Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.82
      1 /* $NetBSD: acpi_cpu_md.c,v 1.82 2020/03/14 13:50:46 ad Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.82 2020/03/14 13:50:46 ad Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/machdep.h>
     45 #include <x86/x86/tsc.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 #ifdef ACPICPU_ENABLE_C3
    107 static char	  native_idle_text[16];
    108 void		(*native_idle)(void) = NULL;
    109 #endif
    110 
    111 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    112 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    113 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    114                                               uint32_t *);
    115 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    116 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    117 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    118 					        uint32_t, uint32_t);
    119 static int	 acpicpu_md_pstate_sysctl_init(void);
    120 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    121 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    122 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    123 
    124 extern struct acpicpu_softc **acpicpu_sc;
    125 static struct sysctllog *acpicpu_log = NULL;
    126 
    127 struct cpu_info *
    128 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    129 {
    130 	struct cpufeature_attach_args *cfaa = aux;
    131 
    132 	if (strcmp(cfaa->name, "frequency") != 0)
    133 		return NULL;
    134 
    135 	return cfaa->ci;
    136 }
    137 
    138 struct cpu_info *
    139 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    140 {
    141 	struct cpufeature_attach_args *cfaa = aux;
    142 
    143 	return cfaa->ci;
    144 }
    145 
    146 uint32_t
    147 acpicpu_md_flags(void)
    148 {
    149 	struct cpu_info *ci = curcpu();
    150 	struct pci_attach_args pa;
    151 	uint32_t family, val = 0;
    152 	uint32_t regs[4];
    153 	uint64_t msr;
    154 
    155 	if (acpi_md_ncpus() == 1)
    156 		val |= ACPICPU_FLAG_C_BM;
    157 
    158 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    159 		val |= ACPICPU_FLAG_C_FFH;
    160 
    161 	/*
    162 	 * By default, assume that the local APIC timer
    163 	 * as well as TSC are stalled during C3 sleep.
    164 	 */
    165 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    166 
    167 	/*
    168 	 * Detect whether TSC is invariant. If it is not, we keep the flag to
    169 	 * note that TSC will not run at constant rate. Depending on the CPU,
    170 	 * this may affect P- and T-state changes, but especially relevant
    171 	 * are C-states; with variant TSC, states larger than C1 may
    172 	 * completely stop the counter.
    173 	 */
    174 	if (tsc_is_invariant())
    175 		val &= ~ACPICPU_FLAG_C_TSC;
    176 
    177 	switch (cpu_vendor) {
    178 
    179 	case CPUVENDOR_IDT:
    180 
    181 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    182 			val |= ACPICPU_FLAG_P_FFH;
    183 
    184 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    185 			val |= ACPICPU_FLAG_T_FFH;
    186 
    187 		break;
    188 
    189 	case CPUVENDOR_INTEL:
    190 
    191 		/*
    192 		 * Bus master control and arbitration should be
    193 		 * available on all supported Intel CPUs (to be
    194 		 * sure, this is double-checked later from the
    195 		 * firmware data). These flags imply that it is
    196 		 * not necessary to flush caches before C3 state.
    197 		 */
    198 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    199 
    200 		/*
    201 		 * Check if we can use "native", MSR-based,
    202 		 * access. If not, we have to resort to I/O.
    203 		 */
    204 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    205 			val |= ACPICPU_FLAG_P_FFH;
    206 
    207 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    208 			val |= ACPICPU_FLAG_T_FFH;
    209 
    210 		/*
    211 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    212 		 * Boost are available. Also see if we might have
    213 		 * an invariant local APIC timer ("ARAT").
    214 		 */
    215 		if (cpuid_level >= 0x06) {
    216 
    217 			x86_cpuid(0x00000006, regs);
    218 
    219 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    220 				val |= ACPICPU_FLAG_P_HWF;
    221 
    222 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    223 				val |= ACPICPU_FLAG_P_TURBO;
    224 
    225 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    226 				val &= ~ACPICPU_FLAG_C_APIC;
    227 
    228 		}
    229 
    230 		break;
    231 
    232 	case CPUVENDOR_AMD:
    233 
    234 		x86_cpuid(0x80000000, regs);
    235 
    236 		if (regs[0] < 0x80000007)
    237 			break;
    238 
    239 		x86_cpuid(0x80000007, regs);
    240 
    241 		family = CPUID_TO_FAMILY(ci->ci_signature);
    242 
    243     		switch (family) {
    244 
    245 		case 0x0f:
    246 
    247 			/*
    248 			 * Disable C1E if present.
    249 			 */
    250 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    251 				val |= ACPICPU_FLAG_C_C1E;
    252 
    253 			/*
    254 			 * Evaluate support for the "FID/VID
    255 			 * algorithm" also used by powernow(4).
    256 			 */
    257 			if ((regs[3] & CPUID_APM_FID) == 0)
    258 				break;
    259 
    260 			if ((regs[3] & CPUID_APM_VID) == 0)
    261 				break;
    262 
    263 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    264 			break;
    265 
    266 		case 0x10:
    267 		case 0x11:
    268 
    269 			/*
    270 			 * Disable C1E if present.
    271 			 */
    272 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    273 				val |= ACPICPU_FLAG_C_C1E;
    274 
    275 			/* FALLTHROUGH */
    276 
    277 		case 0x12:
    278 		case 0x14: /* AMD Fusion */
    279 		case 0x15: /* AMD Bulldozer */
    280 
    281 			/*
    282 			 * Like with Intel, detect MSR-based P-states,
    283 			 * and AMD's "turbo" (Core Performance Boost),
    284 			 * respectively.
    285 			 */
    286 			if ((regs[3] & CPUID_APM_HWP) != 0)
    287 				val |= ACPICPU_FLAG_P_FFH;
    288 
    289 			if ((regs[3] & CPUID_APM_CPB) != 0)
    290 				val |= ACPICPU_FLAG_P_TURBO;
    291 
    292 			/*
    293 			 * Also check for APERF and MPERF,
    294 			 * first available in the family 10h.
    295 			 */
    296 			if (cpuid_level >= 0x06) {
    297 
    298 				x86_cpuid(0x00000006, regs);
    299 
    300 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    301 					val |= ACPICPU_FLAG_P_HWF;
    302 			}
    303 
    304 			break;
    305 		}
    306 
    307 		break;
    308 	}
    309 
    310 	/*
    311 	 * There are several erratums for PIIX4.
    312 	 */
    313 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    314 		val |= ACPICPU_FLAG_PIIX4;
    315 
    316 	return val;
    317 }
    318 
    319 static int
    320 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    321 {
    322 
    323 	/*
    324 	 * XXX: The pci_find_device(9) function only
    325 	 *	deals with attached devices. Change this
    326 	 *	to use something like pci_device_foreach().
    327 	 */
    328 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    329 		return 0;
    330 
    331 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    332 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    333 		return 1;
    334 
    335 	return 0;
    336 }
    337 
    338 void
    339 acpicpu_md_quirk_c1e(void)
    340 {
    341 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    342 	uint64_t val;
    343 
    344 	val = rdmsr(MSR_CMPHALT);
    345 
    346 	if ((val & c1e) != 0)
    347 		wrmsr(MSR_CMPHALT, val & ~c1e);
    348 }
    349 
    350 int
    351 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    352 {
    353 #ifdef ACPICPU_ENABLE_C3
    354 	/*
    355 	 * XXX There are performance problems with the ACPI idle loop, and
    356 	 * it does not enter deep sleep.  Once those are resolved it'll be
    357 	 * re-enabled.
    358 	 */
    359 	const size_t size = sizeof(native_idle_text);
    360 	struct acpicpu_cstate *cs;
    361 	bool ipi = false;
    362 	int i;
    363 
    364 	/*
    365 	 * Save the cpu_idle(9) loop used by default.
    366 	 */
    367 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    368 
    369 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    370 
    371 		cs = &sc->sc_cstate[i];
    372 
    373 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    374 			ipi = true;
    375 			break;
    376 		}
    377 	}
    378 
    379 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    380 #endif	/* ACPICPU_ENABLE_C3 */
    381 
    382 	return 0;
    383 }
    384 
    385 int
    386 acpicpu_md_cstate_stop(void)
    387 {
    388 #ifdef ACPICPU_ENABLE_C3
    389 	/*
    390 	 * XXX There are performance problems with the ACPI idle loop, and
    391 	 * it does not enter deep sleep.  Once those are resolved it'll be
    392 	 * re-enabled.
    393 	 */
    394 	static char text[16];
    395 	void (*func)(void);
    396 	bool ipi;
    397 
    398 	x86_cpu_idle_get(&func, text, sizeof(text));
    399 
    400 	if (func == native_idle)
    401 		return EALREADY;
    402 
    403 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    404 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    405 
    406 	/*
    407 	 * Run a cross-call to ensure that all CPUs are
    408 	 * out from the ACPI idle-loop before detachment.
    409 	 */
    410 	xc_barrier(0);
    411 #endif	/* ACPICPU_ENABLE_C3 */
    412 
    413 	return 0;
    414 }
    415 
    416 /*
    417  * Called with interrupts enabled.
    418  */
    419 void __nocsan
    420 acpicpu_md_cstate_enter(int method, int state)
    421 {
    422 	struct cpu_info *ci = curcpu();
    423 
    424 	KASSERT(ci->ci_ilevel == IPL_NONE);
    425 
    426 	switch (method) {
    427 
    428 	case ACPICPU_C_STATE_FFH:
    429 
    430 		x86_monitor(&ci->ci_want_resched, 0, 0);
    431 
    432 		if (__predict_false(ci->ci_want_resched != 0))
    433 			return;
    434 
    435 		x86_mwait((state - 1) << 4, 0);
    436 		break;
    437 
    438 	case ACPICPU_C_STATE_HALT:
    439 
    440 		x86_disable_intr();
    441 
    442 		if (__predict_false(ci->ci_want_resched != 0)) {
    443 			x86_enable_intr();
    444 			return;
    445 		}
    446 
    447 		x86_stihlt();
    448 		break;
    449 	}
    450 }
    451 
    452 int
    453 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    454 {
    455 	uint64_t xc, val;
    456 
    457 	switch (cpu_vendor) {
    458 
    459 	case CPUVENDOR_IDT:
    460 	case CPUVENDOR_INTEL:
    461 
    462 		/*
    463 		 * Make sure EST is enabled.
    464 		 */
    465 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    466 
    467 			val = rdmsr(MSR_MISC_ENABLE);
    468 
    469 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    470 
    471 				val |= MSR_MISC_ENABLE_EST;
    472 				wrmsr(MSR_MISC_ENABLE, val);
    473 				val = rdmsr(MSR_MISC_ENABLE);
    474 
    475 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    476 					return ENOTTY;
    477 			}
    478 		}
    479 	}
    480 
    481 	/*
    482 	 * Reset the APERF and MPERF counters.
    483 	 */
    484 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    485 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    486 		xc_wait(xc);
    487 	}
    488 
    489 	return acpicpu_md_pstate_sysctl_init();
    490 }
    491 
    492 int
    493 acpicpu_md_pstate_stop(void)
    494 {
    495 
    496 	if (acpicpu_log == NULL)
    497 		return EALREADY;
    498 
    499 	sysctl_teardown(&acpicpu_log);
    500 	acpicpu_log = NULL;
    501 
    502 	return 0;
    503 }
    504 
    505 int
    506 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    507 {
    508 	struct cpu_info *ci = sc->sc_ci;
    509 	struct acpicpu_pstate *ps, msr;
    510 	uint32_t family, i = 0;
    511 
    512 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    513 
    514 	switch (cpu_vendor) {
    515 
    516 	case CPUVENDOR_IDT:
    517 	case CPUVENDOR_INTEL:
    518 
    519 		/*
    520 		 * If the so-called Turbo Boost is present,
    521 		 * the P0-state is always the "turbo state".
    522 		 * It is shown as the P1 frequency + 1 MHz.
    523 		 *
    524 		 * For discussion, see:
    525 		 *
    526 		 *	Intel Corporation: Intel Turbo Boost Technology
    527 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    528 		 *	Based Processors. White Paper, November 2008.
    529 		 */
    530 		if (sc->sc_pstate_count >= 2 &&
    531 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    532 
    533 			ps = &sc->sc_pstate[0];
    534 
    535 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    536 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    537 		}
    538 
    539 		msr.ps_control_addr = MSR_PERF_CTL;
    540 		msr.ps_control_mask = __BITS(0, 15);
    541 
    542 		msr.ps_status_addr  = MSR_PERF_STATUS;
    543 		msr.ps_status_mask  = __BITS(0, 15);
    544 		break;
    545 
    546 	case CPUVENDOR_AMD:
    547 
    548 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    549 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    550 
    551 		family = CPUID_TO_FAMILY(ci->ci_signature);
    552 
    553 		switch (family) {
    554 
    555 		case 0x0f:
    556 			msr.ps_control_addr = MSR_0FH_CONTROL;
    557 			msr.ps_status_addr  = MSR_0FH_STATUS;
    558 			break;
    559 
    560 		case 0x10:
    561 		case 0x11:
    562 		case 0x12:
    563 		case 0x14:
    564 		case 0x15:
    565 			msr.ps_control_addr = MSR_10H_CONTROL;
    566 			msr.ps_control_mask = __BITS(0, 2);
    567 
    568 			msr.ps_status_addr  = MSR_10H_STATUS;
    569 			msr.ps_status_mask  = __BITS(0, 2);
    570 			break;
    571 
    572 		default:
    573 			/*
    574 			 * If we have an unknown AMD CPU, rely on XPSS.
    575 			 */
    576 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    577 				return EOPNOTSUPP;
    578 		}
    579 
    580 		break;
    581 
    582 	default:
    583 		return ENODEV;
    584 	}
    585 
    586 	/*
    587 	 * Fill the P-state structures with MSR addresses that are
    588 	 * known to be correct. If we do not know the addresses,
    589 	 * leave the values intact. If a vendor uses XPSS, we do
    590 	 * not necessarily need to do anything to support new CPUs.
    591 	 */
    592 	while (i < sc->sc_pstate_count) {
    593 
    594 		ps = &sc->sc_pstate[i];
    595 
    596 		if (msr.ps_flags != 0)
    597 			ps->ps_flags |= msr.ps_flags;
    598 
    599 		if (msr.ps_status_addr != 0)
    600 			ps->ps_status_addr = msr.ps_status_addr;
    601 
    602 		if (msr.ps_status_mask != 0)
    603 			ps->ps_status_mask = msr.ps_status_mask;
    604 
    605 		if (msr.ps_control_addr != 0)
    606 			ps->ps_control_addr = msr.ps_control_addr;
    607 
    608 		if (msr.ps_control_mask != 0)
    609 			ps->ps_control_mask = msr.ps_control_mask;
    610 
    611 		i++;
    612 	}
    613 
    614 	return 0;
    615 }
    616 
    617 /*
    618  * Read the IA32_APERF and IA32_MPERF counters. The first
    619  * increments at the rate of the fixed maximum frequency
    620  * configured during the boot, whereas APERF counts at the
    621  * rate of the actual frequency. Note that the MSRs must be
    622  * read without delay, and that only the ratio between
    623  * IA32_APERF and IA32_MPERF is architecturally defined.
    624  *
    625  * The function thus returns the percentage of the actual
    626  * frequency in terms of the maximum frequency of the calling
    627  * CPU since the last call. A value zero implies an error.
    628  *
    629  * For further details, refer to:
    630  *
    631  *	Intel Corporation: Intel 64 and IA-32 Architectures
    632  *	Software Developer's Manual. Section 13.2, Volume 3A:
    633  *	System Programming Guide, Part 1. July, 2008.
    634  *
    635  *	Advanced Micro Devices: BIOS and Kernel Developer's
    636  *	Guide (BKDG) for AMD Family 10h Processors. Section
    637  *	2.4.5, Revision 3.48, April 2010.
    638  */
    639 uint8_t
    640 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    641 {
    642 	struct acpicpu_softc *sc;
    643 	uint64_t aperf, mperf;
    644 	uint8_t rv = 0;
    645 
    646 	sc = acpicpu_sc[ci->ci_acpiid];
    647 
    648 	if (__predict_false(sc == NULL))
    649 		return 0;
    650 
    651 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    652 		return 0;
    653 
    654 	aperf = sc->sc_pstate_aperf;
    655 	mperf = sc->sc_pstate_mperf;
    656 
    657 	x86_disable_intr();
    658 
    659 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    660 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    661 
    662 	x86_enable_intr();
    663 
    664 	aperf = sc->sc_pstate_aperf - aperf;
    665 	mperf = sc->sc_pstate_mperf - mperf;
    666 
    667 	if (__predict_true(mperf != 0))
    668 		rv = (aperf * 100) / mperf;
    669 
    670 	return rv;
    671 }
    672 
    673 static void
    674 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    675 {
    676 	struct cpu_info *ci = curcpu();
    677 	struct acpicpu_softc *sc;
    678 
    679 	sc = acpicpu_sc[ci->ci_acpiid];
    680 
    681 	if (__predict_false(sc == NULL))
    682 		return;
    683 
    684 	x86_disable_intr();
    685 
    686 	wrmsr(MSR_APERF, 0);
    687 	wrmsr(MSR_MPERF, 0);
    688 
    689 	x86_enable_intr();
    690 
    691 	sc->sc_pstate_aperf = 0;
    692 	sc->sc_pstate_mperf = 0;
    693 }
    694 
    695 int
    696 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    697 {
    698 	struct acpicpu_pstate *ps = NULL;
    699 	uint64_t val;
    700 	uint32_t i;
    701 
    702 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    703 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    704 
    705 	/*
    706 	 * Pick any P-state for the status address.
    707 	 */
    708 	for (i = 0; i < sc->sc_pstate_count; i++) {
    709 
    710 		ps = &sc->sc_pstate[i];
    711 
    712 		if (__predict_true(ps->ps_freq != 0))
    713 			break;
    714 	}
    715 
    716 	if (__predict_false(ps == NULL))
    717 		return ENODEV;
    718 
    719 	if (__predict_false(ps->ps_status_addr == 0))
    720 		return EINVAL;
    721 
    722 	val = rdmsr(ps->ps_status_addr);
    723 
    724 	if (__predict_true(ps->ps_status_mask != 0))
    725 		val = val & ps->ps_status_mask;
    726 
    727 	/*
    728 	 * Search for the value from known P-states.
    729 	 */
    730 	for (i = 0; i < sc->sc_pstate_count; i++) {
    731 
    732 		ps = &sc->sc_pstate[i];
    733 
    734 		if (__predict_false(ps->ps_freq == 0))
    735 			continue;
    736 
    737 		if (val == ps->ps_status) {
    738 			*freq = ps->ps_freq;
    739 			return 0;
    740 		}
    741 	}
    742 
    743 	/*
    744 	 * If the value was not found, try APERF/MPERF.
    745 	 * The state is P0 if the return value is 100 %.
    746 	 */
    747 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    748 
    749 		KASSERT(sc->sc_pstate_count > 0);
    750 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    751 
    752 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    753 			*freq = sc->sc_pstate[0].ps_freq;
    754 			return 0;
    755 		}
    756 	}
    757 
    758 	return EIO;
    759 }
    760 
    761 int
    762 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    763 {
    764 	uint64_t val = 0;
    765 
    766 	if (__predict_false(ps->ps_control_addr == 0))
    767 		return EINVAL;
    768 
    769 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    770 		return acpicpu_md_pstate_fidvid_set(ps);
    771 
    772 	/*
    773 	 * If the mask is set, do a read-modify-write.
    774 	 */
    775 	if (__predict_true(ps->ps_control_mask != 0)) {
    776 		val = rdmsr(ps->ps_control_addr);
    777 		val &= ~ps->ps_control_mask;
    778 	}
    779 
    780 	val |= ps->ps_control;
    781 
    782 	wrmsr(ps->ps_control_addr, val);
    783 	DELAY(ps->ps_latency);
    784 
    785 	return 0;
    786 }
    787 
    788 static int
    789 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    790 {
    791 	struct acpicpu_pstate *ps;
    792 	uint32_t fid, i, vid;
    793 	uint32_t cfid, cvid;
    794 	int rv;
    795 
    796 	/*
    797 	 * AMD family 0Fh needs special treatment.
    798 	 * While it wants to use ACPI, it does not
    799 	 * comply with the ACPI specifications.
    800 	 */
    801 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    802 
    803 	if (rv != 0)
    804 		return rv;
    805 
    806 	for (i = 0; i < sc->sc_pstate_count; i++) {
    807 
    808 		ps = &sc->sc_pstate[i];
    809 
    810 		if (__predict_false(ps->ps_freq == 0))
    811 			continue;
    812 
    813 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    814 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    815 
    816 		if (cfid == fid && cvid == vid) {
    817 			*freq = ps->ps_freq;
    818 			return 0;
    819 		}
    820 	}
    821 
    822 	return EIO;
    823 }
    824 
    825 static int
    826 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    827 {
    828 	const uint64_t ctrl = ps->ps_control;
    829 	uint32_t cfid, cvid, fid, i, irt;
    830 	uint32_t pll, vco_cfid, vco_fid;
    831 	uint32_t val, vid, vst;
    832 	int rv;
    833 
    834 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    835 
    836 	if (rv != 0)
    837 		return rv;
    838 
    839 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    840 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    841 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    842 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    843 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    844 
    845 	vst = vst * 20;
    846 	pll = pll * 1000 / 5;
    847 	irt = 10 * __BIT(irt);
    848 
    849 	/*
    850 	 * Phase 1.
    851 	 */
    852 	while (cvid > vid) {
    853 
    854 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    855 		val = (val > cvid) ? 0 : cvid - val;
    856 
    857 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    858 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    859 
    860 		if (rv != 0)
    861 			return rv;
    862 	}
    863 
    864 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    865 
    866 	for (; i > 0 && cvid > 0; --i) {
    867 
    868 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    869 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    870 
    871 		if (rv != 0)
    872 			return rv;
    873 	}
    874 
    875 	/*
    876 	 * Phase 2.
    877 	 */
    878 	if (cfid != fid) {
    879 
    880 		vco_fid  = FID_TO_VCO_FID(fid);
    881 		vco_cfid = FID_TO_VCO_FID(cfid);
    882 
    883 		while (abs(vco_fid - vco_cfid) > 2) {
    884 
    885 			if (fid <= cfid)
    886 				val = cfid - 2;
    887 			else {
    888 				val = (cfid > 6) ? cfid + 2 :
    889 				    FID_TO_VCO_FID(cfid) + 2;
    890 			}
    891 
    892 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    893 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    894 
    895 			if (rv != 0)
    896 				return rv;
    897 
    898 			vco_cfid = FID_TO_VCO_FID(cfid);
    899 		}
    900 
    901 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    902 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    903 
    904 		if (rv != 0)
    905 			return rv;
    906 	}
    907 
    908 	/*
    909 	 * Phase 3.
    910 	 */
    911 	if (cvid != vid) {
    912 
    913 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    914 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    915 
    916 		if (rv != 0)
    917 			return rv;
    918 	}
    919 
    920 	return 0;
    921 }
    922 
    923 static int
    924 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    925 {
    926 	int i = ACPICPU_P_STATE_RETRY * 100;
    927 	uint64_t val;
    928 
    929 	do {
    930 		val = rdmsr(MSR_0FH_STATUS);
    931 
    932 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    933 
    934 	if (i == 0)
    935 		return EAGAIN;
    936 
    937 	if (cfid != NULL)
    938 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    939 
    940 	if (cvid != NULL)
    941 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    942 
    943 	return 0;
    944 }
    945 
    946 static void
    947 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    948     uint32_t vid, uint32_t cnt, uint32_t tmo)
    949 {
    950 	uint64_t val = 0;
    951 
    952 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    953 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    954 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    955 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    956 
    957 	wrmsr(MSR_0FH_CONTROL, val);
    958 	DELAY(tmo);
    959 }
    960 
    961 int
    962 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    963 {
    964 	struct acpicpu_tstate *ts;
    965 	uint64_t val;
    966 	uint32_t i;
    967 
    968 	val = rdmsr(MSR_THERM_CONTROL);
    969 
    970 	for (i = 0; i < sc->sc_tstate_count; i++) {
    971 
    972 		ts = &sc->sc_tstate[i];
    973 
    974 		if (ts->ts_percent == 0)
    975 			continue;
    976 
    977 		if (val == ts->ts_status) {
    978 			*percent = ts->ts_percent;
    979 			return 0;
    980 		}
    981 	}
    982 
    983 	return EIO;
    984 }
    985 
    986 int
    987 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    988 {
    989 	uint64_t val;
    990 	uint8_t i;
    991 
    992 	val = ts->ts_control;
    993 	val = val & __BITS(0, 4);
    994 
    995 	wrmsr(MSR_THERM_CONTROL, val);
    996 
    997 	if (ts->ts_status == 0) {
    998 		DELAY(ts->ts_latency);
    999 		return 0;
   1000 	}
   1001 
   1002 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1003 
   1004 		val = rdmsr(MSR_THERM_CONTROL);
   1005 
   1006 		if (val == ts->ts_status)
   1007 			return 0;
   1008 
   1009 		DELAY(ts->ts_latency);
   1010 	}
   1011 
   1012 	return EAGAIN;
   1013 }
   1014 
   1015 /*
   1016  * A kludge for backwards compatibility.
   1017  */
   1018 static int
   1019 acpicpu_md_pstate_sysctl_init(void)
   1020 {
   1021 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1022 	const char *str;
   1023 	int rv;
   1024 
   1025 	switch (cpu_vendor) {
   1026 
   1027 	case CPUVENDOR_IDT:
   1028 	case CPUVENDOR_INTEL:
   1029 		str = "est";
   1030 		break;
   1031 
   1032 	case CPUVENDOR_AMD:
   1033 		str = "powernow";
   1034 		break;
   1035 
   1036 	default:
   1037 		return ENODEV;
   1038 	}
   1039 
   1040 
   1041 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1042 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1043 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1044 
   1045 	if (rv != 0)
   1046 		goto fail;
   1047 
   1048 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1049 	    0, CTLTYPE_NODE, str, NULL,
   1050 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1051 
   1052 	if (rv != 0)
   1053 		goto fail;
   1054 
   1055 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1056 	    0, CTLTYPE_NODE, "frequency", NULL,
   1057 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1058 
   1059 	if (rv != 0)
   1060 		goto fail;
   1061 
   1062 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1063 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1064 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1065 
   1066 	if (rv != 0)
   1067 		goto fail;
   1068 
   1069 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1070 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1071 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1072 
   1073 	if (rv != 0)
   1074 		goto fail;
   1075 
   1076 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1077 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1078 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1079 
   1080 	if (rv != 0)
   1081 		goto fail;
   1082 
   1083 	return 0;
   1084 
   1085 fail:
   1086 	if (acpicpu_log != NULL) {
   1087 		sysctl_teardown(&acpicpu_log);
   1088 		acpicpu_log = NULL;
   1089 	}
   1090 
   1091 	return rv;
   1092 }
   1093 
   1094 static int
   1095 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1096 {
   1097 	struct sysctlnode node;
   1098 	uint32_t freq;
   1099 	int err;
   1100 
   1101 	freq = cpufreq_get(curcpu());
   1102 
   1103 	if (freq == 0)
   1104 		return ENXIO;
   1105 
   1106 	node = *rnode;
   1107 	node.sysctl_data = &freq;
   1108 
   1109 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1110 
   1111 	if (err != 0 || newp == NULL)
   1112 		return err;
   1113 
   1114 	return 0;
   1115 }
   1116 
   1117 static int
   1118 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1119 {
   1120 	struct sysctlnode node;
   1121 	uint32_t freq;
   1122 	int err;
   1123 
   1124 	freq = cpufreq_get(curcpu());
   1125 
   1126 	if (freq == 0)
   1127 		return ENXIO;
   1128 
   1129 	node = *rnode;
   1130 	node.sysctl_data = &freq;
   1131 
   1132 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1133 
   1134 	if (err != 0 || newp == NULL)
   1135 		return err;
   1136 
   1137 	cpufreq_set_all(freq);
   1138 
   1139 	return 0;
   1140 }
   1141 
   1142 static int
   1143 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1144 {
   1145 	struct cpu_info *ci = curcpu();
   1146 	struct acpicpu_softc *sc;
   1147 	struct sysctlnode node;
   1148 	char buf[1024];
   1149 	size_t len;
   1150 	uint32_t i;
   1151 	int err;
   1152 
   1153 	sc = acpicpu_sc[ci->ci_acpiid];
   1154 
   1155 	if (sc == NULL)
   1156 		return ENXIO;
   1157 
   1158 	(void)memset(&buf, 0, sizeof(buf));
   1159 
   1160 	mutex_enter(&sc->sc_mtx);
   1161 
   1162 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1163 
   1164 		if (sc->sc_pstate[i].ps_freq == 0)
   1165 			continue;
   1166 
   1167 		if (len >= sizeof(buf))
   1168 			break;
   1169 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1170 		    sc->sc_pstate[i].ps_freq,
   1171 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1172 	}
   1173 
   1174 	mutex_exit(&sc->sc_mtx);
   1175 
   1176 	node = *rnode;
   1177 	node.sysctl_data = buf;
   1178 
   1179 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1180 
   1181 	if (err != 0 || newp == NULL)
   1182 		return err;
   1183 
   1184 	return 0;
   1185 }
   1186 
   1187