Home | History | Annotate | Line # | Download | only in include
lock.h revision 1.14.24.3
      1  1.14.24.3   matt /*	$NetBSD: lock.h,v 1.14.24.3 2008/01/09 01:49:48 matt Exp $	*/
      2        1.1   fvdl 
      3        1.1   fvdl /*-
      4       1.12     ad  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
      5        1.1   fvdl  * All rights reserved.
      6        1.1   fvdl  *
      7        1.1   fvdl  * This code is derived from software contributed to The NetBSD Foundation
      8       1.12     ad  * by Jason R. Thorpe and Andrew Doran.
      9        1.1   fvdl  *
     10        1.1   fvdl  * Redistribution and use in source and binary forms, with or without
     11        1.1   fvdl  * modification, are permitted provided that the following conditions
     12        1.1   fvdl  * are met:
     13        1.1   fvdl  * 1. Redistributions of source code must retain the above copyright
     14        1.1   fvdl  *    notice, this list of conditions and the following disclaimer.
     15        1.1   fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1   fvdl  *    notice, this list of conditions and the following disclaimer in the
     17        1.1   fvdl  *    documentation and/or other materials provided with the distribution.
     18        1.1   fvdl  * 3. All advertising materials mentioning features or use of this software
     19        1.1   fvdl  *    must display the following acknowledgement:
     20        1.1   fvdl  *	This product includes software developed by the NetBSD
     21        1.1   fvdl  *	Foundation, Inc. and its contributors.
     22        1.1   fvdl  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23        1.1   fvdl  *    contributors may be used to endorse or promote products derived
     24        1.1   fvdl  *    from this software without specific prior written permission.
     25        1.1   fvdl  *
     26        1.1   fvdl  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27        1.1   fvdl  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28        1.1   fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29        1.1   fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30        1.1   fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31        1.1   fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32        1.1   fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33        1.1   fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34        1.1   fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35        1.1   fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36        1.1   fvdl  * POSSIBILITY OF SUCH DAMAGE.
     37        1.1   fvdl  */
     38        1.1   fvdl 
     39        1.1   fvdl /*
     40        1.1   fvdl  * Machine-dependent spin lock operations.
     41        1.1   fvdl  */
     42        1.1   fvdl 
     43        1.9   yamt #ifndef _X86_LOCK_H_
     44        1.9   yamt #define	_X86_LOCK_H_
     45        1.1   fvdl 
     46  1.14.24.1   matt static __inline int
     47  1.14.24.1   matt __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
     48  1.14.24.1   matt {
     49  1.14.24.1   matt 	return *__ptr == __SIMPLELOCK_LOCKED;
     50  1.14.24.1   matt }
     51  1.14.24.1   matt 
     52  1.14.24.1   matt static __inline int
     53  1.14.24.1   matt __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
     54  1.14.24.1   matt {
     55  1.14.24.1   matt 	return *__ptr == __SIMPLELOCK_UNLOCKED;
     56  1.14.24.1   matt }
     57  1.14.24.1   matt 
     58  1.14.24.1   matt static __inline void
     59  1.14.24.1   matt __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
     60  1.14.24.1   matt {
     61  1.14.24.1   matt 
     62  1.14.24.1   matt 	*__ptr = __SIMPLELOCK_LOCKED;
     63  1.14.24.1   matt }
     64  1.14.24.1   matt 
     65  1.14.24.1   matt static __inline void
     66  1.14.24.1   matt __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
     67  1.14.24.1   matt {
     68  1.14.24.1   matt 
     69  1.14.24.1   matt 	*__ptr = __SIMPLELOCK_UNLOCKED;
     70  1.14.24.1   matt }
     71        1.1   fvdl 
     72  1.14.24.3   matt #ifdef _KERNEL
     73  1.14.24.3   matt 
     74  1.14.24.3   matt #include <machine/cpufunc.h>
     75  1.14.24.3   matt 
     76  1.14.24.3   matt void	__cpu_simple_lock_init(__cpu_simple_lock_t *);
     77  1.14.24.3   matt void	__cpu_simple_lock(__cpu_simple_lock_t *);
     78  1.14.24.3   matt int	__cpu_simple_lock_try(__cpu_simple_lock_t *);
     79  1.14.24.3   matt void	__cpu_simple_unlock(__cpu_simple_lock_t *);
     80  1.14.24.3   matt 
     81  1.14.24.3   matt #define	SPINLOCK_SPIN_HOOK	/* nothing */
     82  1.14.24.3   matt 
     83  1.14.24.3   matt #ifdef SPINLOCK_BACKOFF_HOOK
     84  1.14.24.3   matt #undef SPINLOCK_BACKOFF_HOOK
     85  1.14.24.3   matt #define	SPINLOCK_BACKOFF_HOOK	x86_pause()
     86  1.14.24.3   matt #endif
     87  1.14.24.3   matt 
     88  1.14.24.3   matt #else
     89  1.14.24.3   matt 
     90       1.11  perry static __inline void __cpu_simple_lock_init(__cpu_simple_lock_t *)
     91  1.14.24.3   matt 	__unused;
     92       1.11  perry static __inline void __cpu_simple_lock(__cpu_simple_lock_t *)
     93  1.14.24.3   matt 	__unused;
     94       1.11  perry static __inline int __cpu_simple_lock_try(__cpu_simple_lock_t *)
     95  1.14.24.3   matt 	__unused;
     96       1.11  perry static __inline void __cpu_simple_unlock(__cpu_simple_lock_t *)
     97  1.14.24.3   matt 	__unused;
     98        1.1   fvdl 
     99       1.11  perry static __inline void
    100        1.1   fvdl __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
    101        1.1   fvdl {
    102        1.1   fvdl 
    103        1.1   fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    104        1.7   yamt 	__insn_barrier();
    105        1.1   fvdl }
    106        1.1   fvdl 
    107  1.14.24.3   matt static __inline int
    108  1.14.24.3   matt __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
    109        1.1   fvdl {
    110  1.14.24.3   matt 	uint8_t val;
    111        1.1   fvdl 
    112  1.14.24.3   matt 	val = __SIMPLELOCK_LOCKED;
    113  1.14.24.3   matt 	__asm volatile ("xchgb %0,(%2)" :
    114  1.14.24.3   matt 	    "=r" (val)
    115  1.14.24.3   matt 	    :"0" (val), "r" (lockp));
    116        1.7   yamt 	__insn_barrier();
    117  1.14.24.3   matt 	return val == __SIMPLELOCK_UNLOCKED;
    118        1.1   fvdl }
    119        1.1   fvdl 
    120  1.14.24.3   matt static __inline void
    121  1.14.24.3   matt __cpu_simple_lock(__cpu_simple_lock_t *lockp)
    122        1.1   fvdl {
    123        1.1   fvdl 
    124  1.14.24.3   matt 	while (!__cpu_simple_lock_try(lockp))
    125  1.14.24.3   matt 		/* nothing */;
    126        1.7   yamt 	__insn_barrier();
    127        1.1   fvdl }
    128        1.1   fvdl 
    129       1.12     ad /*
    130       1.12     ad  * Note on x86 memory ordering
    131       1.12     ad  *
    132       1.12     ad  * When releasing a lock we must ensure that no stores or loads from within
    133       1.12     ad  * the critical section are re-ordered by the CPU to occur outside of it:
    134       1.12     ad  * they must have completed and be visible to other processors once the lock
    135       1.12     ad  * has been released.
    136       1.12     ad  *
    137       1.12     ad  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
    138       1.12     ad  * back) memory region.  In that case, memory ordering on x86 platforms
    139       1.12     ad  * looks like this:
    140       1.12     ad  *
    141       1.12     ad  * i386		All loads/stores occur in instruction sequence.
    142       1.12     ad  *
    143       1.12     ad  * i486		All loads/stores occur in instruction sequence.  In
    144       1.12     ad  * Pentium	exceptional circumstances, loads can be re-ordered around
    145       1.12     ad  *		stores, but for the purposes of releasing a lock it does
    146       1.12     ad  *		not matter.  Stores may not be immediately visible to other
    147       1.12     ad  *		processors as they can be buffered.  However, since the
    148       1.12     ad  *		stores are buffered in order the lock release will always be
    149       1.12     ad  *		the last operation in the critical section that becomes
    150       1.12     ad  *		visible to other CPUs.
    151       1.12     ad  *
    152       1.12     ad  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
    153       1.12     ad  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
    154       1.12     ad  *		can be carried out speculatively and in any order" and (2)
    155       1.12     ad  *		"Reads can pass buffered stores, but the processor is
    156       1.12     ad  *		self-consistent.".  This would be a problem for the below,
    157       1.12     ad  *		and would mandate a locked instruction cycle or load fence
    158       1.12     ad  *		before releasing the simple lock.
    159       1.12     ad  *
    160       1.12     ad  *		The "Intel Pentium 4 Processor Optimization" guide (order
    161       1.12     ad  *		number 253668-022US) says: "Loads can be moved before stores
    162       1.12     ad  *		that occurred earlier in the program if they are not
    163       1.12     ad  *		predicted to load from the same linear address.".  This is
    164       1.12     ad  *		not a problem since the only loads that can be re-ordered
    165       1.12     ad  *		take place once the lock has been released via a store.
    166       1.12     ad  *
    167       1.12     ad  *		The above two documents seem to contradict each other,
    168       1.12     ad  *		however with the exception of early steppings of the Pentium
    169       1.12     ad  *		Pro, the second document is closer to the truth: a store
    170       1.12     ad  *		will always act as a load fence for all loads that precede
    171       1.12     ad  *		the store in instruction order.
    172       1.12     ad  *
    173       1.12     ad  *		Again, note that stores can be buffered and will not always
    174       1.12     ad  *		become immediately visible to other CPUs: they are however
    175       1.12     ad  *		buffered in order.
    176       1.12     ad  *
    177       1.12     ad  * AMD64	Stores occur in order and are buffered.  Loads can be
    178       1.12     ad  *		reordered, however stores act as load fences, meaning that
    179       1.12     ad  *		loads can not be reordered around stores.
    180       1.12     ad  */
    181       1.11  perry static __inline void
    182        1.1   fvdl __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
    183        1.1   fvdl {
    184        1.1   fvdl 
    185        1.7   yamt 	__insn_barrier();
    186        1.1   fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    187        1.1   fvdl }
    188        1.1   fvdl 
    189       1.13     ad #endif	/* _KERNEL */
    190        1.1   fvdl 
    191        1.9   yamt #endif /* _X86_LOCK_H_ */
    192