfaa->ci;
    143 }
    144 
    145 uint32_t
    146 acpicpu_md_flags(void)
    147 {
    148 	struct cpu_info *ci = curcpu();
    149 	struct pci_attach_args pa;
    150 	uint32_t family, val = 0;
    151 	uint32_t regs[4];
    152 	uint64_t msr;
    153 
    154 	if (acpi_md_ncpus() == 1)
    155 		val |= ACPICPU_FLAG_C_BM;
    156 
    157 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    158 		val |= ACPICPU_FLAG_C_FFH;
    159 
    160 	/*
    161 	 * By default, assume that the local APIC timer
    162 	 * as well as TSC are stalled during C3 sleep.
    163 	 */
    164 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    165 
    166 	/*
    167 	 * Detect whether TSC is invariant. If it is not, we keep the flag to
    168 	 * note that TSC will not run at constant rate. Depending on the CPU,
    169 	 * this may affect P- and T-state changes, but especially relevant
    170 	 * are C-states; with variant TSC, states larger than C1 may
    171 	 * completely stop the counter.
    172 	 */
    173 	if (tsc_is_invariant())
    174 		val &= ~ACPICPU_FLAG_C_TSC;
    175 
    176 	switch (cpu_vendor) {
    177 
    178 	case CPUVENDOR_IDT:
    179 
    180 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    181 			val |= ACPICPU_FLAG_P_FFH;
    182 
    183 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    184 			val |= ACPICPU_FLAG_T_FFH;
    185 
    186 		break;
    187 
    188 	case CPUVENDOR_INTEL:
    189 
    190 		/*
    191 		 * Bus master control and arbitration should be
    192 		 * available on all supported Intel CPUs (to be
    193 		 * sure, this is double-checked later from the
    194 		 * firmware data). These flags imply that it is
    195 		 * not necessary to flush caches before C3 state.
    196 		 */
    197 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    198 
    199 		/*
    200 		 * Check if we can use "native", MSR-based,
    201 		 * access. If not, we have to resort to I/O.
    202 		 */
    203 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    204 			val |= ACPICPU_FLAG_P_FFH;
    205 
    206 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    207 			val |= ACPICPU_FLAG_T_FFH;
    208 
    209 		/*
    210 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    211 		 * Boost are available. Also see if we might have
    212 		 * an invariant local APIC timer ("ARAT").
    213 		 */
    214 		if (cpuid_level >= 0x06) {
    215 
    216 			x86_cpuid(0x00000006, regs);
    217 
    218 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    219 				val |= ACPICPU_FLAG_P_HWF;
    220 
    221 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    222 				val |= ACPICPU_FLAG_P_TURBO;
    223 
    224 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    225 				val &= ~ACPICPU_FLAG_C_APIC;
    226 
    227 		}
    228 
    229 		break;
    230 
    231 	case CPUVENDOR_AMD:
    232 
    233 		x86_cpuid(0x80000000, regs);
    234 
    235 		if (regs[0] < 0x80000007)
    236 			break;
    237 
    238 		x86_cpuid(0x80000007, regs);
    239 
    240 		family = CPUID_TO_FAMILY(ci->ci_signature);
    241 
    242     		switch (family) {
    243 
    244 		case 0x0f:
    245 
    246 			/*
    247 			 * Disable C1E if present.
    248 			 */
    249 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    250 				val |= ACPICPU_FLAG_C_C1E;
    251 
    252 			/*
    253 			 * Evaluate support for the "FID/VID
    254 			 * algorithm" also used by powernow(4).
    255 			 */
    256 			if ((regs[3] & CPUID_APM_FID) == 0)
    257 				break;
    258 
    259 			if ((regs[3] & CPUID_APM_VID) == 0)
    260 				break;
    261 
    262 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    263 			break;
    264 
    265 		case 0x10:
    266 		case 0x11:
    267 
    268 			/*
    269 			 * Disable C1E if present.
    270 			 */
    271 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    272 				val |= ACPICPU_FLAG_C_C1E;
    273 
    274 			/* FALLTHROUGH */
    275 
    276 		case 0x12:
    277 		case 0x14: /* AMD Fusion */
    278 		case 0x15: /* AMD Bulldozer */
    279 
    280 			/*
    281 			 * Like with Intel, detect MSR-based P-states,
    282 			 * and AMD's "turbo" (Core Performance Boost),
    283 			 * respectively.
    284 			 */
    285 			if ((regs[3] & CPUID_APM_HWP) != 0)
    286 				val |= ACPICPU_FLAG_P_FFH;
    287 
    288 			if ((regs[3] & CPUID_APM_CPB) != 0)
    289 				val |= ACPICPU_FLAG_P_TURBO;
    290 
    291 			/*
    292 			 * Also check for APERF and MPERF,
    293 			 * first available in the family 10h.
    294 			 */
    295 			if (cpuid_level >= 0x06) {
    296 
    297 				x86_cpuid(0x00000006, regs);
    298 
    299 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    300 					val |= ACPICPU_FLAG_P_HWF;
    301 			}
    302 
    303 			break;
    304 		}
    305 
    306 		break;
    307 	}
    308 
    309 	/*
    310 	 * There are several erratums for PIIX4.
    311 	 */
    312 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    313 		val |= ACPICPU_FLAG_PIIX4;
    314 
    315 	return val;
    316 }
    317 
    318 static int
    319 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    320 {
    321 
    322 	/*
    323 	 * XXX: The pci_find_device(9) function only
    324 	 *	deals with attached devices. Change this
    325 	 *	to use something like pci_device_foreach().
    326 	 */
    327 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    328 		return 0;
    329 
    330 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    331 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    332 		return 1;
    333 
    334 	return 0;
    335 }
    336 
    337 void
    338 acpicpu_md_quirk_c1e(void)
    339 {
    340 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    341 	uint64_t val;
    342 
    343 	val = rdmsr(MSR_CMPHALT);
    344 
    345 	if ((val & c1e) != 0)
    346 		wrmsr(MSR_CMPHALT, val & ~c1e);
    347 }
    348 
    349 int
    350 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    351 {
    352 	const size_t size = sizeof(native_idle_text);
    353 	struct acpicpu_cstate *cs;
    354 	bool ipi = false;
    355 	int i;
    356 
    357 	/*
    358 	 * Save the cpu_idle(9) loop used by default.
    359 	 */
    360 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    361 
    362 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    363 
    364 		cs = &sc->sc_cstate[i];
    365 
    366 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    367 			ipi = true;
    368 			break;
    369 		}
    370 	}
    371 
    372 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    373 
    374 	return 0;
    375 }
    376 
    377 int
    378 acpicpu_md_cstate_stop(void)
    379 {
    380 	static char text[16];
    381 	void (*func)(void);
    382 	uint64_t xc;
    383 	bool ipi;
    384 
    385 	x86_cpu_idle_get(&func, text, sizeof(text));
    386 
    387 	if (func == native_idle)
    388 		return EALREADY;
    389 
    390 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    391 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    392 
    393 	/*
    394 	 * Run a cross-call to ensure that all CPUs are
    395 	 * out from the ACPI idle-loop before detachment.
    396 	 */
    397 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    398 	xc_wait(xc);
    399 
    400 	return 0;
    401 }
    402 
    403 /*
    404  * Called with interrupts enabled.
    405  */
    406 void
    407 acpicpu_md_cstate_enter(int method, int state)
    408 {
    409 	struct cpu_info *ci = curcpu();
    410 
    411 	KASSERT(ci->ci_ilevel == IPL_NONE);
    412 
    413 	switch (method) {
    414 
    415 	case ACPICPU_C_STATE_FFH:
    416 
    417 		x86_monitor(&ci->ci_want_resched, 0, 0);
    418 
    419 		if (__predict_false(ci->ci_want_resched != 0))
    420 			return;
    421 
    422 		x86_mwait((state - 1) << 4, 0);
    423 		break;
    424 
    425 	case ACPICPU_C_STATE_HALT:
    426 
    427 		x86_disable_intr();
    428 
    429 		if (__predict_false(ci->ci_want_resched != 0)) {
    430 			x86_enable_intr();
    431 			return;
    432 		}
    433 
    434 		x86_stihlt();
    435 		break;
    436 	}
    437 }
    438 
    439 int
    440 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    441 {
    442 	uint64_t xc, val;
    443 
    444 	switch (cpu_vendor) {
    445 
    446 	case CPUVENDOR_IDT:
    447 	case CPUVENDOR_INTEL:
    448 
    449 		/*
    450 		 * Make sure EST is enabled.
    451 		 */
    452 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    453 
    454 			val = rdmsr(MSR_MISC_ENABLE);
    455 
    456 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    457 
    458 				val |= MSR_MISC_ENABLE_EST;
    459 				wrmsr(MSR_MISC_ENABLE, val);
    460 				val = rdmsr(MSR_MISC_ENABLE);
    461 
    462 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    463 					return ENOTTY;
    464 			}
    465 		}
    466 	}
    467 
    468 	/*
    469 	 * Reset the APERF and MPERF counters.
    470 	 */
    471 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    472 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    473 		xc_wait(xc);
    474 	}
    475 
    476 	return acpicpu_md_pstate_sysctl_init();
    477 }
    478 
    479 int
    480 acpicpu_md_pstate_stop(void)
    481 {
    482 
    483 	if (acpicpu_log == NULL)
    484 		return EALREADY;
    485 
    486 	sysctl_teardown(&acpicpu_log);
    487 	acpicpu_log = NULL;
    488 
    489 	return 0;
    490 }
    491 
    492 int
    493 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    494 {
    495 	struct cpu_info *ci = sc->sc_ci;
    496 	struct acpicpu_pstate *ps, msr;
    497 	uint32_t family, i = 0;
    498 
    499 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    500 
    501 	switch (cpu_vendor) {
    502 
    503 	case CPUVENDOR_IDT:
    504 	case CPUVENDOR_INTEL:
    505 
    506 		/*
    507 		 * If the so-called Turbo Boost is present,
    508 		 * the P0-state is always the "turbo state".
    509 		 * It is shown as the P1 frequency + 1 MHz.
    510 		 *
    511 		 * For discussion, see:
    512 		 *
    513 		 *	Intel Corporation: Intel Turbo Boost Technology
    514 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    515 		 *	Based Processors. White Paper, November 2008.
    516 		 */
    517 		if (sc->sc_pstate_count >= 2 &&
    518 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    519 
    520 			ps = &sc->sc_pstate[0];
    521 
    522 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    523 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    524 		}
    525 
    526 		msr.ps_control_addr = MSR_PERF_CTL;
    527 		msr.ps_control_mask = __BITS(0, 15);
    528 
    529 		msr.ps_status_addr  = MSR_PERF_STATUS;
    530 		msr.ps_status_mask  = __BITS(0, 15);
    531 		break;
    532 
    533 	case CPUVENDOR_AMD:
    534 
    535 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    536 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    537 
    538 		family = CPUID_TO_FAMILY(ci->ci_signature);
    539 
    540 		switch (family) {
    541 
    542 		case 0x0f:
    543 			msr.ps_control_addr = MSR_0FH_CONTROL;
    544 			msr.ps_status_addr  = MSR_0FH_STATUS;
    545 			break;
    546 
    547 		case 0x10:
    548 		case 0x11:
    549 		case 0x12:
    550 		case 0x14:
    551 		case 0x15:
    552 			msr.ps_control_addr = MSR_10H_CONTROL;
    553 			msr.ps_control_mask = __BITS(0, 2);
    554 
    555 			msr.ps_status_addr  = MSR_10H_STATUS;
    556 			msr.ps_status_mask  = __BITS(0, 2);
    557 			break;
    558 
    559 		default:
    560 			/*
    561 			 * If we have an unknown AMD CPU, rely on XPSS.
    562 			 */
    563 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    564 				return EOPNOTSUPP;
    565 		}
    566 
    567 		break;
    568 
    569 	default:
    570 		return ENODEV;
    571 	}
    572 
    573 	/*
    574 	 * Fill the P-state structures with MSR addresses that are
    575 	 * known to be correct. If we do not know the addresses,
    576 	 * leave the values intact. If a vendor uses XPSS, we do
    577 	 * not necessarily need to do anything to support new CPUs.
    578 	 */
    579 	while (i < sc->sc_pstate_count) {
    580 
    581 		ps = &sc->sc_pstate[i];
    582 
    583 		if (msr.ps_flags != 0)
    584 			ps->ps_flags |= msr.ps_flags;
    585 
    586 		if (msr.ps_status_addr != 0)
    587 			ps->ps_status_addr = msr.ps_status_addr;
    588 
    589 		if (msr.ps_status_mask != 0)
    590 			ps->ps_status_mask = msr.ps_status_mask;
    591 
    592 		if (msr.ps_control_addr != 0)
    593 			ps->ps_control_addr = msr.ps_control_addr;
    594 
    595 		if (msr.ps_control_mask != 0)
    596 			ps->ps_control_mask = msr.ps_control_mask;
    597 
    598 		i++;
    599 	}
    600 
    601 	return 0;
    602 }
    603 
    604 /*
    605  * Read the IA32_APERF and IA32_MPERF counters. The first
    606  * increments at the rate of the fixed maximum frequency
    607  * configured during the boot, whereas APERF counts at the
    608  * rate of the actual frequency. Note that the MSRs must be
    609  * read without delay, and that only the ratio between
    610  * IA32_APERF and IA32_MPERF is architecturally defined.
    611  *
    612  * The function thus returns the percentage of the actual
    613  * frequency in terms of the maximum frequency of the calling
    614  * CPU since the last call. A value zero implies an error.
    615  *
    616  * For further details, refer to:
    617  *
    618  *	Intel Corporation: Intel 64 and IA-32 Architectures
    619  *	Software Developer's Manual. Section 13.2, Volume 3A:
    620  *	System Programming Guide, Part 1. July, 2008.
    621  *
    622  *	Advanced Micro Devices: BIOS and Kernel Developer's
    623  *	Guide (BKDG) for AMD Family 10h Processors. Section
    624  *	2.4.5, Revision 3.48, April 2010.
    625  */
    626 uint8_t
    627 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    628 {
    629 	struct acpicpu_softc *sc;
    630 	uint64_t aperf, mperf;
    631 	uint8_t rv = 0;
    632 
    633 	sc = acpicpu_sc[ci->ci_acpiid];
    634 
    635 	if (__predict_false(sc == NULL))
    636 		return 0;
    637 
    638 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    639 		return 0;
    640 
    641 	aperf = sc->sc_pstate_aperf;
    642 	mperf = sc->sc_pstate_mperf;
    643 
    644 	x86_disable_intr();
    645 
    646 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    647 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    648 
    649 	x86_enable_intr();
    650 
    651 	aperf = sc->sc_pstate_aperf - aperf;
    652 	mperf = sc->sc_pstate_mperf - mperf;
    653 
    654 	if (__predict_true(mperf != 0))
    655 		rv = (aperf * 100) / mperf;
    656 
    657 	return rv;
    658 }
    659 
    660 static void
    661 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    662 {
    663 	struct cpu_info *ci = curcpu();
    664 	struct acpicpu_softc *sc;
    665 
    666 	sc = acpicpu_sc[ci->ci_acpiid];
    667 
    668 	if (__predict_false(sc == NULL))
    669 		return;
    670 
    671 	x86_disable_intr();
    672 
    673 	wrmsr(MSR_APERF, 0);
    674 	wrmsr(MSR_MPERF, 0);
    675 
    676 	x86_enable_intr();
    677 
    678 	sc->sc_pstate_aperf = 0;
    679 	sc->sc_pstate_mperf = 0;
    680 }
    681 
    682 int
    683 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    684 {
    685 	struct acpicpu_pstate *ps = NULL;
    686 	uint64_t val;
    687 	uint32_t i;
    688 
    689 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    690 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    691 
    692 	/*
    693 	 * Pick any P-state for the status address.
    694 	 */
    695 	for (i = 0; i < sc->sc_pstate_count; i++) {
    696 
    697 		ps = &sc->sc_pstate[i];
    698 
    699 		if (__predict_true(ps->ps_freq != 0))
    700 			break;
    701 	}
    702 
    703 	if (__predict_false(ps == NULL))
    704 		return ENODEV;
    705 
    706 	if (__predict_false(ps->ps_status_addr == 0))
    707 		return EINVAL;
    708 
    709 	val = rdmsr(ps->ps_status_addr);
    710 
    711 	if (__predict_true(ps->ps_status_mask != 0))
    712 		val = val & ps->ps_status_mask;
    713 
    714 	/*
    715 	 * Search for the value from known P-states.
    716 	 */
    717 	for (i = 0; i < sc->sc_pstate_count; i++) {
    718 
    719 		ps = &sc->sc_pstate[i];
    720 
    721 		if (__predict_false(ps->ps_freq == 0))
    722 			continue;
    723 
    724 		if (val == ps->ps_status) {
    725 			*freq = ps->ps_freq;
    726 			return 0;
    727 		}
    728 	}
    729 
    730 	/*
    731 	 * If the value was not found, try APERF/MPERF.
    732 	 * The state is P0 if the return value is 100 %.
    733 	 */
    734 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    735 
    736 		KASSERT(sc->sc_pstate_count > 0);
    737 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    738 
    739 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    740 			*freq = sc->sc_pstate[0].ps_freq;
    741 			return 0;
    742 		}
    743 	}
    744 
    745 	return EIO;
    746 }
    747 
    748 int
    749 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    750 {
    751 	uint64_t val = 0;
    752 
    753 	if (__predict_false(ps->ps_control_addr == 0))
    754 		return EINVAL;
    755 
    756 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    757 		return acpicpu_md_pstate_fidvid_set(ps);
    758 
    759 	/*
    760 	 * If the mask is set, do a read-modify-write.
    761 	 */
    762 	if (__predict_true(ps->ps_control_mask != 0)) {
    763 		val = rdmsr(ps->ps_control_addr);
    764 		val &= ~ps->ps_control_mask;
    765 	}
    766 
    767 	val |= ps->ps_control;
    768 
    769 	wrmsr(ps->ps_control_addr, val);
    770 	DELAY(ps->ps_latency);
    771 
    772 	return 0;
    773 }
    774 
    775 static int
    776 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    777 {
    778 	struct acpicpu_pstate *ps;
    779 	uint32_t fid, i, vid;
    780 	uint32_t cfid, cvid;
    781 	int rv;
    782 
    783 	/*
    784 	 * AMD family 0Fh needs special treatment.
    785 	 * While it wants to use ACPI, it does not
    786 	 * comply with the ACPI specifications.
    787 	 */
    788 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    789 
    790 	if (rv != 0)
    791 		return rv;
    792 
    793 	for (i = 0; i < sc->sc_pstate_count; i++) {
    794 
    795 		ps = &sc->sc_pstate[i];
    796 
    797 		if (__predict_false(ps->ps_freq == 0))
    798 			continue;
    799 
    800 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    801 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    802 
    803 		if (cfid == fid && cvid == vid) {
    804 			*freq = ps->ps_freq;
    805 			return 0;
    806 		}
    807 	}
    808 
    809 	return EIO;
    810 }
    811 
    812 static int
    813 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    814 {
    815 	const uint64_t ctrl = ps->ps_control;
    816 	uint32_t cfid, cvid, fid, i, irt;
    817 	uint32_t pll, vco_cfid, vco_fid;
    818 	uint32_t val, vid, vst;
    819 	int rv;
    820 
    821 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    822 
    823 	if (rv != 0)
    824 		return rv;
    825 
    826 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    827 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    828 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    829 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    830 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    831 
    832 	vst = vst * 20;
    833 	pll = pll * 1000 / 5;
    834 	irt = 10 * __BIT(irt);
    835 
    836 	/*
    837 	 * Phase 1.
    838 	 */
    839 	while (cvid > vid) {
    840 
    841 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    842 		val = (val > cvid) ? 0 : cvid - val;
    843 
    844 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    845 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    846 
    847 		if (rv != 0)
    848 			return rv;
    849 	}
    850 
    851 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    852 
    853 	for (; i > 0 && cvid > 0; --i) {
    854 
    855 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    856 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    857 
    858 		if (rv != 0)
    859 			return rv;
    860 	}
    861 
    862 	/*
    863 	 * Phase 2.
    864 	 */
    865 	if (cfid != fid) {
    866 
    867 		vco_fid  = FID_TO_VCO_FID(fid);
    868 		vco_cfid = FID_TO_VCO_FID(cfid);
    869 
    870 		while (abs(vco_fid - vco_cfid) > 2) {
    871 
    872 			if (fid <= cfid)
    873 				val = cfid - 2;
    874 			else {
    875 				val = (cfid > 6) ? cfid + 2 :
    876 				    FID_TO_VCO_FID(cfid) + 2;
    877 			}
    878 
    879 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    880 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    881 
    882 			if (rv != 0)
    883 				return rv;
    884 
    885 			vco_cfid = FID_TO_VCO_FID(cfid);
    886 		}
    887 
    888 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    889 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    890 
    891 		if (rv != 0)
    892 			return rv;
    893 	}
    894 
    895 	/*
    896 	 * Phase 3.
    897 	 */
    898 	if (cvid != vid) {
    899 
    900 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    901 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    902 
    903 		if (rv != 0)
    904 			return rv;
    905 	}
    906 
    907 	return 0;
    908 }
    909 
    910 static int
    911 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    912 {
    913 	int i = ACPICPU_P_STATE_RETRY * 100;
    914 	uint64_t val;
    915 
    916 	do {
    917 		val = rdmsr(MSR_0FH_STATUS);
    918 
    919 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    920 
    921 	if (i == 0)
    922 		return EAGAIN;
    923 
    924 	if (cfid != NULL)
    925 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    926 
    927 	if (cvid != NULL)
    928 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    929 
    930 	return 0;
    931 }
    932 
    933 static void
    934 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    935     uint32_t vid, uint32_t cnt, uint32_t tmo)
    936 {
    937 	uint64_t val = 0;
    938 
    939 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    940 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    941 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    942 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    943 
    944 	wrmsr(MSR_0FH_CONTROL, val);
    945 	DELAY(tmo);
    946 }
    947 
    948 int
    949 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    950 {
    951 	struct acpicpu_tstate *ts;
    952 	uint64_t val;
    953 	uint32_t i;
    954 
    955 	val = rdmsr(MSR_THERM_CONTROL);
    956 
    957 	for (i = 0; i < sc->sc_tstate_count; i++) {
    958 
    959 		ts = &sc->sc_tstate[i];
    960 
    961 		if (ts->ts_percent == 0)
    962 			continue;
    963 
    964 		if (val == ts->ts_status) {
    965 			*percent = ts->ts_percent;
    966 			return 0;
    967 		}
    968 	}
    969 
    970 	return EIO;
    971 }
    972 
    973 int
    974 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    975 {
    976 	uint64_t val;
    977 	uint8_t i;
    978 
    979 	val = ts->ts_control;
    980 	val = val & __BITS(0, 4);
    981 
    982 	wrmsr(MSR_THERM_CONTROL, val);
    983 
    984 	if (ts->ts_status == 0) {
    985 		DELAY(ts->ts_latency);
    986 		return 0;
    987 	}
    988 
    989 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    990 
    991 		val = rdmsr(MSR_THERM_CONTROL);
    992 
    993 		if (val == ts->ts_status)
    994 			return 0;
    995 
    996 		DELAY(ts->ts_latency);
    997 	}
    998 
    999 	return EAGAIN;
   1000 }
   1001 
   1002 /*
   1003  * A kludge for backwards compatibility.
   1004  */
   1005 static int
   1006 acpicpu_md_pstate_sysctl_init(void)
   1007 {
   1008 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1009 	const char *str;
   1010 	int rv;
   1011 
   1012 	switch (cpu_vendor) {
   1013 
   1014 	case CPUVENDOR_IDT:
   1015 	case CPUVENDOR_INTEL:
   1016 		str = "est";
   1017 		break;
   1018 
   1019 	case CPUVENDOR_AMD:
   1020 		str = "powernow";
   1021 		break;
   1022 
   1023 	default:
   1024 		return ENODEV;
   1025 	}
   1026 
   1027 
   1028 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1029 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1030 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1031 
   1032 	if (rv != 0)
   1033 		goto fail;
   1034 
   1035 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1036 	    0, CTLTYPE_NODE, str, NULL,
   1037 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1038 
   1039 	if (rv != 0)
   1040 		goto fail;
   1041 
   1042 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1043 	    0, CTLTYPE_NODE, "frequency", NULL,
   1044 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1045 
   1046 	if (rv != 0)
   1047 		goto fail;
   1048 
   1049 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1050 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1051 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1052 
   1053 	if (rv != 0)
   1054 		goto fail;
   1055 
   1056 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1057 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1058 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1059 
   1060 	if (rv != 0)
   1061 		goto fail;
   1062 
   1063 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1064 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1065 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1066 
   1067 	if (rv != 0)
   1068 		goto fail;
   1069 
   1070 	return 0;
   1071 
   1072 fail:
   1073 	if (acpicpu_log != NULL) {
   1074 		sysctl_teardown(&acpicpu_log);
   1075 		acpicpu_log = NULL;
   1076 	}
   1077 
   1078 	return rv;
   1079 }
   1080 
   1081 static int
   1082 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1083 {
   1084 	struct sysctlnode node;
   1085 	uint32_t freq;
   1086 	int err;
   1087 
   1088 	freq = cpufreq_get(curcpu());
   1089 
   1090 	if (freq == 0)
   1091 		return ENXIO;
   1092 
   1093 	node = *rnode;
   1094 	node.sysctl_data = &freq;
   1095 
   1096 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1097 
   1098 	if (err != 0 || newp == NULL)
   1099 		return err;
   1100 
   1101 	return 0;
   1102 }
   1103 
   1104 static int
   1105 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1106 {
   1107 	struct sysctlnode node;
   1108 	uint32_t freq;
   1109 	int err;
   1110 
   1111 	freq = cpufreq_get(curcpu());
   1112 
   1113 	if (freq == 0)
   1114 		return ENXIO;
   1115 
   1116 	node = *rnode;
   1117 	node.sysctl_data = &freq;
   1118 
   1119 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1120 
   1121 	if (err != 0 || newp == NULL)
   1122 		return err;
   1123 
   1124 	cpufreq_set_all(freq);
   1125 
   1126 	return 0;
   1127 }
   1128 
   1129 static int
   1130 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1131 {
   1132 	struct cpu_info *ci = curcpu();
   1133 	struct acpicpu_softc *sc;
   1134 	struct sysctlnode node;
   1135 	char buf[1024];
   1136 	size_t len;
   1137 	uint32_t i;
   1138 	int err;
   1139 
   1140 	sc = acpicpu_sc[ci->ci_acpiid];
   1141 
   1142 	if (sc == NULL)
   1143 		return ENXIO;
   1144 
   1145 	(void)memset(&buf, 0, sizeof(buf));
   1146 
   1147 	mutex_enter(&sc->sc_mtx);
   1148 
   1149 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1150 
   1151 		if (sc->sc_pstate[i].ps_freq == 0)
   1152 			continue;
   1153 
   1154 		if (len >= sizeof(buf))
   1155 			break;
   1156 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1157 		    sc->sc_pstate[i].ps_freq,
   1158 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1159 	}
   1160 
   1161 	mutex_exit(&sc->sc_mtx);
   1162 
   1163 	node = *rnode;
   1164 	node.sysctl_data = buf;
   1165 
   1166 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1167 
   1168 	if (err != 0 || newp == NULL)
   1169 		return err;
   1170 
   1171 	return 0;
   1172 }
   1173 
   1174