acpi_cpu_md.c revision 1.82 1 /* $NetBSD: acpi_cpu_md.c,v 1.82 2020/03/14 13:50:46 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.82 2020/03/14 13:50:46 ad Exp $");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpufreq.h>
35 #include <sys/device.h>
36 #include <sys/kcore.h>
37 #include <sys/sysctl.h>
38 #include <sys/xcall.h>
39
40 #include <x86/cpu.h>
41 #include <x86/cpufunc.h>
42 #include <x86/cputypes.h>
43 #include <x86/cpuvar.h>
44 #include <x86/machdep.h>
45 #include <x86/x86/tsc.h>
46
47 #include <dev/acpi/acpica.h>
48 #include <dev/acpi/acpi_cpu.h>
49
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <machine/acpi_machdep.h>
54
55 /*
56 * Intel IA32_MISC_ENABLE.
57 */
58 #define MSR_MISC_ENABLE_EST __BIT(16)
59 #define MSR_MISC_ENABLE_TURBO __BIT(38)
60
61 /*
62 * AMD C1E.
63 */
64 #define MSR_CMPHALT 0xc0010055
65
66 #define MSR_CMPHALT_SMI __BIT(27)
67 #define MSR_CMPHALT_C1E __BIT(28)
68 #define MSR_CMPHALT_BMSTS __BIT(29)
69
70 /*
71 * AMD families 10h, 11h, 12h, 14h, and 15h.
72 */
73 #define MSR_10H_LIMIT 0xc0010061
74 #define MSR_10H_CONTROL 0xc0010062
75 #define MSR_10H_STATUS 0xc0010063
76 #define MSR_10H_CONFIG 0xc0010064
77
78 /*
79 * AMD family 0Fh.
80 */
81 #define MSR_0FH_CONTROL 0xc0010041
82 #define MSR_0FH_STATUS 0xc0010042
83
84 #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
85 #define MSR_0FH_STATUS_CVID __BITS(32, 36)
86 #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
87
88 #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
89 #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
90 #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
91 #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
92
93 #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
94 #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
95
96 #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
97 #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
98 #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
99 #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
100 #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
101 #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
102 #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
103
104 #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105
106 #ifdef ACPICPU_ENABLE_C3
107 static char native_idle_text[16];
108 void (*native_idle)(void) = NULL;
109 #endif
110
111 static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
112 static void acpicpu_md_pstate_hwf_reset(void *, void *);
113 static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
114 uint32_t *);
115 static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
116 static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
117 static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
118 uint32_t, uint32_t);
119 static int acpicpu_md_pstate_sysctl_init(void);
120 static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
121 static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
122 static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
123
124 extern struct acpicpu_softc **acpicpu_sc;
125 static struct sysctllog *acpicpu_log = NULL;
126
127 struct cpu_info *
128 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
129 {
130 struct cpufeature_attach_args *cfaa = aux;
131
132 if (strcmp(cfaa->name, "frequency") != 0)
133 return NULL;
134
135 return cfaa->ci;
136 }
137
138 struct cpu_info *
139 acpicpu_md_attach(device_t parent, device_t self, void *aux)
140 {
141 struct cpufeature_attach_args *cfaa = aux;
142
143 return cfaa->ci;
144 }
145
146 uint32_t
147 acpicpu_md_flags(void)
148 {
149 struct cpu_info *ci = curcpu();
150 struct pci_attach_args pa;
151 uint32_t family, val = 0;
152 uint32_t regs[4];
153 uint64_t msr;
154
155 if (acpi_md_ncpus() == 1)
156 val |= ACPICPU_FLAG_C_BM;
157
158 if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
159 val |= ACPICPU_FLAG_C_FFH;
160
161 /*
162 * By default, assume that the local APIC timer
163 * as well as TSC are stalled during C3 sleep.
164 */
165 val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
166
167 /*
168 * Detect whether TSC is invariant. If it is not, we keep the flag to
169 * note that TSC will not run at constant rate. Depending on the CPU,
170 * this may affect P- and T-state changes, but especially relevant
171 * are C-states; with variant TSC, states larger than C1 may
172 * completely stop the counter.
173 */
174 if (tsc_is_invariant())
175 val &= ~ACPICPU_FLAG_C_TSC;
176
177 switch (cpu_vendor) {
178
179 case CPUVENDOR_IDT:
180
181 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
182 val |= ACPICPU_FLAG_P_FFH;
183
184 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
185 val |= ACPICPU_FLAG_T_FFH;
186
187 break;
188
189 case CPUVENDOR_INTEL:
190
191 /*
192 * Bus master control and arbitration should be
193 * available on all supported Intel CPUs (to be
194 * sure, this is double-checked later from the
195 * firmware data). These flags imply that it is
196 * not necessary to flush caches before C3 state.
197 */
198 val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
199
200 /*
201 * Check if we can use "native", MSR-based,
202 * access. If not, we have to resort to I/O.
203 */
204 if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
205 val |= ACPICPU_FLAG_P_FFH;
206
207 if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
208 val |= ACPICPU_FLAG_T_FFH;
209
210 /*
211 * Check whether MSR_APERF, MSR_MPERF, and Turbo
212 * Boost are available. Also see if we might have
213 * an invariant local APIC timer ("ARAT").
214 */
215 if (cpuid_level >= 0x06) {
216
217 x86_cpuid(0x00000006, regs);
218
219 if ((regs[2] & CPUID_DSPM_HWF) != 0)
220 val |= ACPICPU_FLAG_P_HWF;
221
222 if ((regs[0] & CPUID_DSPM_IDA) != 0)
223 val |= ACPICPU_FLAG_P_TURBO;
224
225 if ((regs[0] & CPUID_DSPM_ARAT) != 0)
226 val &= ~ACPICPU_FLAG_C_APIC;
227
228 }
229
230 break;
231
232 case CPUVENDOR_AMD:
233
234 x86_cpuid(0x80000000, regs);
235
236 if (regs[0] < 0x80000007)
237 break;
238
239 x86_cpuid(0x80000007, regs);
240
241 family = CPUID_TO_FAMILY(ci->ci_signature);
242
243 switch (family) {
244
245 case 0x0f:
246
247 /*
248 * Disable C1E if present.
249 */
250 if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
251 val |= ACPICPU_FLAG_C_C1E;
252
253 /*
254 * Evaluate support for the "FID/VID
255 * algorithm" also used by powernow(4).
256 */
257 if ((regs[3] & CPUID_APM_FID) == 0)
258 break;
259
260 if ((regs[3] & CPUID_APM_VID) == 0)
261 break;
262
263 val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
264 break;
265
266 case 0x10:
267 case 0x11:
268
269 /*
270 * Disable C1E if present.
271 */
272 if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
273 val |= ACPICPU_FLAG_C_C1E;
274
275 /* FALLTHROUGH */
276
277 case 0x12:
278 case 0x14: /* AMD Fusion */
279 case 0x15: /* AMD Bulldozer */
280
281 /*
282 * Like with Intel, detect MSR-based P-states,
283 * and AMD's "turbo" (Core Performance Boost),
284 * respectively.
285 */
286 if ((regs[3] & CPUID_APM_HWP) != 0)
287 val |= ACPICPU_FLAG_P_FFH;
288
289 if ((regs[3] & CPUID_APM_CPB) != 0)
290 val |= ACPICPU_FLAG_P_TURBO;
291
292 /*
293 * Also check for APERF and MPERF,
294 * first available in the family 10h.
295 */
296 if (cpuid_level >= 0x06) {
297
298 x86_cpuid(0x00000006, regs);
299
300 if ((regs[2] & CPUID_DSPM_HWF) != 0)
301 val |= ACPICPU_FLAG_P_HWF;
302 }
303
304 break;
305 }
306
307 break;
308 }
309
310 /*
311 * There are several erratums for PIIX4.
312 */
313 if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
314 val |= ACPICPU_FLAG_PIIX4;
315
316 return val;
317 }
318
319 static int
320 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
321 {
322
323 /*
324 * XXX: The pci_find_device(9) function only
325 * deals with attached devices. Change this
326 * to use something like pci_device_foreach().
327 */
328 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
329 return 0;
330
331 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
332 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
333 return 1;
334
335 return 0;
336 }
337
338 void
339 acpicpu_md_quirk_c1e(void)
340 {
341 const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
342 uint64_t val;
343
344 val = rdmsr(MSR_CMPHALT);
345
346 if ((val & c1e) != 0)
347 wrmsr(MSR_CMPHALT, val & ~c1e);
348 }
349
350 int
351 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
352 {
353 #ifdef ACPICPU_ENABLE_C3
354 /*
355 * XXX There are performance problems with the ACPI idle loop, and
356 * it does not enter deep sleep. Once those are resolved it'll be
357 * re-enabled.
358 */
359 const size_t size = sizeof(native_idle_text);
360 struct acpicpu_cstate *cs;
361 bool ipi = false;
362 int i;
363
364 /*
365 * Save the cpu_idle(9) loop used by default.
366 */
367 x86_cpu_idle_get(&native_idle, native_idle_text, size);
368
369 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
370
371 cs = &sc->sc_cstate[i];
372
373 if (cs->cs_method == ACPICPU_C_STATE_HALT) {
374 ipi = true;
375 break;
376 }
377 }
378
379 x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
380 #endif /* ACPICPU_ENABLE_C3 */
381
382 return 0;
383 }
384
385 int
386 acpicpu_md_cstate_stop(void)
387 {
388 #ifdef ACPICPU_ENABLE_C3
389 /*
390 * XXX There are performance problems with the ACPI idle loop, and
391 * it does not enter deep sleep. Once those are resolved it'll be
392 * re-enabled.
393 */
394 static char text[16];
395 void (*func)(void);
396 bool ipi;
397
398 x86_cpu_idle_get(&func, text, sizeof(text));
399
400 if (func == native_idle)
401 return EALREADY;
402
403 ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
404 x86_cpu_idle_set(native_idle, native_idle_text, ipi);
405
406 /*
407 * Run a cross-call to ensure that all CPUs are
408 * out from the ACPI idle-loop before detachment.
409 */
410 xc_barrier(0);
411 #endif /* ACPICPU_ENABLE_C3 */
412
413 return 0;
414 }
415
416 /*
417 * Called with interrupts enabled.
418 */
419 void __nocsan
420 acpicpu_md_cstate_enter(int method, int state)
421 {
422 struct cpu_info *ci = curcpu();
423
424 KASSERT(ci->ci_ilevel == IPL_NONE);
425
426 switch (method) {
427
428 case ACPICPU_C_STATE_FFH:
429
430 x86_monitor(&ci->ci_want_resched, 0, 0);
431
432 if (__predict_false(ci->ci_want_resched != 0))
433 return;
434
435 x86_mwait((state - 1) << 4, 0);
436 break;
437
438 case ACPICPU_C_STATE_HALT:
439
440 x86_disable_intr();
441
442 if (__predict_false(ci->ci_want_resched != 0)) {
443 x86_enable_intr();
444 return;
445 }
446
447 x86_stihlt();
448 break;
449 }
450 }
451
452 int
453 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
454 {
455 uint64_t xc, val;
456
457 switch (cpu_vendor) {
458
459 case CPUVENDOR_IDT:
460 case CPUVENDOR_INTEL:
461
462 /*
463 * Make sure EST is enabled.
464 */
465 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
466
467 val = rdmsr(MSR_MISC_ENABLE);
468
469 if ((val & MSR_MISC_ENABLE_EST) == 0) {
470
471 val |= MSR_MISC_ENABLE_EST;
472 wrmsr(MSR_MISC_ENABLE, val);
473 val = rdmsr(MSR_MISC_ENABLE);
474
475 if ((val & MSR_MISC_ENABLE_EST) == 0)
476 return ENOTTY;
477 }
478 }
479 }
480
481 /*
482 * Reset the APERF and MPERF counters.
483 */
484 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
485 xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
486 xc_wait(xc);
487 }
488
489 return acpicpu_md_pstate_sysctl_init();
490 }
491
492 int
493 acpicpu_md_pstate_stop(void)
494 {
495
496 if (acpicpu_log == NULL)
497 return EALREADY;
498
499 sysctl_teardown(&acpicpu_log);
500 acpicpu_log = NULL;
501
502 return 0;
503 }
504
505 int
506 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
507 {
508 struct cpu_info *ci = sc->sc_ci;
509 struct acpicpu_pstate *ps, msr;
510 uint32_t family, i = 0;
511
512 (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
513
514 switch (cpu_vendor) {
515
516 case CPUVENDOR_IDT:
517 case CPUVENDOR_INTEL:
518
519 /*
520 * If the so-called Turbo Boost is present,
521 * the P0-state is always the "turbo state".
522 * It is shown as the P1 frequency + 1 MHz.
523 *
524 * For discussion, see:
525 *
526 * Intel Corporation: Intel Turbo Boost Technology
527 * in Intel Core(tm) Microarchitectures (Nehalem)
528 * Based Processors. White Paper, November 2008.
529 */
530 if (sc->sc_pstate_count >= 2 &&
531 (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
532
533 ps = &sc->sc_pstate[0];
534
535 if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
536 ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
537 }
538
539 msr.ps_control_addr = MSR_PERF_CTL;
540 msr.ps_control_mask = __BITS(0, 15);
541
542 msr.ps_status_addr = MSR_PERF_STATUS;
543 msr.ps_status_mask = __BITS(0, 15);
544 break;
545
546 case CPUVENDOR_AMD:
547
548 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
549 msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
550
551 family = CPUID_TO_FAMILY(ci->ci_signature);
552
553 switch (family) {
554
555 case 0x0f:
556 msr.ps_control_addr = MSR_0FH_CONTROL;
557 msr.ps_status_addr = MSR_0FH_STATUS;
558 break;
559
560 case 0x10:
561 case 0x11:
562 case 0x12:
563 case 0x14:
564 case 0x15:
565 msr.ps_control_addr = MSR_10H_CONTROL;
566 msr.ps_control_mask = __BITS(0, 2);
567
568 msr.ps_status_addr = MSR_10H_STATUS;
569 msr.ps_status_mask = __BITS(0, 2);
570 break;
571
572 default:
573 /*
574 * If we have an unknown AMD CPU, rely on XPSS.
575 */
576 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
577 return EOPNOTSUPP;
578 }
579
580 break;
581
582 default:
583 return ENODEV;
584 }
585
586 /*
587 * Fill the P-state structures with MSR addresses that are
588 * known to be correct. If we do not know the addresses,
589 * leave the values intact. If a vendor uses XPSS, we do
590 * not necessarily need to do anything to support new CPUs.
591 */
592 while (i < sc->sc_pstate_count) {
593
594 ps = &sc->sc_pstate[i];
595
596 if (msr.ps_flags != 0)
597 ps->ps_flags |= msr.ps_flags;
598
599 if (msr.ps_status_addr != 0)
600 ps->ps_status_addr = msr.ps_status_addr;
601
602 if (msr.ps_status_mask != 0)
603 ps->ps_status_mask = msr.ps_status_mask;
604
605 if (msr.ps_control_addr != 0)
606 ps->ps_control_addr = msr.ps_control_addr;
607
608 if (msr.ps_control_mask != 0)
609 ps->ps_control_mask = msr.ps_control_mask;
610
611 i++;
612 }
613
614 return 0;
615 }
616
617 /*
618 * Read the IA32_APERF and IA32_MPERF counters. The first
619 * increments at the rate of the fixed maximum frequency
620 * configured during the boot, whereas APERF counts at the
621 * rate of the actual frequency. Note that the MSRs must be
622 * read without delay, and that only the ratio between
623 * IA32_APERF and IA32_MPERF is architecturally defined.
624 *
625 * The function thus returns the percentage of the actual
626 * frequency in terms of the maximum frequency of the calling
627 * CPU since the last call. A value zero implies an error.
628 *
629 * For further details, refer to:
630 *
631 * Intel Corporation: Intel 64 and IA-32 Architectures
632 * Software Developer's Manual. Section 13.2, Volume 3A:
633 * System Programming Guide, Part 1. July, 2008.
634 *
635 * Advanced Micro Devices: BIOS and Kernel Developer's
636 * Guide (BKDG) for AMD Family 10h Processors. Section
637 * 2.4.5, Revision 3.48, April 2010.
638 */
639 uint8_t
640 acpicpu_md_pstate_hwf(struct cpu_info *ci)
641 {
642 struct acpicpu_softc *sc;
643 uint64_t aperf, mperf;
644 uint8_t rv = 0;
645
646 sc = acpicpu_sc[ci->ci_acpiid];
647
648 if (__predict_false(sc == NULL))
649 return 0;
650
651 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
652 return 0;
653
654 aperf = sc->sc_pstate_aperf;
655 mperf = sc->sc_pstate_mperf;
656
657 x86_disable_intr();
658
659 sc->sc_pstate_aperf = rdmsr(MSR_APERF);
660 sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
661
662 x86_enable_intr();
663
664 aperf = sc->sc_pstate_aperf - aperf;
665 mperf = sc->sc_pstate_mperf - mperf;
666
667 if (__predict_true(mperf != 0))
668 rv = (aperf * 100) / mperf;
669
670 return rv;
671 }
672
673 static void
674 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
675 {
676 struct cpu_info *ci = curcpu();
677 struct acpicpu_softc *sc;
678
679 sc = acpicpu_sc[ci->ci_acpiid];
680
681 if (__predict_false(sc == NULL))
682 return;
683
684 x86_disable_intr();
685
686 wrmsr(MSR_APERF, 0);
687 wrmsr(MSR_MPERF, 0);
688
689 x86_enable_intr();
690
691 sc->sc_pstate_aperf = 0;
692 sc->sc_pstate_mperf = 0;
693 }
694
695 int
696 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
697 {
698 struct acpicpu_pstate *ps = NULL;
699 uint64_t val;
700 uint32_t i;
701
702 if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
703 return acpicpu_md_pstate_fidvid_get(sc, freq);
704
705 /*
706 * Pick any P-state for the status address.
707 */
708 for (i = 0; i < sc->sc_pstate_count; i++) {
709
710 ps = &sc->sc_pstate[i];
711
712 if (__predict_true(ps->ps_freq != 0))
713 break;
714 }
715
716 if (__predict_false(ps == NULL))
717 return ENODEV;
718
719 if (__predict_false(ps->ps_status_addr == 0))
720 return EINVAL;
721
722 val = rdmsr(ps->ps_status_addr);
723
724 if (__predict_true(ps->ps_status_mask != 0))
725 val = val & ps->ps_status_mask;
726
727 /*
728 * Search for the value from known P-states.
729 */
730 for (i = 0; i < sc->sc_pstate_count; i++) {
731
732 ps = &sc->sc_pstate[i];
733
734 if (__predict_false(ps->ps_freq == 0))
735 continue;
736
737 if (val == ps->ps_status) {
738 *freq = ps->ps_freq;
739 return 0;
740 }
741 }
742
743 /*
744 * If the value was not found, try APERF/MPERF.
745 * The state is P0 if the return value is 100 %.
746 */
747 if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
748
749 KASSERT(sc->sc_pstate_count > 0);
750 KASSERT(sc->sc_pstate[0].ps_freq != 0);
751
752 if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
753 *freq = sc->sc_pstate[0].ps_freq;
754 return 0;
755 }
756 }
757
758 return EIO;
759 }
760
761 int
762 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
763 {
764 uint64_t val = 0;
765
766 if (__predict_false(ps->ps_control_addr == 0))
767 return EINVAL;
768
769 if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
770 return acpicpu_md_pstate_fidvid_set(ps);
771
772 /*
773 * If the mask is set, do a read-modify-write.
774 */
775 if (__predict_true(ps->ps_control_mask != 0)) {
776 val = rdmsr(ps->ps_control_addr);
777 val &= ~ps->ps_control_mask;
778 }
779
780 val |= ps->ps_control;
781
782 wrmsr(ps->ps_control_addr, val);
783 DELAY(ps->ps_latency);
784
785 return 0;
786 }
787
788 static int
789 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
790 {
791 struct acpicpu_pstate *ps;
792 uint32_t fid, i, vid;
793 uint32_t cfid, cvid;
794 int rv;
795
796 /*
797 * AMD family 0Fh needs special treatment.
798 * While it wants to use ACPI, it does not
799 * comply with the ACPI specifications.
800 */
801 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
802
803 if (rv != 0)
804 return rv;
805
806 for (i = 0; i < sc->sc_pstate_count; i++) {
807
808 ps = &sc->sc_pstate[i];
809
810 if (__predict_false(ps->ps_freq == 0))
811 continue;
812
813 fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
814 vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
815
816 if (cfid == fid && cvid == vid) {
817 *freq = ps->ps_freq;
818 return 0;
819 }
820 }
821
822 return EIO;
823 }
824
825 static int
826 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
827 {
828 const uint64_t ctrl = ps->ps_control;
829 uint32_t cfid, cvid, fid, i, irt;
830 uint32_t pll, vco_cfid, vco_fid;
831 uint32_t val, vid, vst;
832 int rv;
833
834 rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
835
836 if (rv != 0)
837 return rv;
838
839 fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
840 vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
841 irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
842 vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
843 pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
844
845 vst = vst * 20;
846 pll = pll * 1000 / 5;
847 irt = 10 * __BIT(irt);
848
849 /*
850 * Phase 1.
851 */
852 while (cvid > vid) {
853
854 val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
855 val = (val > cvid) ? 0 : cvid - val;
856
857 acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
858 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
859
860 if (rv != 0)
861 return rv;
862 }
863
864 i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
865
866 for (; i > 0 && cvid > 0; --i) {
867
868 acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
869 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
870
871 if (rv != 0)
872 return rv;
873 }
874
875 /*
876 * Phase 2.
877 */
878 if (cfid != fid) {
879
880 vco_fid = FID_TO_VCO_FID(fid);
881 vco_cfid = FID_TO_VCO_FID(cfid);
882
883 while (abs(vco_fid - vco_cfid) > 2) {
884
885 if (fid <= cfid)
886 val = cfid - 2;
887 else {
888 val = (cfid > 6) ? cfid + 2 :
889 FID_TO_VCO_FID(cfid) + 2;
890 }
891
892 acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
893 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
894
895 if (rv != 0)
896 return rv;
897
898 vco_cfid = FID_TO_VCO_FID(cfid);
899 }
900
901 acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
902 rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
903
904 if (rv != 0)
905 return rv;
906 }
907
908 /*
909 * Phase 3.
910 */
911 if (cvid != vid) {
912
913 acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
914 rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
915
916 if (rv != 0)
917 return rv;
918 }
919
920 return 0;
921 }
922
923 static int
924 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
925 {
926 int i = ACPICPU_P_STATE_RETRY * 100;
927 uint64_t val;
928
929 do {
930 val = rdmsr(MSR_0FH_STATUS);
931
932 } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
933
934 if (i == 0)
935 return EAGAIN;
936
937 if (cfid != NULL)
938 *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
939
940 if (cvid != NULL)
941 *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
942
943 return 0;
944 }
945
946 static void
947 acpicpu_md_pstate_fidvid_write(uint32_t fid,
948 uint32_t vid, uint32_t cnt, uint32_t tmo)
949 {
950 uint64_t val = 0;
951
952 val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
953 val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
954 val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
955 val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
956
957 wrmsr(MSR_0FH_CONTROL, val);
958 DELAY(tmo);
959 }
960
961 int
962 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
963 {
964 struct acpicpu_tstate *ts;
965 uint64_t val;
966 uint32_t i;
967
968 val = rdmsr(MSR_THERM_CONTROL);
969
970 for (i = 0; i < sc->sc_tstate_count; i++) {
971
972 ts = &sc->sc_tstate[i];
973
974 if (ts->ts_percent == 0)
975 continue;
976
977 if (val == ts->ts_status) {
978 *percent = ts->ts_percent;
979 return 0;
980 }
981 }
982
983 return EIO;
984 }
985
986 int
987 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
988 {
989 uint64_t val;
990 uint8_t i;
991
992 val = ts->ts_control;
993 val = val & __BITS(0, 4);
994
995 wrmsr(MSR_THERM_CONTROL, val);
996
997 if (ts->ts_status == 0) {
998 DELAY(ts->ts_latency);
999 return 0;
1000 }
1001
1002 for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1003
1004 val = rdmsr(MSR_THERM_CONTROL);
1005
1006 if (val == ts->ts_status)
1007 return 0;
1008
1009 DELAY(ts->ts_latency);
1010 }
1011
1012 return EAGAIN;
1013 }
1014
1015 /*
1016 * A kludge for backwards compatibility.
1017 */
1018 static int
1019 acpicpu_md_pstate_sysctl_init(void)
1020 {
1021 const struct sysctlnode *fnode, *mnode, *rnode;
1022 const char *str;
1023 int rv;
1024
1025 switch (cpu_vendor) {
1026
1027 case CPUVENDOR_IDT:
1028 case CPUVENDOR_INTEL:
1029 str = "est";
1030 break;
1031
1032 case CPUVENDOR_AMD:
1033 str = "powernow";
1034 break;
1035
1036 default:
1037 return ENODEV;
1038 }
1039
1040
1041 rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1042 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1043 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1044
1045 if (rv != 0)
1046 goto fail;
1047
1048 rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1049 0, CTLTYPE_NODE, str, NULL,
1050 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1051
1052 if (rv != 0)
1053 goto fail;
1054
1055 rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1056 0, CTLTYPE_NODE, "frequency", NULL,
1057 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1058
1059 if (rv != 0)
1060 goto fail;
1061
1062 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1063 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1064 acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1065
1066 if (rv != 0)
1067 goto fail;
1068
1069 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1070 CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1071 acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1072
1073 if (rv != 0)
1074 goto fail;
1075
1076 rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1077 CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1078 acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1079
1080 if (rv != 0)
1081 goto fail;
1082
1083 return 0;
1084
1085 fail:
1086 if (acpicpu_log != NULL) {
1087 sysctl_teardown(&acpicpu_log);
1088 acpicpu_log = NULL;
1089 }
1090
1091 return rv;
1092 }
1093
1094 static int
1095 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1096 {
1097 struct sysctlnode node;
1098 uint32_t freq;
1099 int err;
1100
1101 freq = cpufreq_get(curcpu());
1102
1103 if (freq == 0)
1104 return ENXIO;
1105
1106 node = *rnode;
1107 node.sysctl_data = &freq;
1108
1109 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1110
1111 if (err != 0 || newp == NULL)
1112 return err;
1113
1114 return 0;
1115 }
1116
1117 static int
1118 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1119 {
1120 struct sysctlnode node;
1121 uint32_t freq;
1122 int err;
1123
1124 freq = cpufreq_get(curcpu());
1125
1126 if (freq == 0)
1127 return ENXIO;
1128
1129 node = *rnode;
1130 node.sysctl_data = &freq;
1131
1132 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1133
1134 if (err != 0 || newp == NULL)
1135 return err;
1136
1137 cpufreq_set_all(freq);
1138
1139 return 0;
1140 }
1141
1142 static int
1143 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1144 {
1145 struct cpu_info *ci = curcpu();
1146 struct acpicpu_softc *sc;
1147 struct sysctlnode node;
1148 char buf[1024];
1149 size_t len;
1150 uint32_t i;
1151 int err;
1152
1153 sc = acpicpu_sc[ci->ci_acpiid];
1154
1155 if (sc == NULL)
1156 return ENXIO;
1157
1158 (void)memset(&buf, 0, sizeof(buf));
1159
1160 mutex_enter(&sc->sc_mtx);
1161
1162 for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1163
1164 if (sc->sc_pstate[i].ps_freq == 0)
1165 continue;
1166
1167 if (len >= sizeof(buf))
1168 break;
1169 len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1170 sc->sc_pstate[i].ps_freq,
1171 i < (sc->sc_pstate_count - 1) ? " " : "");
1172 }
1173
1174 mutex_exit(&sc->sc_mtx);
1175
1176 node = *rnode;
1177 node.sysctl_data = buf;
1178
1179 err = sysctl_lookup(SYSCTLFN_CALL(&node));
1180
1181 if (err != 0 || newp == NULL)
1182 return err;
1183
1184 return 0;
1185 }
1186
1187