cpu_extended_state.h revision 1.8 1 1.8 dsl /* $NetBSD: cpu_extended_state.h,v 1.8 2014/02/18 18:39:10 dsl Exp $ */
2 1.1 dsl
3 1.1 dsl #ifndef _X86_CPU_EXTENDED_STATE_H_
4 1.1 dsl #define _X86_CPU_EXTENDED_STATE_H_
5 1.1 dsl
6 1.1 dsl /*
7 1.1 dsl * This file contains definitions of structures that match the memory
8 1.1 dsl * layouts used x86 processors to save floating point registers and other
9 1.1 dsl * extended cpu state.
10 1.1 dsl * This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and
11 1.1 dsl * the later AVX instructions.
12 1.1 dsl * The definitions are such that any future 'extended state' should
13 1.1 dsl * be handled (provided the kernel doesn't need to know the actual contents.
14 1.1 dsl *
15 1.1 dsl * The actual structures the cpu accesses must be aligned to 16 for
16 1.1 dsl * FXSAVE and 64 for XSAVE. The types aren't aligned because copies
17 1.1 dsl * do not need extra alignment.
18 1.1 dsl *
19 1.1 dsl * The slightly different layout saved by the i387 fsave in also defined.
20 1.1 dsl * This is only normally written by pre Pentium II type cpus that don't
21 1.1 dsl * support the fxsave instruction.
22 1.1 dsl *
23 1.1 dsl * Associated save instructions:
24 1.1 dsl * FNSAVE: Saves x87 state in 108 bytes (original i387 layout).
25 1.1 dsl * Then reinitialies the fpu.
26 1.1 dsl * FSAVE: Encodes to FWAIT followed by FNSAVE.
27 1.1 dsl * FXSAVE: Saves the x87 state and XMM (aka SSE) registers to the
28 1.1 dsl * first 448 (max) bytes of a 512 byte area.
29 1.1 dsl * This layout does not match that written by FNSAVE.
30 1.1 dsl * XSAVE: Uses the same layout for the x87 and XMM registers,
31 1.1 dsl * followed by a 64byte header and separate save areas
32 1.1 dsl * for additional extended cpu state.
33 1.1 dsl * The x87 state is always saved, the others conditionally.
34 1.1 dsl * XSAVEOPT: As XSAVE but (IIRC) only writes the registers blocks
35 1.1 dsl * that have been modified.
36 1.1 dsl */
37 1.1 dsl
38 1.1 dsl #ifdef __lint__
39 1.1 dsl /* Lint has different packing rules and doesn't understand __aligned() */
40 1.1 dsl #define __CTASSERT_NOLINT(x) __CTASSERT(1)
41 1.1 dsl #else
42 1.1 dsl #define __CTASSERT_NOLINT(x) __CTASSERT(x)
43 1.1 dsl #endif
44 1.1 dsl
45 1.1 dsl /*
46 1.1 dsl * Layout for code/data pointers relating to FP exceptions.
47 1.1 dsl * Marked 'packed' because they aren't always 64bit aligned.
48 1.1 dsl * Since the x86 cpu supports misaligned accesses it isn't
49 1.1 dsl * worth avoiding the 'packed' attribute.
50 1.1 dsl */
51 1.1 dsl union fp_addr {
52 1.1 dsl uint64_t fa_64; /* Linear address for 64bit systems */
53 1.1 dsl struct {
54 1.1 dsl uint32_t fa_off; /* linear address for 32 bit */
55 1.1 dsl uint16_t fa_seg; /* code/data (etc) segment */
56 1.1 dsl uint16_t fa_opcode; /* last opcode (sometimes) */
57 1.1 dsl } fa_32;
58 1.6 dsl } __packed __aligned(4);
59 1.1 dsl
60 1.1 dsl /* The x87 registers are 80 bits */
61 1.1 dsl struct fpacc87 {
62 1.1 dsl uint64_t f87_mantissa; /* mantissa */
63 1.1 dsl uint16_t f87_exp_sign; /* exponent and sign */
64 1.6 dsl } __packed __aligned(2);
65 1.1 dsl
66 1.1 dsl /* The x87 registers padded out to 16 bytes for fxsave */
67 1.1 dsl struct fpaccfx {
68 1.1 dsl struct fpacc87 r __aligned(16);
69 1.1 dsl };
70 1.1 dsl
71 1.1 dsl /* The SSE/SSE2 registers are 128 bits */
72 1.1 dsl struct xmmreg {
73 1.1 dsl uint8_t xmm_bytes[16];
74 1.1 dsl };
75 1.1 dsl
76 1.1 dsl /* The AVX registers are 256 bits, but the low bits are the xmmregs */
77 1.1 dsl struct ymmreg {
78 1.1 dsl uint8_t ymm_bytes[16];
79 1.1 dsl };
80 1.1 dsl
81 1.1 dsl /*
82 1.1 dsl * Floating point unit registers (fsave instruction).
83 1.1 dsl * The s87_ac[] and fx_87_ac[] are relative to the stack top.
84 1.1 dsl * The 'tag word' contains 2 bits per register and refers to
85 1.1 dsl * absolute register numbers.
86 1.1 dsl * The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value
87 1.1 dsl * is loaded. The software need only set 0b00 (used) and 0xb11 (unused).
88 1.1 dsl * The fxsave 'Abridged tag word' in inverted.
89 1.1 dsl */
90 1.1 dsl struct save87 {
91 1.6 dsl uint16_t s87_cw __aligned(4); /* control word (16bits) */
92 1.6 dsl uint16_t s87_sw __aligned(4); /* status word (16bits) */
93 1.6 dsl uint16_t s87_tw __aligned(4); /* tag word (16bits) */
94 1.1 dsl union fp_addr s87_ip; /* floating point instruction pointer */
95 1.1 dsl #define s87_opcode s87_ip.fa_32.fa_opcode /* opcode last executed (11bits) */
96 1.1 dsl union fp_addr s87_dp; /* floating operand offset */
97 1.1 dsl struct fpacc87 s87_ac[8]; /* accumulator contents, 0-7 */
98 1.1 dsl };
99 1.1 dsl __CTASSERT_NOLINT(sizeof (struct save87) == 108);
100 1.1 dsl
101 1.1 dsl /* FPU/MMX/SSE/SSE2 context */
102 1.1 dsl struct fxsave {
103 1.1 dsl /*0*/ uint16_t fx_cw; /* FPU Control Word */
104 1.1 dsl uint16_t fx_sw; /* FPU Status Word */
105 1.1 dsl uint8_t fx_tw; /* FPU Tag Word (abridged) */
106 1.1 dsl uint16_t fx_opcode; /* FPU Opcode */
107 1.1 dsl union fp_addr fx_ip; /* FPU Instruction Pointer */
108 1.1 dsl /*16*/ union fp_addr fx_dp; /* FPU Data pointer */
109 1.1 dsl uint32_t fx_mxcsr; /* MXCSR Register State */
110 1.1 dsl uint32_t fx_mxcsr_mask;
111 1.1 dsl struct fpaccfx fx_87_ac[8]; /* 8 x87 registers */
112 1.4 dsl struct xmmreg fx_xmm[16]; /* XMM regs (8 in 32bit modes) */
113 1.1 dsl uint8_t fx_rsvd[48];
114 1.1 dsl uint8_t fx_kernel[48]; /* Not written by the hardware */
115 1.1 dsl } __aligned(16);
116 1.1 dsl __CTASSERT_NOLINT(sizeof (struct fxsave) == 512);
117 1.1 dsl
118 1.1 dsl /* The end of the fsave buffer can be used by the operating system */
119 1.1 dsl struct fxsave_os {
120 1.7 dsl uint8_t fxo_fxsave[512 - 48];
121 1.7 dsl /* 48 bytes available, NB copied to/from userspace */
122 1.7 dsl uint16_t fxo_dflt_cw; /* Control word for signal handlers */
123 1.1 dsl };
124 1.1 dsl
125 1.1 dsl union savefpu {
126 1.1 dsl struct save87 sv_87;
127 1.1 dsl struct fxsave sv_xmm;
128 1.1 dsl struct fxsave_os sv_os;
129 1.1 dsl };
130 1.1 dsl
131 1.1 dsl /*
132 1.1 dsl * For XSAVE a 64byte header follows the above.
133 1.1 dsl * Currently it only contains one field of which only 3 bits are defined.
134 1.1 dsl * Some other parts must be zero - zero it all.
135 1.1 dsl *
136 1.1 dsl * The xsh_xstate_bv bits match those of XCR0:
137 1.1 dsl * XCR0_X87 0x00000001 x87 FPU/MMX state (always set)
138 1.1 dsl * XCR0_SSE 0x00000002 SSE state
139 1.1 dsl * XCR0_AVX 0x00000004 AVX state (ymmn registers)
140 1.1 dsl *
141 1.1 dsl * The offsets and sizes of any save areas can be found by reading
142 1.1 dsl * the correct control registers.
143 1.1 dsl */
144 1.1 dsl
145 1.1 dsl struct xsave_header {
146 1.1 dsl uint64_t xsh_xstate_bv; /* bitmap of saved sub structures */
147 1.1 dsl uint64_t xsh_rsrvd[2]; /* must be zero */
148 1.1 dsl uint64_t xsh_reserved[5];/* best if zero */
149 1.1 dsl };
150 1.1 dsl __CTASSERT(sizeof (struct xsave_header) == 64);
151 1.1 dsl
152 1.1 dsl /*
153 1.1 dsl * The ymm save area actually follows the xsave_header.
154 1.1 dsl */
155 1.1 dsl struct xsave_ymm {
156 1.1 dsl struct ymmreg xs_ymm[16]; /* High bits of YMM registers */
157 1.1 dsl };
158 1.1 dsl __CTASSERT(sizeof (struct xsave_ymm) == 256);
159 1.1 dsl
160 1.1 dsl
161 1.1 dsl /*
162 1.1 dsl * 80387 control and status word bits
163 1.1 dsl *
164 1.3 dsl * The only reference I can find to bits 0x40 and 0x80 in the control word
165 1.3 dsl * is for the Weitek 1167/3167.
166 1.1 dsl * I (dsl) can't find why the default word has 0x40 set.
167 1.3 dsl *
168 1.3 dsl * A stack error is signalled as an INVOP that also sets STACK_FAULT
169 1.3 dsl * (other INVOP do not clear STACK_FAULT).
170 1.1 dsl */
171 1.1 dsl /* Interrupt masks (set masks interrupt) and status bits */
172 1.1 dsl #define EN_SW_INVOP 0x0001 /* Invalid operation */
173 1.1 dsl #define EN_SW_DENORM 0x0002 /* Denormalized operand */
174 1.1 dsl #define EN_SW_ZERODIV 0x0004 /* Divide by zero */
175 1.1 dsl #define EN_SW_OVERFLOW 0x0008 /* Overflow */
176 1.1 dsl #define EN_SW_UNDERFLOW 0x0010 /* Underflow */
177 1.1 dsl #define EN_SW_PRECLOSS 0x0020 /* Loss of precision */
178 1.3 dsl /* Status word bits (reserved in control word) */
179 1.3 dsl #define EN_SW_STACK_FAULT 0x0040 /* Stack under/overflow */
180 1.3 dsl #define EN_SW_ERROR_SUMMARY 0x0080 /* Unmasked error has ocurred */
181 1.1 dsl /* Control bits (badly named) */
182 1.1 dsl #define EN_SW_CTL_PREC 0x0300 /* Precision control */
183 1.1 dsl #define EN_SW_PREC_24 0x0000 /* Single precision */
184 1.1 dsl #define EN_SW_PREC_53 0x0200 /* Double precision */
185 1.1 dsl #define EN_SW_PREC_64 0x0300 /* Extended precision */
186 1.1 dsl #define EN_SW_CTL_ROUND 0x0c00 /* Rounding control */
187 1.1 dsl #define EN_SW_ROUND_EVEN 0x0000 /* Round to nearest even */
188 1.1 dsl #define EN_SW_ROUND_DOWN 0x0400 /* Round towards minus infinity */
189 1.1 dsl #define EN_SW_ROUND_UP 0x0800 /* Round towards plus infinity */
190 1.1 dsl #define EN_SW_ROUND_ZERO 0x0c00 /* Round towards zero (truncates) */
191 1.1 dsl #define EN_SW_CTL_INF 0x1000 /* Infinity control, not used */
192 1.1 dsl
193 1.1 dsl /*
194 1.1 dsl * The standard 0x87 control word from finit is 0x37F, giving:
195 1.1 dsl * round to nearest
196 1.1 dsl * 64-bit precision
197 1.1 dsl * all exceptions masked.
198 1.1 dsl *
199 1.1 dsl * NetBSD used to select:
200 1.1 dsl * round to nearest
201 1.1 dsl * 53-bit precision
202 1.1 dsl * all exceptions masked.
203 1.1 dsl * Stating: 64-bit precision often gives bad results with high level
204 1.1 dsl * languages because it makes the results of calculations depend on whether
205 1.1 dsl * intermediate values are stored in memory or in FPU registers.
206 1.1 dsl * Also some 'pathological divisions' give an error in the LSB because
207 1.1 dsl * the value is first rounded up when the 64bit mantissa is generated,
208 1.1 dsl * and then again when it is truncated to 53 bits.
209 1.1 dsl *
210 1.1 dsl * However the C language explicitly allows the extra precision.
211 1.1 dsl *
212 1.1 dsl * The iBCS control word has underflow, overflow, zero divide, and invalid
213 1.1 dsl * operation exceptions unmasked. But that causes an unexpected exception
214 1.1 dsl * in the test program 'paranoia' and makes denormals useless (DBL_MIN / 2
215 1.1 dsl * underflows). It doesn't make a lot of sense to trap underflow without
216 1.1 dsl * trapping denormals.
217 1.1 dsl */
218 1.1 dsl #define __INITIAL_NPXCW__ 0x037f
219 1.1 dsl /* Modern NetBSD uses the default control word.. */
220 1.1 dsl #define __NetBSD_NPXCW__ __INITIAL_NPXCW__
221 1.1 dsl /* NetBSD before 6.99.26 forced IEEE double precision. */
222 1.1 dsl #define __NetBSD_COMPAT_NPXCW__ 0x127f
223 1.1 dsl /* FreeBSD leaves some exceptions unmasked as well. */
224 1.1 dsl #define __FreeBSD_NPXCW__ 0x1272
225 1.1 dsl /* iBCS2 goes a bit further and leaves the underflow exception unmasked. */
226 1.1 dsl #define __iBCS2_NPXCW__ 0x0262
227 1.1 dsl /* Linux just uses the default control word. */
228 1.1 dsl #define __Linux_NPXCW__ __INITIAL_NPXCW__
229 1.1 dsl /* SVR4 uses the same control word as iBCS2. */
230 1.1 dsl #define __SVR4_NPXCW__ 0x0262
231 1.1 dsl
232 1.1 dsl /*
233 1.1 dsl * The default MXCSR value at reset is 0x1f80, IA-32 Instruction
234 1.1 dsl * Set Reference, pg. 3-369.
235 1.1 dsl *
236 1.1 dsl * The low 6 bits of the mxcsr are the fp status bits (same order as x87).
237 1.1 dsl * Bit 6 is 'denormals are zero' (speeds up calculations).
238 1.1 dsl * Bits 7-16 are the interrupt mask bits (same order, 1 to mask).
239 1.1 dsl * Bits 13 and 14 are rounding control.
240 1.1 dsl * Bit 15 is 'flush to zero' - affects underflow.
241 1.1 dsl * Bits 16-31 must be zero.
242 1.1 dsl */
243 1.1 dsl #define __INITIAL_MXCSR__ 0x1f80
244 1.2 dsl #define __INITIAL_MXCSR_MASK__ 0xffbf
245 1.2 dsl
246 1.1 dsl #endif /* _X86_CPU_EXTENDED_STATE_H_ */
247