cpu_extended_state.h revision 1.18 1 /* $NetBSD: cpu_extended_state.h,v 1.18 2023/02/25 13:57:37 riastradh Exp $ */
2
3 #ifndef _X86_CPU_EXTENDED_STATE_H_
4 #define _X86_CPU_EXTENDED_STATE_H_
5
6 #ifdef __lint__
7 /* Lint has different packing rules and doesn't understand __aligned() */
8 #define __CTASSERT_NOLINT(x) __CTASSERT(1)
9 #else
10 #define __CTASSERT_NOLINT(x) __CTASSERT(x)
11 #endif
12
13 /*
14 * This file contains definitions of structures that match the memory layouts
15 * used on x86 processors to save floating point registers and other extended
16 * cpu states.
17 *
18 * This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and the later
19 * AVX instructions.
20 *
21 * The definitions are such that any future 'extended state' should be handled,
22 * provided the kernel doesn't need to know the actual contents.
23 *
24 * The actual structures the cpu accesses must be aligned to 16 bytes for FXSAVE
25 * and 64 for XSAVE. The types aren't aligned because copies do not need extra
26 * alignment.
27 *
28 * The slightly different layout saved by the i387 fsave is also defined.
29 * This is only normally written by pre Pentium II type cpus that don't
30 * support the fxsave instruction.
31 *
32 * Associated save instructions:
33 * FNSAVE: Saves x87 state in 108 bytes (original i387 layout). Then
34 * reinitializes the fpu.
35 * FSAVE: Encodes to FWAIT followed by FNSAVE.
36 * FXSAVE: Saves the x87 state and XMM (aka SSE) registers to the first
37 * 448 (max) bytes of a 512 byte area. This layout does not match
38 * that written by FNSAVE.
39 * XSAVE: Uses the same layout for the x87 and XMM registers, followed by
40 * a 64byte header and separate save areas for additional extended
41 * cpu states. The x87 state is always saved, the others
42 * conditionally.
43 * XSAVEOPT: Same as XSAVE but only writes the registers blocks that have
44 * been modified.
45 */
46
47 /*
48 * Layout for code/data pointers relating to FP exceptions. Marked 'packed'
49 * because they aren't always 64bit aligned. Since the x86 cpu supports
50 * misaligned accesses it isn't worth avoiding the 'packed' attribute.
51 */
52 union fp_addr {
53 uint64_t fa_64; /* Linear address for 64bit systems */
54 struct {
55 uint32_t fa_off; /* linear address for 32 bit */
56 uint16_t fa_seg; /* code/data (etc) segment */
57 uint16_t fa_opcode; /* last opcode (sometimes) */
58 } fa_32;
59 } __packed __aligned(4);
60
61 /* The x87 registers are 80 bits */
62 struct fpacc87 {
63 uint64_t f87_mantissa; /* mantissa */
64 uint16_t f87_exp_sign; /* exponent and sign */
65 } __packed __aligned(2);
66
67 /* The x87 registers padded out to 16 bytes for fxsave */
68 struct fpaccfx {
69 struct fpacc87 r __aligned(16);
70 };
71
72 /* The SSE/SSE2 registers are 128 bits */
73 struct xmmreg {
74 uint8_t xmm_bytes[16];
75 };
76
77 /* The AVX registers are 256 bits, but the low bits are the xmmregs */
78 struct ymmreg {
79 uint8_t ymm_bytes[16];
80 };
81
82 /* The AVX-512 registers are 512 bits but the low bits are in xmmregs
83 * and ymmregs */
84 struct zmmreg {
85 uint8_t zmm_bytes[32];
86 };
87
88 /* 512-bit ZMM register. */
89 struct hi16_zmmreg {
90 uint8_t zmm_bytes[64];
91 };
92
93 /*
94 * Floating point unit registers (FSAVE instruction).
95 *
96 * The s87_ac[] and fx_87_ac[] are relative to the stack top. The 'tag word'
97 * contains 2 bits per register and refers to absolute register numbers.
98 *
99 * The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value
100 * is loaded. The software need only set 0b00 (used) and 0xb11 (unused).
101 * The fxsave 'Abridged tag word' in inverted.
102 */
103 struct save87 {
104 uint16_t s87_cw __aligned(4); /* control word */
105 uint16_t s87_sw __aligned(4); /* status word */
106 uint16_t s87_tw __aligned(4); /* tag word */
107 union fp_addr s87_ip; /* floating point instruction pointer */
108 #define s87_opcode s87_ip.fa_32.fa_opcode /* opcode last executed (11bits) */
109 union fp_addr s87_dp; /* floating operand offset */
110 struct fpacc87 s87_ac[8]; /* accumulator contents */
111 };
112 __CTASSERT_NOLINT(sizeof(struct save87) == 108);
113
114 /*
115 * FPU/MMX/SSE/SSE2 context (FXSAVE instruction).
116 */
117 struct fxsave {
118 uint16_t fx_cw; /* FPU Control Word */
119 uint16_t fx_sw; /* FPU Status Word */
120 uint8_t fx_tw; /* FPU Tag Word (abridged) */
121 uint8_t fx_zero; /* zero */
122 uint16_t fx_opcode; /* FPU Opcode */
123 union fp_addr fx_ip; /* FPU Instruction Pointer */
124 union fp_addr fx_dp; /* FPU Data pointer */
125 uint32_t fx_mxcsr; /* MXCSR Register State */
126 uint32_t fx_mxcsr_mask;
127 struct fpaccfx fx_87_ac[8]; /* 8 x87 registers */
128 struct xmmreg fx_xmm[16]; /* XMM regs (8 in 32bit modes) */
129 uint8_t fx_rsvd[96];
130 } __aligned(16);
131 __CTASSERT_NOLINT(sizeof(struct fxsave) == 512);
132
133 /*
134 * For XSAVE, a 64byte header follows the fxsave data.
135 */
136 struct xsave_header {
137 uint8_t xsh_fxsave[512]; /* struct fxsave */
138 uint64_t xsh_xstate_bv; /* bitmap of saved sub structures */
139 uint64_t xsh_xcomp_bv; /* bitmap of compact sub structures */
140 uint8_t xsh_rsrvd[8]; /* must be zero */
141 uint8_t xsh_reserved[40]; /* best if zero */
142 };
143 __CTASSERT(sizeof(struct xsave_header) == 512 + 64);
144
145 /*
146 * The ymm save area actually follows the xsave_header.
147 */
148 struct xsave_ymm {
149 struct ymmreg xs_ymm[16]; /* High bits of YMM registers */
150 };
151 __CTASSERT(sizeof(struct xsave_ymm) == 256);
152
153 /*
154 * AVX-512: opmask state.
155 */
156 struct xsave_opmask {
157 uint64_t xs_k[8]; /* k0..k7 registers. */
158 };
159 __CTASSERT(sizeof(struct xsave_opmask) == 64);
160
161 /*
162 * AVX-512: ZMM_Hi256 state.
163 */
164 struct xsave_zmm_hi256 {
165 struct zmmreg xs_zmm[16]; /* High bits of zmm0..zmm15 registers. */
166 };
167 __CTASSERT(sizeof(struct xsave_zmm_hi256) == 512);
168
169 /*
170 * AVX-512: Hi16_ZMM state.
171 */
172 struct xsave_hi16_zmm {
173 struct hi16_zmmreg xs_hi16_zmm[16]; /* zmm16..zmm31 registers. */
174 };
175 __CTASSERT(sizeof(struct xsave_hi16_zmm) == 1024);
176
177 /*
178 * Structure used to hold all interesting data from XSAVE, in predictable form.
179 * Note that this structure can have new members added to the end.
180 */
181 struct xstate {
182 /*
183 * The two following fields are bitmaps of XSAVE components. They can be
184 * matched against XCR0_* constants from <machine/specialreg.h>).
185 */
186 /*
187 * XSAVE/XRSTOR RFBM parameter.
188 *
189 * PT_GETXSTATE: 1 indicates that the respective XSAVE component is
190 * supported and has been enabled for saving. 0 indicates that it is not
191 * supported by the platform or kernel.
192 *
193 * PT_SETXSTATE: 1 indicates that the respective XSAVE component should
194 * be updated to the value of respective field (or reset if xs_xsave_bv
195 * bit is 0). 0 indicates that it should be left intact. It is an error
196 * to enable bits that are not supported by the platform or kernel.
197 */
198 uint64_t xs_rfbm;
199 /*
200 * XSAVE/XRSTOR xstate header.
201 *
202 * PT_GETXSTATE: 1 indicates that the respective XSAVE component has been
203 * saved. 0 indicates that it had been in its CPU-defined initial value
204 * at the time of saving (i.e. was not used by the program).
205 *
206 * PT_SETXSTATE: 1 indicates that the respective XSAVE component (if present
207 * in xs_rfbm) should be set to the values in respective field. 0 indicates
208 * that it should be reset to CPU-defined initial value.
209 */
210 uint64_t xs_xstate_bv;
211
212 /* legacy FXSAVE area (used for x87 & SSE state) */
213 struct fxsave xs_fxsave;
214 /* AVX state: high bits of ymm0..ymm15 registers */
215 struct xsave_ymm xs_ymm_hi128;
216 /* AVX-512: opmask */
217 struct xsave_opmask xs_opmask;
218 /* AVX-512: high bits of zmm0..zmm15 registers */
219 struct xsave_zmm_hi256 xs_zmm_hi256;
220 /* AVX-512: whole zmm16..zmm31 registers */
221 struct xsave_hi16_zmm xs_hi16_zmm;
222 };
223
224 /*
225 * The following union is placed at the end of the pcb.
226 * It is defined this way to separate the definitions and to
227 * minimise the number of union/struct selectors.
228 * NB: Some userspace stuff (eg firefox) uses it to parse ucontext.
229 */
230 union savefpu {
231 struct save87 sv_87;
232 struct fxsave sv_xmm;
233 #ifdef _KERNEL
234 struct xsave_header sv_xsave_hdr;
235 #endif
236 };
237
238 /*
239 * 80387 control and status word bits
240 *
241 * The only reference I can find to bits 0x40 and 0x80 in the control word
242 * is for the Weitek 1167/3167.
243 * I (dsl) can't find why the default word has 0x40 set.
244 *
245 * A stack error is signalled as an INVOP that also sets STACK_FAULT
246 * (other INVOP do not clear STACK_FAULT).
247 */
248 /* Interrupt masks (set masks interrupt) and status bits */
249 #define EN_SW_INVOP 0x0001 /* Invalid operation */
250 #define EN_SW_DENORM 0x0002 /* Denormalized operand */
251 #define EN_SW_ZERODIV 0x0004 /* Divide by zero */
252 #define EN_SW_OVERFLOW 0x0008 /* Overflow */
253 #define EN_SW_UNDERFLOW 0x0010 /* Underflow */
254 #define EN_SW_PRECLOSS 0x0020 /* Loss of precision */
255 /* Status word bits (reserved in control word) */
256 #define EN_SW_STACK_FAULT 0x0040 /* Stack under/overflow */
257 #define EN_SW_ERROR_SUMMARY 0x0080 /* Unmasked error has occurred */
258 /* Control bits (badly named) */
259 #define EN_SW_CTL_PREC 0x0300 /* Precision control */
260 #define EN_SW_PREC_24 0x0000 /* Single precision */
261 #define EN_SW_PREC_53 0x0200 /* Double precision */
262 #define EN_SW_PREC_64 0x0300 /* Extended precision */
263 #define EN_SW_CTL_ROUND 0x0c00 /* Rounding control */
264 #define EN_SW_ROUND_EVEN 0x0000 /* Round to nearest even */
265 #define EN_SW_ROUND_DOWN 0x0400 /* Round towards minus infinity */
266 #define EN_SW_ROUND_UP 0x0800 /* Round towards plus infinity */
267 #define EN_SW_ROUND_ZERO 0x0c00 /* Round towards zero (truncates) */
268 #define EN_SW_CTL_INF 0x1000 /* Infinity control, not used */
269
270 /*
271 * The standard 0x87 control word from finit is 0x37F, giving:
272 * round to nearest
273 * 64-bit precision
274 * all exceptions masked.
275 *
276 * NetBSD used to select:
277 * round to nearest
278 * 53-bit precision
279 * all exceptions masked.
280 * Stating: 64-bit precision often gives bad results with high level
281 * languages because it makes the results of calculations depend on whether
282 * intermediate values are stored in memory or in FPU registers.
283 * Also some 'pathological divisions' give an error in the LSB because
284 * the value is first rounded up when the 64bit mantissa is generated,
285 * and then again when it is truncated to 53 bits.
286 *
287 * However the C language explicitly allows the extra precision.
288 */
289 #define __INITIAL_NPXCW__ 0x037f
290 /* Modern NetBSD uses the default control word.. */
291 #define __NetBSD_NPXCW__ __INITIAL_NPXCW__
292 /* NetBSD before 6.99.26 forced IEEE double precision. */
293 #define __NetBSD_COMPAT_NPXCW__ 0x127f
294 /* FreeBSD leaves some exceptions unmasked as well. */
295 #define __FreeBSD_NPXCW__ 0x1272
296 /* Linux just uses the default control word. */
297 #define __Linux_NPXCW__ __INITIAL_NPXCW__
298
299 /*
300 * The default MXCSR value at reset is 0x1f80, IA-32 Instruction
301 * Set Reference, pg. 3-369.
302 *
303 * The low 6 bits of the mxcsr are the fp status bits (same order as x87).
304 * Bit 6 is 'denormals are zero' (speeds up calculations).
305 * Bits 7-16 are the interrupt mask bits (same order, 1 to mask).
306 * Bits 13 and 14 are rounding control.
307 * Bit 15 is 'flush to zero' - affects underflow.
308 * Bits 16-31 must be zero.
309 *
310 * The safe MXCSR is fit for constant-time use, e.g. in crypto. Some
311 * CPU instructions take input- dependent time if an exception status
312 * bit is not set; __SAFE_MXCSR__ has the exception status bits all set
313 * already to mitigate this. See:
314 * https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
315 */
316 #define __INITIAL_MXCSR__ 0x1f80
317 #define __INITIAL_MXCSR_MASK__ 0xffbf
318 #define __SAFE_MXCSR__ 0x1fbf
319
320 #endif /* _X86_CPU_EXTENDED_STATE_H_ */
321